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In this paper we extend the treatment in Paper I of this series by studying high-energy scattering processes
from the viewpoint of the projectile system, i.e., the system in which the incident particle is at rest. In
particular, we give two equivalent sets of rules for obtaining the high-energy scattering amplitudes from
this standpoint, one for the momentum space and the other for the position space. It is found that both
sets of rules give directly the exact expression of the impact factor, and no more approximations need to be
made even for the numerators of the integrals involved. We conclude that the impact factor is best studied
in the projectile system, while the potential is most conveniently taken care of in the laboratory system, and
that they can be separately treated. In the case of high-energy collision of two particles, each impact factor
is best studied in its own projectile system. These two sets of rules are shown to be equivalent to those in
the laboratory system. In the Appendix we also study high-energy scattering processes in the position
space from the viewpoint of the laboratory system, and explicit rules are given.

1. INTRODUCTION

N Paper I! of this series, it is found that, at high
energies, only certain terms (or parts of terms) in
the perturbation series are of importance. Moreover,
these important terms can be represented by impact
diagrams, and the rules of calculation with impact dia-
grams are explicitly given. This also leads to a natural
and simple physical picture.l?

It is the purpose of the present paper to study further
these contributions from impact diagrams. As is usually
true with new methods of calculation, it is desirable to
recast the results in as many different forms as possible.
In addition to gaining familiarity with both the method
and the results, we often find that, for different pur-
poses, different forms are particularly convenient. In the
present case of impact diagrams, an especially useful
system is the projectile system, defined as the system
where the incident particle is at rest. This projectile
system plays a central role in the development of this
and some of the following papers.

In this paper we restrict ourselves to the case of
elastic scattering, while the generalization to other
diffractive processes is deferred to later papers. As
stated in Paper I, the rules for elastic scattering are
expressed as integrals over three-momenta in the c.m.
system. Since there is a set of energy denominators
associated with each incident particle, it is perhaps
natural to think of the projectile system and ask how
the results look in this system. Next, by Fourier trans-
form, the rules can be restated in coordinate space, both
in the c.m. system and in the projectile system.

* Work supported in part by the U. S. Atomic Energy
Commission.

t Work supported in part by the National Science Foundation.
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We shall study all these possibilities in this paper. In
order to emphasize the physics rather than the trivial
mathematics, we shall, however, choose a slightly
different order. Since the physical picture of high-
energy diffraction scattering mentioned above is de-
scribed in terms of the lifetimes of virtual states and the
spatial separation of the constituting particles, it is
desirable to extract from this picture, directly in
coordinate space, the perturbation-series expansion at
high energies. Since this development belongs more
properly to Paper I and is not related to the projectile
system, we present it as an appendix for the sake of
clarity. Aside from this appendix, the projectile system
is emphasized throughout this paper. Thus, in Secs. 2
and 3, we give the rules for elastic scattering in the
projectile systems. Those in Sec. 2 are in the form of
integrations over momentum variables, and are ob-
tained from Sec. 4 of I by a Lorentz transformation,
while those in Sec. 3 are over position variable, and are
related to the development given in the Appendix. In
the projectile system, the energy dependence is made
most explicit as a multiplicative factor. In Sec. 4 we
show that these two results in Secs. 2 and 3 are indeed
the same. Once in the projectile system, generalization
to diffraction scattering other than elastic is simple.

As an example, the rules in the projectile system are
applied to Delbriick scattering. In particular, we show
that by a suitable limiting process, even the non-
existence of the projectile system in the case of a zero-
mass incident particle does not cause any difficulty.

2. MOMENTUM SPACE IN PROJECTILE SYSTEM

In this section, we apply a Lorentz transformation to
the rules given in Sec. 4 of I. Thus we are again dealing
with the scattering by a static external potential, and
we are interested in the result for the projectile system .
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A. Lorentz Transformation

In Sec. 4 of I, we choose the z axis to be in the direc-
tion of the average three-momentum of the incoming
and outgoing particles. This choice is not essential (see
Sec. 2 B below): it is more convenient for the present
purpose to choose the z axis more simply as the direction
of the three-momentum of the incoming particle in the
laboratory system. Thus we denote the components of
the four-momentum of this particle as

[(w2+M2)1/27 07 0> “’] ) (21)

where M is the mass of the incident particle. In the
projectile system, this same four-vector is of course
[M,0,0,0]. Thus the desired Lorentz transformation is

pi=(1+e*/M*)'Pp— (/M) P,
b =—(o/M)p A+ (1+?/M*)p,,

and

p/=p, (2.2)

where the prime indicates the projectile system. If

pr=pitp. and pi'=p/+p/, (2.3)
then, for large w,
pe =[(A4e?/ M) 2Fo/M Jpi~ Qw/M)Fp,. (2.4)

In connection with Sec. 4 of I, consider the four-
momentum (0<B<1)

[(B%?+p.2+m?)'=, pu, Be]. (2.5)

Under the Lorentz transformation (2.2), Eq. (2.5)
transforms into a rather complicated expression, which
reduces to

1 pl+m? 1 p.2-m?
L a5 L e 2 g
2M B M B

as w — 0. Note that, from (2.5) and (2.6),

pe~28w and  py~BM 2.7)

satisfy (2.4).
As a further application of (2.2), consider the v
matrices. For any vector p,
p=pvo—p Y-
First choose p=[1,0,0,0]: then p=+v,. By (2.2)
P,=[(1+w2/M2)1/27 01 OJ _w/M]
N[w/M7 0: Oa _w/M]J
when w>>M. Thus
'~ (/M) (yotrs). (2.8)
Next choose p=[0, 0,0, —17; then p=1;. In this case,
again by (2.2),
p'=[w/M, 0,0, —(1+w?/M*)V?]
N[w/M) 01 0: _w/M:I:
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when w>>M. Thus (2.8) again holds. We therefore reach
the conclusion that, under the Lorentz transformation
(2.2), both v, and ;3 transform approximately into

(/M) (vots). (2.9)

B. Energy Denominators

We note from (4.1) of I that r; appears in the energy
denominators. How do we reconcile this fact with our
present choice of the z axis, where r; no longer appears
in the expression for &), the energy of the incident
particle?

The answer is that, when the coordinate system used
in I'is replaced by the present coordinate system, p: also
changes. Thus

Iy — 0
and
Pii—> Pir—BiT1. (2.10)
Since ZJ' ,3j= 1,
1, —2 pi=0
J

does not change. As a consequence,
(M) =22 (pis*+m;) /B
7
— M= (pi*+m?)/B;.  (2.11)
i

The above discussion holds before scattering takes
place, or, more precisely, for an intermediate state to
the left of the black dots in the impact diagram. Thus,
with the present choice of the z axis, the energy de-
nominator is

3o LM =5 (pa+m?) /6] (2.12)

for such an intermediate state, but is

Y LAY — S (ot m?)/8] (2.13)
J

for an intermediate state to the right of the block dots.

More generally, the expression is

S [ +(E i)' =X (Dt mid)/B]. (2.14)
J J
Note that (2.14) is invariant under (2.10).

C. Factors of »

In connection with the rules of calculation for elastic
scattering given in Sec. 4 of I, it is not possible to
separate out completely the dependence on w. The
reason is that, in the traces, w appears in association
with each momentum but the final power of w is in
general nowhere this high, because of cancellations. For
example, the trace on the right-hand side of (2.13) of I
is of the order of magnitude «?, although four powers of
w formally appear. Indeed, this order of magnitude is
determined not by the number of momentum factors but
rather by the number of v,’s.
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This cancellation is automatic in the projectile sys-
tem, where the momentum factors do not give w de-
pendence, but the v, factors, now (w/M)(ve+vs) as
given by (2.9), are each linear in w. We can therefore
count explicitly the number of factors of w: (i) By (2.9),
there is a factor w for each black dot; (ii) by rule (7) in
Sec. 4 of I, there is a factor w™! for each internal line of
the impact diagram; (iii) by rule (10) there, a factor w
is associated with each 8 integration; and (iv) by (2.12)
and (2.13), there is a factor w for each energy denomi-
nator. But the topology of an impact diagram is such
that

(number of internal lines) — (number of black dots) +1
= (number of 8 integrations)

~+ (number of intermediate states). (2.15)

Therefore, by (i)-(iv), the power of w is always 1, as it
should be.

D. Rules for Elastic Scattering

We are now in a position to write down the desired
rules in the projectile system, making use of (2.7). After
an impact diagram is drawn, we associate a four-
momentum with each internal line such that the four-
momentum always points from left to right, is on mass
shell, and has a positive time component. Furthermore,
at each vertex, the transverse component p, must be
conserved. For such a four-momentum p (we omit all
the primes for simplicity), define 4. by (2.3). Note that
both p; and p_ are non-negative.

The rules follow:

(0) An over-all factor w/M (w does not appear in the
remaining rules).

(1) A factor 2mey (3 py) for a vertex involving a
real photon with polarization in the 7th direction, where
> p+ means the sum of all the p,’s to the right of the
vertex minus that sum to the left of the vertex.

(2) A factor 2mwey,8(3_ p4) for a vertex involving a
virtual photon.

(3) A factor 2me(vo+v3) Vi (qi)s( py) for a black
dot on an electron or position line, respectively.

(4) A factor Z=p-+m for a virtual electron or position
line, respectively.

(5) For each closed fermion loop, take the trace with
a minus sign.

(6) A factor

.2 m.2 —1
2<M—Z Pi*+m; )
i pir
for an intermediate state to the left of the black dots,
and a factor

4r12 p]'12+mj2 —1
)i
M i pir

for one to the right.
(7) A factor 1/(2p;;) for each internal line.
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(8) An over-all factor (—4)¥-1, where &V is the number
of black dots.

(9) Integrate over all possible transverse momenta
with

H(ZW)—zfdpily

subject to the condition of momentum conservation at
all vertices.
(10) Integrate with

1) / "o,

where the product is over all internal lines.

3. POSITION SPACE IN PROJECTILE SYSTEM

We next apply the Lorentz transformation of Sec. 2
to the position space. In the Appendix, we obtain,
directly from the physical picture of I, the high-energy
behavior of the matrix elements in the c.m. position
space. The results there form the starting point for this
section. As in Sec. 2, the z axis is chosen to be the
direction of the three-momentum of the incoming
particle in the laboratory system, and the Lorentz
transformation is

V= 14w/ M2)12%— (w/M)z,
2 =— (w/M)t+ (1+4w?/ M2z,

and
xl’ == x.l. , (3. 1)
just like (2.2). Analogously to (2.3), let
xp=txz and x. =147 (3.2)
then
2y~ Qw/M)Flx (3.3)

for large w. Thus x_’ is just 27/M, where 7 is the variable
used in the Appendix.

The transformation of v, is already given by (2.9)
and the counting of the number of w factors is no
different from that of Sec. 2 C. In view of rule (4) of the
Appendix, it is convenient to define the propagators

Ar(x)=A (x)=Ap(x) if x,>0
=0 otherwise, (3.4)
Sr(x)=S,(x)=Sr(x) if x>0
=0 otherwise, (3.5
and
S’ (x)=S;(—x)=Sr(—x)=—S_(x) if x,>0

=0 otherwise. (3.6)

These propagators are not Lorentz-invariant and shall
be discussed further in Paper IV.
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We are now ready to write down the rules for elastic
scattering, directly obtained from those of the Appendix.
Again we omit all the primes for simplicity.

(0) An over-all factor w/M.

(1) A factor —iey; for a vertex involving a real
photon with polarization in the 7th direction.

(2) A factor —iey, for a vertex involving a virtual
photon.

(3) A factor

+i(yots) {exp[:Fz'e /_ i V(xl,z’)dz’:l—l}

for a black dot on an electron or position line’
respectively.

(4) Sr(xrp—xz) or S¢/(xg—=xr) for a virtual electron
or positron line joining xr and xz, where xg is to the
right of x;, in the impact diagram.

(5) For each closed fermion loop, take the trace
with a minus sign.

(6) —Ar(xg—xr) for a virtual photon line. [Of
course, in (4) and (6), appropriate masses must be
used. ]

(7) A factor e~ for the incident particle, where ¢
refers to the time coordinate of the vertex where the
line for the incident particle is attached.

(8) A factor e#*out for the scattered particle, where
x refers to the position four-vector of the vertex where
the line for the scattered particle is attached, and kous
is the momentum four-vector of the scattered particle
in the projectile system, explicitly

2r12:l
" .

(9) An over-all factor (—7)¥1, where N is the
number of black dots.
(10) Integrate over all x with

H /d4xf>
i

where the product is over all vertices with either real
or virtual photon (not including the black dots),

H /dle,
J

where the product is over all the black dots, and

IT / dry (e =0),

21'12
[M—!— o, 3.7)
M

where the product is over all the black dots except one
(any one).

4. EQUIVALENCE OF RULES IN
PROJECTILE SYSTEM

In the preceding two sections, we have given two sets
of rules for elastic scattering by an external potential.
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Both sets are given in the projectile system, one in
momentum space and the other in position space. We
shall show here that the two sets of rules are equivalent.

We follow the standard procedure. Starting with the
rules in momentum space, as given in Sec. 2, we
introduce the position variables by Fourier repre-
sentation. Thus we let all momenta be free but introduce
momentum conservation by writing, for a vertex as in
rule (2) of Sec. 2 for example, a factor

(2#)38')/“5 (Z P1)5(Z p+) ) (41)

where > p. has the same meaning as > p, with p,
replaced by the transverse momenta. We then use the
integral representation

(2m)%6(Xpo)o(Xp4)

=%/dxl /dx_ e Epgi-2p+/2 (4.2)

in (4.1).
Similarly, we introduce an integral representation for
the energy denominators of rule (6) in Sec. 2:

p. 2+m,2 —1 0
2<M—z u) =—i/ dxs
0

i pi+
pji*+m;
Xexpl:%ier(M—Z — >:| (4.3)
i pir
and
4r12 pj12+mj2 —1 00
2<M+—~ = ‘) = —i/ day
Mo i pi 0
4r,? pjl2+7’ﬂj2
Xexp[%ier(M—f- —_ = ————)] 4.4)
M P

The three integral representations (4.2)-(4.4) to-
gether with the definition of V=x(q,) as given by (2.8)
and (2.10) of I make it possible to carry out all the
momentum integrations. We thus define the following
propagators in position space:

0 1
A+(x) = (27!')‘—3/ dp+/dp1. o
0 2py

X CXp(iX_L ‘Pu -“%ix_P_}. - %lﬁﬂ_

ptm ) 43)

P+
for a boson, and

Si (@)= (—iv*d,—m)A, (x) (4.6)

for an electron. We proceed to show that these propa-
gators are the same as usual propagators. For this
purpose, it is sufficient to study (4.5). Using the con-
dition that the four-momentum p is on mass shell, we
can express p. in terms of p, by solving

pr= (oD M)t p,
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to get

p‘2+m2>. @7

== %(14— —
P+
Therefore it follows from (4.5) that

0 1
Ap() = —(20) f i, f dps
. 2(p2+ptm2)L2

Xexplixu- putizps—it(pA+pi+m?)1?]

1
= —i(21)“4fdp ei"P[dpt—* eipet
pE—p*—m? (4.8)

where the contour of integration_for p, is a clockwise
circle near (p*+4m?)'2. Equation (4.8) is the standard
definition of A, (x).

It is now easy to verify the rules of Sec. 3. The
following points are worth noticing.

(1) In (4.2) each x_ integration is associated with a
factor 4. This factor is just right because

fo o

igr=

[4p+ (M —py) 12
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(ii) In (4.3) and (4.4) there is a factor of —i as-
sociated with each intermediate state. Since the number
of intermediate states is the same as the number of
vertices (not black dots), these factors of —¢ account for
the —4’s in rules (1) and (2) of Sec. 3.

(iii) Since p, is conserved, the four-momentum of the
scattered particle must be given by (3.7). Let « be the
position four-vector where this outgoing line is attached;
then the xkout in rule (3) of Sec. 3 supplies the exponent

=211 X+ 3Mu_+5(M+-4r/M)xy . (4.9)
These are just the factors obtained from (4.2) and (4.4).

5. EXAMPLE

As an example, we apply the rules of Sec. 2 to
Delbriick scattering. In this case, V is the potential due
to the Coulomb field of a point charge Ze. Because of the
long range of the Coulomb field, both V_(q.) and V,.(q.)
contain the familiar infinite phase shift. In order to
compute the impact factor,’ we apply the ten rules of
Sec. 2 except that the Vx(q:) of rule (2) is omitted.
Accordingly, with reference to Fig. 1 of I,}

et M —1
2y / aps / dpt M_l———_‘—{Tr{Ti[}%P+(’YO—73)_pl'Yl+m](70+73)
s 0

X[3p+(vo—ys) = (Prtqutr1) - vt mly L —3 (M —pi) (vo—vs) — (Pt Qu—11) - yatm]

X (votya)[—=3(M —p1) (yo—3) —Pr‘n‘l‘m]}Z(M“

4r?  (putqutr)?+m?  (petqe—r1)*+m?

p12+m2 p12+m2>—1
D+ M—py

XZ[M-I-

P+ M—py

—1
:| —the value of this expression at q. =r1} . (5.1)

In writing down (5.1), we have made use of (yo+7v3)?=0. Here M is the external photon mass which is needed to
define the projectile system. The right-hand side of (5.1) does not involve w, and its value as 4 — 0 is needed. In
order to calculate this limiting value, we again let p, =Mp and write (5.1) as

1
:l' —the value of this expression at q.= rl} , (5.2)

et 1 1 pifm?  pltmi~!
gr=— /dplf dﬂ———im(— - )
(2m)? o [48(1-p)T 8 1-8
X2|:4r12— (p14-qut-11)24-m? B (pr+qu—r1)*+m?
B 1-6
where

N= Jll}f_{lo M2 Tr{vd{3MB(vo—7s) —DPs- Yl+m](70+73)[%Mﬁ(70_73) — (@1t qutry) yitm]
Xyl —3M (1 —B)(vo—7s) — (Prtqu—11) - YatmI(vo+vs) [—3M (1=B)(yo—ys) —Pr-vsitm]}. (5.3)

The reason that 9T exists is that each y,—1v; yields a factor M.

In view of (3.7), we need not take into account the contraction of v; with vo-+7s. Accordingly, the evaluation
of 9N from (5.3) is almost exactly the same as that of 97, in connection with* Delbriick scattering;

3H. Cheng and T. T. Wu, Phys. Rev. Letters 22, 666 (1969).
4 H. Cheng and T. T. Wu, Phys. Rev. 182, 1873 (1969).
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=28 Tr{viv,[— (Pstqu—r1) - yi—m] —ps-yit+m]}

H. CHENG AND T. T. WU 1

—28(1—=3) Tr{y{— (Pt+aitry) - yit+mly,[—po-yvi-t+m]}
—2B8(1—p) Tr{y.[—ps-yst+mIy,[— (Pitqu—r11) yitm]}
+2(1=8) Tr{y L —p.-yrtm][ — (Prtqutr) - yi—mTy;}

=884;{[B(pst+qu—11)+(1—8) (pst+qu+11) - pitm?)

—8p1i(1=28)[B(prt+qi—r1) j— (1=8) (prt+qut7r1) ;1 —=8pu[B(prtqi—r1) i+ (1=B) (prtqutri)].  (5.4)
In view of (5.2), it is convenient to define p.’:
p/=pit3qi+3(1—-28)r1. (5.5)
In terms of p./, (5.4) can be rewritten as
N =854;(p./2—Q*+m?) +8(1—28)*(p.' —Q) «(p./ +Q) i—8(p/ +Q) :(p/ — Q) ;
=804;(p.2— Q> +m?) —328(1—pB) (p1i pr/ —Q+Q;)+terms linear in p.’. (5.6)
In (5.6),
Q=3(qutr)—pr (5.7)
as before.?
The substitution of (5.5) and (5.6) into (5.2) then yields
et U (264i(p? —Q%+m?) —88(1—B) (pui’ pi’ — Q:Q5)
J7r=— /dpl'/ dﬂ{
(2m)3 0 [P/ —Q)*+m*[(p./+Q)*+m?*]
265;(ps"2—B*r:*+m?) —8B(1—B) (pui’ pr’ —B*1i715) }
L(p./ —Bry)*+m*][(p./+Br1)>+m?*]
et /d , /‘1 i ;5«;1'[32r12+25(1—'/3)(17u'?i/—‘327 ury)  05Q%+28(1—B)(pu prf — Q:Q5) ] (5.8)
=—— | dp. — . .
o L@ —=Br)*+m* [ (p/ +Br)*+m*]  [(p)'—Q)*+m* [ (p./+Q)*+m?]

2w

This is just the photon impact factor found before.®

6. DISCUSSIONS

By working in the projectile system, we are able to
give, for the calculation of the high-energy behavior of
the matrix elements for elastic scattering, rules which
are more explicit than those of Paper I. These rules can
be formulated equally easily in momentum space and in
position space.

In the preceding section, we use Delbriick scattering
as an example of where these rules apply. We emphasize
the following points in connection with that example.

(i) When M£0 so that the projectile system exists,
(5.1) is the desired answer. No manipulation whatsoever
is needed.

(ii) Even if M =0 so that there is no projectile sys-
tem, we are able to use our rules: It is sufficient to take
a limit. We have, in this connection, used once more® the
property that M — 0 and w —» commute.

(iii) If we want to avoid this limiting process M — 0,
we can generalize the notion of the projectile system as
follows. The important property of the projectile sys-
tem is that the incident particle is not energetic in this
system; there is no need for it to be at rest. Thus in
applying (2.2), it is not necessary to identify the M

8 H. Cheng and T. T. Wu, Phys. Rev. 182, 1852 (1969).

with the mass of the incident particle. Once this point is
realized, it is straightforward to generalize the steps in
Secs. 2 and 3.

(iv) If M=0 and we use the limiting process, for
Delbriick scattering (5.2) with (5.3) is already the
desired answer. The manipulations in the rest of Sec. 5
is really devoted to showing that the present answer is
the same as what is known before.

The rules in the preceding sections can be easily
generalized to two-particle collision processes at high
energies. Aside from the trivial over-all factors given by
(8’) of Sec. 5in T, we just replace

/ V(x1,2)dz

by e(2r)7K o(\ |x|) and apply the rules in the preceding
sections separately to the two particles in their own
projectile system.

A later paper in this series will be devoted to an
important property of the present rules of calculation,
namely, the relation between impact factors and state
vectors.
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APPENDIX

In this appendix we shall study the results of Paper I
in position space. In particular, the rules for obtaining
high-energy scattering amplitudes in position space are
explicitly given. This study is interesting for the
following reason: The physical picture obtained in I for
high-energy diffraction scattering is described in the
language of time and space, i.e., the lifetime of virtual
states and the spatial separation of the constituting
particles. On the basis of this picture, it is both natural
and instructive to obtain the scattering amplitude in the
form of space-time integrals. This may lead to a deeper
understanding of the structure of the scattering ampli-
tude. We emphasize that this appendix does not depend
on any of the developments in the present paper and
should more appropriately be Sec. 8 of Paper I. 1t is for
this reason that we put the following discussion in'an
appendix.

For the purpose of illustration, we shall first work out
the Delbriick scattering amplitude in the form of space-
time integrals. The general rule will next be given.

A. Delbriick Scattering

Let us study Fig. 1(a) with the help of Feynman rules
in position space. If the scattered particle in Fig. 1(a)
is an electron, the scattering amplitude is proportional
to

(-—ie)3/ Tr[viS r(xs—%1)70S r(we—%3)7:S r(21—2%2)

X exp( —ik 1x1—l—ik2x2) V(Xa)
23
Xexp[—ie / V(X317 )dz’:ld4x1(l4x2d4x3 . (A1)

In the above,

S o(@) =i(2m) / 0 v+ (p-m)(p—m i€y

==+S.(x), 120 (A2)

with

Sy(x)=x32m)? / dp exp[Fi(p*+m?)V4kip-x]

X(=p+m)(p*+m*) % (A3)
V (x3) is the external potential; x1, x5, and x5 are four-
6 The projectile system is being used in connection with the

droplet model by T. T. Chou, C. N. Yang, and E. Yen (to be
published).
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P

X3

(b)

F1G. 1. Space-time diagram for Delbriick scattering.

vectors in the position space with the components of x;
denoted by (#1,X11,%1), and similarly for x, and x3; and
i and j are the direction of the polarization vectors for
the incoming and the outgoing photons, respectively.
Notice that the factor

23
exp[~ie/ V(xu,z')dz’]

in the integrand of (A1) takes care of all processes of
multiple scattering of the electron by the external field.
Thus the vertex at 3 is represented by a black round
dot (see I).

Let us replace 21— 3 and x,—x3 in (A1) by #; and 2,
respectively; then (A1) becomes

—(—ie)3/d4xld4x2 TI‘[’)@SF(—x1)"yuSF(x2>’YjSF(x1—x2)]
Xexp(—ik1x1+ik2x2)/d4x3 exp[v,(k;,-—kl)xﬂ

23
X V(Xa) exp[—ief V(xsl,z’)dz’:l

= —1:(:.)21I'6(E2—E1)6—1V_(2r1)[1 , (A4)

where £; and E; are, respectively, the time components
of k1 and k., and

I1=wlet f d*x1d*xs

XTr[yaS r(—21)v0S r(%2)y;S r(21—12) |

Xexp(—ikw1+ikaxs). (AS)
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So far the only high-energy approximation made is in
the contribution of multiple scattering. The quantity 7,
as given by (AS) is still exact. We shall now make
approximations on /;. We note that the contribution to
(AS) from the integration region where either >0 or
$,<0 can be neglected. This follows from the physical
picture of I, which tells us that the dominant process has
the following time sequence: The electron is first
created by the incoming photon, next scattered by the
external potential, and finally annihilated by the posi-
tion. It can be verified mathematically by substituting
(A2) into (AS) and carrying out the integration over
£1>0 or £,<0. We shall then see that the denominator
factors obtained are too large. The details of such
calculations will not concern us here. We get

. d“xul"xz

Ilww‘le“/
$1<0,t2>0

XTI‘[7¢S+(— xl)'YOS—{—(xZ)'YjS__(x]_ -—xg)___]
X exp( — ik1x1+’i]€2x2) . (Aﬁ)

Equations (A4) and (A6) give the scattering amplitude
in the position space. To see that they are consistent
with the results in I, we substitute (A2) into (A6) and
obtain

Ti~ —ho1(2m) 2t
X/dlhdpzdps 8(p1t+p2—k1)6(p1t+ps—ks)

XTryi(pstm)yo(patm)yi(— patm) J(E1EqEz)~!

X(w—E1—Es) Y w—E1—E3)~t, (A7)
where
Ei= (pim?)2,

Consider now the factor (w—FE1—Es) Y(w—FE1—E3) .
Denote

i=1,2,3.

p:= (pilyﬂiw) ) 1= 17 21 31

then the & functions in (A7) give

ﬁl+ﬁ2=,31+ﬂ3=1-
Thus
w—Ey—Ey~ (1_ 1131[ - [,32[)(0
and
w——E1—E3’\’ (1— l,Bll - l:83 l )w:

which means that 81, 82, and B8; must all be between 0
and 1 in order for (w—FE;—E)(w—FE1—E;)™ to be
large (in fact, of the order of w?). We shall thus neglect
other regions of integration. Equations (A7) and (A4)
are then in agreement with (3.11) of I.

If the scattered particle in Fig. 1(a) is the positron,
similar treatment applies and will not be elaborated. It
suffices to mention that, just as in I, the addition of the

CHENG AND T. T. WU 1

contribution of positron scattering merely replaces
¢ W_(2ry) in (A4) by

—i(2m) / dqu V(@) Va(—qutr).

Thus the result agrees with (3.12) of I.
Next consider the diagram in Fig. 1(b). The scat-
tering amplitude for this diagram is proportional to

—(ie)4/d4x1d4x2d4x3d4x4

XTT[’YOSF(OQ—?M)’Y;'SF(%—xl)‘)’oSF(xz"“xs)
ijSF(x4_x2)]e—ikmeikz:czV(x3) V(X4)

23 Z3
Xexp[—ie/ V(xsl,z)dz] exp[ie/ V(xu,z')dz’:l.

(A8)
The above expression can be put in the form
— / d*xsd*es Tr[yol1(ws—xa)yol (3 —2%4) ]
X exp[ — 1% (ki—ks) (ws+24) JG(23,24) ,  (A9)
where
Fi(ws—x4) =62/d4x1 S r(x1—x4)vsS (23 —x1)
Xexp[ —tki(x1—3xs—3xs)], (A10)
Fo(xs,24) =e2/d4x2 S #(x2a—23)y S p(wa—x2)
Xexp[iks(xe—5u03—5%x4)], (All)

and

G(xs,x4) =V (x3) V (X4)

exp[—ie[ V(xgl,z)dz—l—ie/ V(X“,z)dz:l. (A12)

—0

At this point it is important to recognize that the
longitudinal components of x in Fi(x) and Fy(x) are
most appropriately chosen to be the combinations
w(t—2) and w™'({+32). Thus

Fi(@)=Fi(o(t—2), o (+2), X1), i=1,2.

This is because F;(x), for example, must be a function
of 2% and k1x as a result of Lorentz invariance, and both
2=[w(t—2) Lo ((+2)]—x2 and kx~w(—2)—r1-X,
can be expressed naturally in terms of w(i—2), w™!(14-2),
and x,. We shall make, for two arbitrary functions f and
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g, the following approximation:

f_ ‘”f_ dz f(o(t—2), o (t42))g()

Nw—l[ /_ i dz g(z):“: f_ i dr f(r,O)].

We emphasize that this approximation cannot be
justified @ priori, and in quantum electrodynamics its
validity must rely on more rigorous calculations.?? In
this approximation, (A9) becomes

we2w8(E1—Es)

X/dxsldxu. Io(x50—x%41) expl —ir1- (Xa1+Xa1) ]

X <[exp|:—ie/jo V(xu,z)dz:l—l}

X {expli—ie/o0 V(x,;l,z)dz}—l} , (A13)

Iz(x_]_) = —w‘z/‘ dr

where

XTI‘I:’YoFl(T,O,X_L)j/on(T,O,X_L):I . (A14)

As before, F; and F, as given by (A10) and (Al1),
respectively, can be approximated as

Fi(x)~ ——62/ d*x1 S_(Gx4x1)v:S+(Ga—x1)
<0

Xexp(—ikwy), (A1S)
F2(x)'\’ ""32/ d4x2 S+(x _%x)’yjs__(——xz—%—x)
t2>0
Xexp(iksrs). (A16)

Equations (A13)-(A16) are consistent with (3.13) of I,
as can be easily shown by substituting (A3) into (A15)
and (A16). :

Combining the above results, we can write down the
Delbriick scattering amplitude in the impact-factor
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representation of the position space:

m(e)'\’wi/ququ I(Xsl—Xu) exp[—irl- (X3L+X41)]

X !exp[ —1ie / V(X31,2)dz

+ie / V(xu,z’)dz’:l——l} ., (A17)

where

I(x) =Iy(x)+1:5(x). (A18)

B. Rules for Elastic Scattering

Let us consider a diagram that has N black dots
which, in the position space, arelocated at x4, %, . . ., xn,
say. Then the scattering amplitude for this process can
be obtained with the following rule:

(1) For a black dot on an electron or positron line a

factor
i'yo{exp[—'ie/ V(xu,z)dz:]——l}
—iv0 { expl:ie / V(x“,z)dz] -1 } .

(2) A factor Sy (S-) for an electron (positron)
propagator, and a factor Ay for a photon propagator,
where

A() = —3(20)? / dp

Xexp[ —i(p*+N) 2 +ip-x](p* M) ~12. (A19)

The rest of the factors are the same as in the Feynman
rules. The integration region is different:

(3) Set t;=2,=7;/2w,i=1, ..., N; integrate over
N
w N TT (dxindrs) -
i1

[A factor 2718 (E1— E,) must be deleted. ]
(4) The region of integration for other vertices is
such that time is always increasing from left to right.

Note that, throughout this appendix, no reference to
the result in Sec. 4 of T is made. The rules here follow
directly from the physical picture described in I.



