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In this paper we extend the treatment in Paper I of this series by studying high-energy scattering processes
from the viewpoint of the projectile system, i.e., the system in which the incident particle is at rest. In
particular, we give two equivalent sets of rules for obtaining the high-energy scattering amplitudes from
this standpoint, one for the momentum space and the other for the position space. It is found that both
sets of rules give directly the exact expression of the impact factor, and no more approximations need to be
made even for the numerators of the integrals involved. We conclude that the impact factor is best studied
in the projectile system, while the potential is most conveniently taken care of in the laboratory system, and
that they can be separately treated. In the case of high-energy collision of two particles, each impact factor
is best studied in its own projectile system. These two sets of rules are shown to be equivalent to those in
the laboratory system. In the Appendix we also study high-energy scattering processes in the position
space from the viewpoint of the laboratory system, and explicit rules are given.

I. INTRODUCTION'
' 'N Paper I of this series, it is found that, at high
~ - energies, only certain terms (or parts of terms) in
the perturbation series are of importance. Moreover,
these important terms can be represented by impact
diagrams, and the rules of calculation with impact dia-
grams are explicitly given. This also leads to a natural
and simple physical picture. ' '

It is the purpose of the present paper to study further
these contributions from impact diagrams. As is usually
true with new methods of calculation, it is desirable to
recast the results in as many different forms as possible.
In addition to gaining familiarity with both the method
and the results, we often 6nd that, for different pur-
poses, different forms are particularly convenient. In the
present case of impact diagrams, an especially useful

system is the projectile system, defined as the system
where the incident particle is at rest. This projectile
system plays a central role in the development of this
and some of the following papers.

In this paper we restrict ourselves to the case of
elastic scattering, while the generalization to other
diffractive processes is deferred to later papers. As
stated in Paper I, the rules for elastic scattering are
expressed as integrals over three-momenta in the c.m.
system. Since there is a set of energy denominators
associated with each incident particle, it is perhaps
natural to think of the projectile system and ask how
the results look in this system. Next, by Fourier trans-
form, the rules can be restated in coordinate space, both
in the c.m. system and in the projectile system.

*Work supported in part by the U. S. Atomic Energy
Commission.
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' H. Cheng and T. T. Wu, Phys. Rev. Letters 23, 670 (1969).
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Ke shall study all these possibilities in this paper. In
order to emphasize the physics rather than the trivial
mathematics, we shall, however, choose a slightly
different order. Since the physical picture of high-
energy diffraction scattering mentioned above is de-
scribed in terms of the lifetimes of virtual states and the
spatial separation of the constituting particles, it is
desirable to extract from this picture, directly in
coordinate space, the perturbation-series expansion at
high energies. Since this development belongs more
properly to Paper I and is not related to the projectile
system, we present it as an appendix for the sake of
clarity. Aside from this appendix, the projectile system
is emphasized throughout this paper. Thus, in Secs. 2
and 3, we give the rules for elastic scattering in the
projectile systems. Those in Sec. 2 are in the form of
integrations over momentum variables, and are ob-
tained from Sec. 4 of I by a Lorentz transformation,
while those in Sec. 3 are over position variable, and are
related to the development given in the Appendix. In
the projectile system, the energy dependence is made
most explicit as a multiplicative factor. In Sec. 4 we
show that these two results in Secs. 2 and 3 are indeed
the same. Once in the projectile system, generalization
to diGraction scattering other than elastic is simple.

As an example, the rules in the projectile system are
applied to Delbruck scattering. In particular, we show
that by a suitable limiting process, even the non-

existence of the projectile system in the case of a zero-
mass incident particle does not cause any difhculty.

2. MOMENTUM SPACE IN PROJECTILE SYSTEM

In this section, we apply a Lorentz transformation to
the rules given in Sec. 4 of I. Thus we are again dealing
with the scattering by a static external potential, and
we are interested in the result for the projectile system.
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A. Lorentz Transformation

In Sec. 4 of I, we choose the s axis to be in the direc-
tion of the average three-momentum of the incoming
and outgoing particles. This choice is not essential (see
Sec. 2 B below): it is more convenient for the present
purpose to choose the s axis more simply as the direction
of the three-momentum of the incoming particle in the
laboratory system. Thus we denote the components of
the four-momentum of this particle as

(((o'+M')'~', 0, 0, co), (2.1)

where SI is the mass of the incident particle. In the
projectile system, this same four-vector is of course

LM,0,0,0j. Thus the desired Lorentz transformation is

when co))M. Thus (2.8) again holds. We therefore reach
the conclusion that, under the Lorentz transformation
(2.2), both &0 and ya transform approximately into

(~/M) (vo+v8)

B. Energy Denominators

(2.9)

We note from (4.1) of I that r& appears in the energy
denominators. How do we reconcile this fact with our
present choice of the s axis, where ri no longer appears
in the expression for 80, the energy of the incident

particle)
The answer is that, when the coordinate system used

in I is replaced by the present coordinate system, y& also
changes. Thus

P ~'= (1+~'/M')"'P i (~/M)—p
p, ' = —((o/M) p,+(1+(o'/M') '~'p„

Pl 1

where the prime indicates the projectile system. If

and

Since g;P;=1,

r& —+0

pri~ pii Pire ~

r, —P p;i ——0

(2.10)

P+=Pi+P* and P+ =Pi +P
then, for large m,

(2.3) does not change. As a consequence,

("'+M') -Z(p;.'+, ')/~;

L (P2~2+p 2+re~2) 1/2 p P(g1 (2.5)

Under the Lorentz transformation (2.2), Eq. (2.5)
transforms into a rather complicated expression, which
reduces to

p~'= L(1+~'/M')'I'W~/M jp~- (2~/M)+'p~. (2.4)

In connection with Sec. 4 of I, consider the four-
momentum (0(P(1)

—+ M' —Q(p;g'+m')/P . (2.11)

—',(u 'PM' —Q(p;|'+m, ')/p;] (2.12)

The above discussion holds before scattering takes
place, or, more precisely, for an intermediate state to
the left of the black dots in the impact diagram. Thus,
with the present choice of the 2 axis, the energy de-
nominator is

1 pg'+m' 1 ( pg'+I'—
PM"+—,pi, —

I PM' — — (2.6) for such an intermediate state, but is
2M P 2M' P

—: -'L(M'+4 ")-Z(p,"+ )/P, ~
as ~ -+~ . Note that, from (2.5) and (2.6),

(2.13)

p~ 2pro and p+' pM

satisfy (2.4).
As a further application of (2.2), consider the 7

matrices. For any vector p,

p=p&70 p'Y.

First choose p=)1,0,0,0j: then p=yo. By (2.2)

p'=
I

(1+co'/M')'", 0, 0, —cu/Mj
~Lcu/M, 0, 0, —co/M j,

when co)&3f. Thus

p'- (~/M) (vo+v3) . (2.8)

Next choose P=L0, 0, 0, —1j; then P=y3. In this case,
again by (2.2),

p' =L~/M, 0, 0, —(1+~'/M')'~'j
Car/M, 0, 0, —(o/M),

for an intermediate state to the right of the block dots.
More generally, the expression is

—:~ 'LM'+(2 p~')' Z(p "+~'—)/P ) (2.14)

Note that (2.14) is invariant under (2.10).

C. Factors of u

In connection with the rules of calculation for elastic
scattering given in Sec. 4 of I, it is not possible to
separate out completely the dependence on ~. The
reason is that, in the traces, M appears in association
with each momentum but the final power of or is in
general nowhere this high, because of cancellations. For
example, the trace on the right-hand side of (2.13) of I
is of the order of magnitude co', although four powers of
cv formally appear. Indeed, this order of magnitude is
determined not by the number of momentum factors but
rather by the number of pp s.
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This cancellation is automatic in the projectile sys-
tem, where the momentum factors do not give co de-
pendence, but the yo factors, now (cv/M)(go+pa) as
given by (2.9), are each linear in co. We can therefore
count explicitly the number of factors of co: (i) By (2.9),
there is a factor co for each black dot; (ii) by rule (7) in
Sec. 4 of I, there is a factor co ' for each internal line of
the impact diagram; (iii) by rule (10) there, a factor &o

is associated with each P integration; and (iv) by (2.12)
and (2.13), there is a factor ~d for each energy denomi-
nator. But the topology of an impact diagram is such
that

(number of internal lines) —(number of black dots) +1
= (number of P integrations)

+(number of intermediate states). (2.15)

Therefore, by (i)—(iv), the power of io is always 1, as it
should be.

D. Rules for Elastic Scattering

We are now in a position to write down the desired
rules in the projectile system, making use of (2.7). After
an impact diagram is drawn, we associate a four-
momentum with each internal line such that the four-
momentum always points from left to right, is on mass
shell, and has a positive time component. Furthermore,
at each vertex, the transverse component p~ must be
conserved. For such a four-momentum p (we omit all
the primes for simplicity), define p~ by (2.3).Note that
both p+ and p are non-negative.

The rules follow:
(0) An over-all factor oi/M (co does mot appear im the

remairiirig rules)
(1) A factor 27rey;ti(g p+) for a vertex involving a

real photon with polarization in the ith direction, where

P p+ means the sum of all the p+'s to the right of the
vertex minus that sum to the left of the vertex.

(2) A factor 2~ey„b(p p+) for a vertex involving a
virtual photon.

(3) A factor 2me(y, +73)V~(q;,)8(P p+) for a black
dot on an electron or position line, respectively.

(4) A factor &y+m for a virtual electron or position
line, respectively.

(5) For each closed fermion loop, take the trace with
a minus sign.

(6) A factor

(8) An over-all factor (—i)~ ', where E is the number
of black dots.

(9) Integrate over all possible transverse momenta
with

subject to the condition of momentum conservation at
all vertices.

(10) Integrate with

pi+ 7

xy =xy)

just like (2.2). Analogously to (2.3), let

x~ = t&s and x~' =t'&s':

then

(3.1)

(3.2)

xg' (2'/M)+'x~ (3.3)

for large&a. Thus x ' is just 2r/M, where r is the variable
used in the Appendix.

The transformation of &0 is already given by (2.9)
and the counting of the number of cv factors is no
different from that of Sec. 2 C. In view of rule (4) of the
Appendix, it is convenient to define the propagators

hr(x) = h~(x) =Dr(x'1 if x+)0

=0 otherwise, (3.4)

where the product is over all internal lines.

3. POSITION SPACE IN PROJECTILE SYSTEM

We next apply the Lorentz transformation of Sec. 2
to the position space. In the Appendix, we obtain,
directly from the physical picture of I, the high-energy
behavior of the matrix elements in the c.m. position
space. The results there form the starting point for this
section. As in Sec. 2, the s axis is chosen to be the
direction of the three-momentum of the incoming
particle in the laboratory system, and the Lorentz
transformation is

t' = (1+id2/M')'12t —(s)/M) s,
s' = —(cd/M) t+ (1+co'/M') '~'8,

for an intermediate state to the left of the black dots,
and a factor and

Sr(x) =S~(x)=Sr(x) if x~) 0
=0 otherwise, (3.5)

4ri2 p, i'+m, '-
2 M+

M i pip

for one to the right.
(7) A factor 1/(2p;~) for each internal line.

Sr'(x)=S~(—x)=Sr(—x)= —S (x) if x+)0
=0 otherwise. (3.6)

These propagators are not Lorentz-invariant and shall
be discussed further in Paper IV.
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We are now ready to write down the rules for elastic
scattering, directly obtained from those of the Appendix.
Again we omit all the primes for simplicity.

(0) An over-all factor co/M.
(1) A factor —icy, for a vertex involving a real

photon with polarization in the ith direction.
(2) A factor icy„ —for a vertex involving a virtual

photon.
(3) A factor

Both sets are given in the projectile system, one in
momentum space and the other in position space. We
shall show here that the two sets of rules are equivalent.

We follow the standard procedure. Starting with the
rules in momentum space, as given in Sec. 2, we
introduce the position variables by Fourier repre-
sentation. Thus we let all momenta be free but introduce
momentum conservation by writing, for a vertex as in
rule (2) of Sec. 2 for example, a factor

i(y.o+y3) exp Hie V(xi,s') ds' —1
(2~)'~v.~(Z p.)~(Z p+) (41)

where p p, has the same meaning as p p+ with p~
replaced by the transverse momenta. We then use the
integral representation

for a black. dot on an electron or position line'
respectively.

(4) Sj(xji—xj) ol Sj (xji xj) for a virtual electron
or positron line joining x~ and xl, , where xg is to the
right of xl. in the impact diagram.

(5) For each closed fermion loop, take the trace
with a minus sign.

(6) Aj(xjj —xj.) for—a virtual photon line. LOf
course, in (4) and (6), appropriate masses must be
used. j

(7) A factor e '™for the incident particle, where t

refers to the time coordinate of the vertex where the
line for the incident particle is attached.

(8) A factor e'*" t for the scattered particle, where
x refers to the position four-vector of the vertex where
the line for the scattered particle is attached, and k,„~
is the momentum four-vector of the scattered particle
in the projectile system, explicitly

dxj dx e 'xi xi'je" xj'+"-(4.2)

in (4.1).
Similarly, we introduce an integral representation for

the energy denominators of rule (6) in Sec. 2:

p 2+m 2 —1 m

2 M — - = —i dx+
2+ 0

p;j'+m, '
&exp ,'ix+ M —P——

j+
(4.3)

4r 2
p 2+m2 —1 tc

2 M ——— = —i dx+
M j p+ o

21'~ 2I'y

(3.7)M+ —, 2ri, —
M M 4r, ' p, j'+m, '

Xexp ',ix+ M+———Q — . (4.4)
M j' pp

(9) An over-all factor ( i)~ ',—where jV is the
number of black dots.

(10) Integrate over all x with

1
dP+ dpi-

2P+
6+(x) = —(2s )

—'
dxjt,

The three integral representations (4.2)—(4.4) to-
gether with the definition of Vp(q, ) as given by (2.8)

d'x;, and (2.10) of I make it possible to carry out all the
momentum integrations. We thus define the following

where the product is over all vertices with either real ProPaga«r»n Po»t~on sPace:
or virtual photon (not including the black dots),

where the product is over all the black dots, and
pi'+m'

)&exp ixJ. pJ. ——,'ix +—-',ix+ 4.5

where the product is over all the black dots except one
(any one).

4. EQUIVALENCE OF RULES IN
PROJECTILE SYSTEM

In the preceding two sections, we have given two sets
of rules for elastic scattering by an external potential.

for a boson, and

S+(x)= ( iy~B„m)A+(—x)—
for an electron. We proceed to show that these propa-
gators are the same as usual propagators. For this
purpose, it is sufhcient to study (4.5). Using the con-
dition that the four-momentum p is on mass shell, we
can express p, in terms of p+ by solving

P+= (P'+ p'+m') "+p.
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to get

(4.7)

Therefore it follows from (4.5) that

Ap(x) = —(2s)—' dpg dpi
2(p 3+.p 3+i333)i/3

&&exp(ixi pi+isp, —it(p 3+pis+ms)'tsar

I

dx dr+ = df dk.

z(2%) dp s *'& dp
pis —p' —nzs (4.8)

where the contour of integration for p, is a clockwise
circle near (p'+ms)'". Equation (4.8) is the standard
definition of h~(x).

It is now easy to verify the rules of Sec. 3. The
following points are worth noticing.

(i) In (4.2) each x integration is associated with a
factor —,'. This factor is just right because

(ii) In (4.3) and (4.4) there is a factor of —i as-

sociated with each intermediate state. Since the number
of intermediate states is the same as the number of
vertices (not black dots), these factors of i ac—count for
the —i's in rules (1) and (2) of Sec. 3.

(iii) Since p+ is conserved, the four-momentum of the
scattered particle must be given by (3.7). Let x be the
position four-vector where this outgoing line is attached;
then the xk, „3 in rule (3) of Sec. 3 supplies the exponent

—2ri x+-,'Ale +-', (3l+4ris//M)x+. (4.9)

These are just the factors obtained from (4.2) and (4.4).

5. EXAMPLE

As an example, we apply the rules of Sec. 2 to
Delbriick scattering. In this case, V is the potential due

to the Coulomb 6eld of a point charge Ze. Because of the

long range of the Coulomb field, both V (qi) and V~(qi)
contain the familiar infinite phase shift. In order to
compute the impact factor, ' we apply the ten rules of

Sec. 2 except that the V~(q, ) of rule (2) is omitted.

Accordingly, with reference to Fig. 1 of I,'

e4

jcj V= dpi
(2') 3

dp+M ' T.&~;L-;p.("-~.) -p'~+ lb+. )
I 4p+(~ p+))'—

tr p 3+ti33 p 3+ms
&ho+vs)L —s(~—p+)(vo-vs) —p'vi+~1)21 /ld-

p+ M —p~

4ri' (pi+ad&+ri)'+re' (p++q+ —r&)'+m'- '

al p+ M —p+

—the value of this expression at qi = ri . (5.1)

&&I!p.b.—.)-(p+q.+ ) .+ 3;L—;(~-p.)( —.)-(.+q -") + 3

In writing down (5.1), we have made use of (ys+y3) =0. Here M is the external photon mass which is needed to
define the projectile system. The right-hand side of (5.1) does not involve ~d, and its value as M-+ 0 is needed. In
order to calculate this limiting value, we again let p+

——~p and write (5.1) as

dpi dp—
(2 )' ~ L4P(1-P)3'

( p33+ms pis+tls -'

(pi+qs+ri) +Is (pi+pi ri) +31-
X2 4r, —— —the value of this expression at pi =ri, (5.2)

where

K= lim M Tr(y;L33IIp(ys —ys) —p& y&+mj(ps+&3)LsMp(QQ +3)—(p.+ql+rl) 'pl+3N$
M-+0

&&~ t:—l~(1—P)bo —v) —(p+q. —r) v.+~3(vs+a)L l~(1 P)(v—o v) —p'v+—~3)—(53).
The reason that X exists is that each yo —y3 yields a factor M.

In view of (3.7), we need not take into account the contraction of y; with ps+ps. Accordingly, the evaluation

of X from (5.3) is almost exactly the same as that of Ks in connection with Delbruck scattering;

3 H. Cheng and T. T. Wu, Phys. Rev. Letters 22, 666 (1969).
4 H. Cheng and T. T. Wu, Phys. Rev. 182, 18/3 (1969).
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=2p Tr{p;v,[—(p+& —" '
+q,+„).~,+m]v

(1 p) T {p [—pi, .pi+ ]»[
( +. +r).y —m]v }), T„{ .[ P, p,+m —p

( y „r,)+(1—P)(P +&'+ ')] p'
S .[p(p, +q,—ri) +(1—p)(p

r, .+m'}
. ,y .+ri) '].

=s~;,{ p
(1—e) (-P +~ +' »sp„(1—2p) Q(p +& —"

1,t is convenient to define pi '.$n view of g

-' +-'(1—»)'i.y~
—

PI gqL 2 (5.5)

r5 4) can be rewrit«n asIn term& of P» &

)+s(1—2P)'(P —@'(P'+@' s(,'+g)'(P'gt=Q'~'(p& Q, i,g.)+terins linear in pi .Q2+ m&) —32P(1 t ) (P—i' P»=88;~ P~ (5.6)

(5.7)
In (5 6),

Q=-', (iI.+ )—~'
as before.

5) d (5.6) into (5.2) then yieidsThe substitution of 55) an

'-,e, )25,; pi Q2+.m2) Sp(1 —p) (p» P»

m

e4

dP~ i

[(p,~ Q)2+m'][(Pi ~ Q) +
. . .„, )m ) —sp(1 —P)(p ' p

pr, )~+m'][(pi'+Pri) +
g,,Q'+2P(1 P)(pi' P»

dp dP
) + ][(p +pr) +m][(p ri m

e4

2x3

act factor found before. 'This is just the photon impac a

V(xi,s)ds

s T. T. W.) wishes to thank Professor C. N.
irin discussion on the pro-Yang for a long and inspiring iscu

0

Once this point »

e the limiting process, for
6. DISCUSSIONS

rin 5.2) with (5.3) is area y1 d h
orkin in the projecti e sys e

r. The manipulations in e r
ulation of the high-energy behavior o

ttering rules which - ll d o d o h
the matrix elemen

~ the same as vrh
ex licit than those of Paper

the receding sections can e

are more exp ici

The rules in p
e uall easi y in momen

— article col ision proce

be formulated eq y
'

men

g o o-p
@re use Delbruck scattering

A d f the trivial over-a ac o
1 . We emphasizewhere these rules app y. e

00

oints in connection v i athe following poin a

i . '
1 tio whatsoever

0 so that the projec i

er. Nomanipu a io
—00

hat t ere is n
'

— b e(2 ) 'I&0(h~x~) and appy erhat there is no projectile sys- y e
is sufhcient to take sections separate y o

'
s in e

'
n usedoncemore'the projectile y

ro ert of the present ru es o c
act factors and state

proper y
tngp

til the notion of the projec i e
f th o' til — t

1 t e erget th
ortant property o t e pro

b Th
i cident article is no en

is no need for it to e a ry
~2 2~ it is not necessary o iapplying ~ . » r o i

Ph s. Rev. 182, 1852 (1969).' H. Cheng and T. T. Wu, Phys. ev.

(5.s)



ATTERIN G. I IDIFF RA CTIGH ENERGTHEORY OF H

P)

j.

C. wishes to th ankt'le system ' ~h
lecture on high

3ectle
p Feynman for a ecProfessor R. . e

processes.

y089

APPENDIX

A. Delbriick Scattering

nman rules1 'th the help of Feynm
tt d t'l ' F. 1n position space.

amplitude ls prop
1

is an electron,
to

X2—Xz)y;Sp(XI—XzT [ Sp(xz —SI)yoSp x2 — x1—xz(—ie)' r y,

Xexp( —zkISI+ zk2xz) V(xz)

Xexp —ze

Z3

) d sid S2d xs.) I ' 4 . A1)V(xzg, s s

In the above,

the results of Paper I
h 1 fo ob

ere shall study e
tainingln p

}1
gy g

p

1. h lad o0 sp - g

II a ut the following discussIonthis reah ason that we put t e o

e o i
'

we shall first work out
appc

p po

'll bTh. ,--.l-l.--time integrals. e

X3

Xg

Xp

(b
Delbruck scattering.ia ram for e r-Fio. 1. Space-time g

e with the componentents of xie osition space wit
g and x3, and1 1

of th ol ti
eI1 x I sI), aI1 s

hoto e pecti ey.the incoming an
Notice that the factor

exp —ze V(xzz, s') ds'

esp

) —xz) yoS p(sz)y, Sp(xI —x,)gXid4 d4xzTr[y;Sp( —xz yo p z, —xz

ik2S~) d4sz exp[i(k2 —kz)x3jXeXp( —zkISI+zk2xg d Sz eX — S3

all rocesses oft kes care of p
the external fieof th 1 t o b

dbex at x3 is rep

re a — and xz —sz in (A1) by xz an xre lace xi—x3 an x2-
r e '; A1) becomesr ectively; then

=aS~(x), t (&0

p ——' —4 d4p e
—

'&'(p+ZZZ) (p — ' 'e —''—zzz'+ie) —'Sp(x) =i(2zr)

(A2)
X V(x3) exp —ie

z3
1 I

V(xzz, s') ds

with A4)——'
2zrb(E2 — I e—E)e 'V (2rz)II, (

zzz' I~'t~iy. Xj-' 2zr
—' dy exp[a i(y'+zzzS+(x) —a,

2 z —I/2. (A3)X(&pyzzz)(y'+zzz') "';
arc four-ex em

' 1. xi x2, and x3external potentla; xi,

s stem is being used in con'The p ojectle sy
droplet model y
published).

'
el the time comp onentsd E& are, respective y,where Ey an g a

of k~ and k2, and

—ig4 d4gid 4@2Ii =co e

—X OS p(Xg)y, Sp(XI —Xz)iXTr[y;Sp( —SI)yo p xg

Xexp( —ikzxz+ik2x2 .



1090 H. CHENG AN D T. T. WU

So far the only high-energy approximation made is in
the contribution of multiple scattering. The quantity I&
as given by (AS) is still exact. We shall now make
approximations on I~. We note that the contribution to
(AS) from the integration region where either t~) 0 or
$2(0 can be neglected. This follows from the physical
picture of I, which tells us that the dominant process has
the following time sequence: The electron is first
created by the incoming photon, next scattered by the
external potential, and finally annihilated by the posi-
tion. It can be verified mathematically by substituting
(A2) into (AS) and carrying out the integration over
1~)0 or $2&0. We shall then see that the denominator
factors obtained are too large. The details of such
calculations will not concern us here. We get

contribution of positron scattering merely replaces
e 'U (2rg) in (A4) by

—i(24r)
—' dq4 V (q&+r&) V+(—qi+r) .

Thus the result agrees with (3.12) of I.
Next. consider the diagram in Fig. 1(b). The scat-

tering amplitude for this diagram is proportional to

—(ie)' d4x~d4xsd4xsdsx4

XTrhoSs (x4—x4)y'Ss (xs —x~)yoSr (xs —xs)

Xy,ss(x4 —xs)]e '"'"e""'V(xs)V(x4)

I& 6) 8 d4Xgd4Xg

t1+0, t2&0

XTr[~'S+(—x~)voS+(»)v S-(»—»)j
+exp —Ze V(x», s)ds exp ie V(x44, s') ds'

(AS)

xp( iksx—s+iksxs). (A6) The above expression can be put in the form

Equations (A4) and (A6) give the scattering amplitude
in the position space. To see that they are consistent
with the results in I, we substitute (A2) into (A6) and
obtain

Is —-'s4o '(24r) 'e'

d'xsd'x, Tr[yoFi(xs —x4)yoF(xs —x4)]

where

Xexp[ —i-', (ks —ks) (xs+x4) jG(xs,x4), (A9)

X dpsdpsdps ~(pl+ps kl) b(ps+ps Irs)

XT [»(P + ) o(P + )»(—P + )j(E EE ) '

Fs(xs —x4) =e' dsx& Ss(x&—x4)y,Ss(xs —x&)

Xexp[ —ikg(x4 ——,'xs —-', x4)7, (A10)

where
X (4o —Es —Es)—'(4o —Es —Es) ', (A7)

F,(x,,x4) =e' d'xs SF(xs xs)'y jSs (x4 x—s)—
E,= (pss+nss)'ts, i = 1, 2, 3.

Consider now the factor (4o —E~—Es) '(4o —Es—Es) '.
Denote

p, = (p,~,P;4o), i=1, 2, 3;

then the 8 functions in (A7) give
G(xs, x4) = V(xs) V(x4)

z3

Xexp[iks(xs —
s xs —s x4)j, (A11)

Thus
Pa+Ps =Pi+Ps = 1

~—Ei—Es-(1—IPs I

—IPs I)~

~—Ei—Es- (1—IPi I
—IPs l)~,

which means that Ps, Ps, and Ps must all be between 0
and 1 in order for (co—Es—Es) '(4o —Es —Es) ' to be
large (in fact, of the order of 4os). We shall thus neglect
other regions of integration. Equations (A7) and (A4)
are then in agreement with (3.11) of I.

If the scattered particle in Fig. 1(a) is the positron,
similar treatment applies and will not be elaborated. It
suffices to mention that, just as in I, the addition of the

exp —i e V(xs4, s)ds+ie V(x44, s)ds . (A12)

This is because F,(x), for example, must be a function
of x' and k~x as a result of Lorentz invariance, and both
x'=[oo(t—s))[4o '(t+s)g —xss and kix a&(t —s)—rs x,
can be expressed naturally in terms of 4o(t—s), &o '(t+s),
and x,. We shall make, for two arbitrary functions f and

At this point it is important to recognize that the
longitudinal compon. ents of x in F~(x) and Fs(x) are
most appropriately chosen to be the combinations
4o(t —s) and 4o '(t+s). Thus

F;(x)=F;(4o(t s), co '(t+s), x,), i—=1, 2.
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g, the following approximation: representation of the position space:

dt ds f(4o(t —s), 4o-'(t+s)) g(s) OR&'&-oo; dx3ldx4l I(x» x—4&) expL —iri (x»+X4i)j

ds g(s) dr f(r,0)
exp —ie V(xoi, s)ds

%e emphasize that this approximation cannot be
justified 43 priori, and in quantum electrodynamics its
validity must rely on more rigorous calculations. ' ' ln
this approximation, (A9) becoines

ooe-'2s 5(Ei—E3)

where

+ie V(x4„s')ds' —1, (A17)

(A18)I(x) =I,(x)+I,b(x) .

B. Rules for Elastic Scattering

X dxoidx44 Io(xoi —x4i) exp) —3ri (X3J,+K44)]

Let us consider a diagram that has E black dots
which, in the position space, arelocated at xl, x2, . . . , xN,
say. Then the scattering amplitude for this process can
be obtained with the following rule:

exp —ie V(xoi, s)ds —1 (1) For a black dot on an electron or positron line a
factor

where

X exp ie V(X4i—,s)ds —1, (A13)
00 or

iso exp —ie

—iso exp ie

V(x,i,s)ds —1

V(x 4 s)ds —1

Io(xi) = —4o d7 (2) A factor S+ (S ) for an electron (positron)
propagator, and a factor 6+ for a photon propagator,

XTrLyoFi(r, 0,xi)yoF3(r, 0,xi)]. (A14)

As before, Fi and F3 as given by (A10) and (A11),
respectively, can be approximated as

A+(x) = —-', (2s)—' dp

XexpL —i(p'+li')" t+ip xj(p'+X') "'. (A19)

Fi(x)- e'—d4xi S (-', x+xi)y;S+(-', x—xi)

Xexp( —ikixi), (A15)

The rest of the factors are the same as in the I'eynman
rules. The integration region is different:

(3) Set t;=s;= r,/24o, i= 1, . . . , X; integrate over

Fo(x)- —e' d4x3 S+(xo—-', x)y,S (—x3—', x)
N

4o
—~+' D(dx idr ).

Xexp(ikoxo) . (A16)

Equations (A13)—(A16) are consistent with (3.13) of I,
as can be easily shown by substituting (A3) into (A15)
and (A16).

Combining the above results, we can write down the
Delbruck. scattering amplitude in the impact-factor

LA factor 23ri6(Ei —E3) inust be deleted. )
(4) The region of integration for other vertices is

such that time is always increasing from left to right.

Note that, throughout this appendix, no reference to
the result in Sec. 4 of I is made. The rules here follow
directly from the physical picture described in l.


