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Recent theoretical results on high-energy scattering are extended. It is found that the form of the matrix
elements in the high-energy limit can be readily understood in terms of energy denominators in pre-Feynman
perturbation theory. On this basis, we give explicit rules to obtain the high-energy behavior of the sums
of large classes of Feynman diagrams, for both the scattering of two extremely relativitistic particles and
that of one such particle by an external static potential. Application of these rules yields immediately all
the previous results on high-energy elastic scattering, and also leads to a deeper understanding of exponenti-
ation. These considerations suggest a simple and natural physical picture for high-energy elastic scattering
and, by trivial extensions, also for di6raction and some inelastic scattering processes. We emphasize that
this physical picture has the virtue of correctly yielding all the high-energy results of quantum
electrodynamics.

manipulations. For this purpose, we consider, in Sec. 2,
the scattering of a high-energy electron by a static
potential. This is really a problem of potential scattering
and involves merely the asymptotic solution of the
Dirac equation, when radiative corrections due to
virtual photons are ignored. It is known in this case
that the desired asymptotic solution is of the ex-
ponential form. In other words, the exponentiation''
obtained from the high-energy behavior of Feynman
diagrams is precisely that of Moliere. '

For the scattering of an electron (or a positron) by
a static external potential, do/dh exists an.d is nonzero
in the limit of infinite energy, where —3 is the square
of the momentum transfer. Since a photon is sometimes
an electron-positron pair, do/dh for Delbruck scattering
must also exist and be nonzero at infinite energy, at
least when higher radiative corrections are not taken
into account. (The infinite value of lim, „do/dh at h=0
is a peculiarity due to the long-range nature of the
Coulomb field and is of no importance here. ) In Sec. 3,
we show how the high-energy cross section for Delbruck
scattering can be obtained from that for electron (and
positron) scattering.

In Sec. 4, we explain the rules of obtaining the
scattering amplitudes from static external potentials
at high energies. This is facilitated by drawing a new
kind of diagrams, called the "impact diagrams. " Each
impact diagram gives the asymptotic behavior of the
sum of a class of Feynman diagrams. In Sec. 5, the rules
are generalized to include the fully relativistic case of
the scattering of two particles.

As usual, when new rules of computation are given,
it is highly desirable to give a number of examples.
In Sec. 6, we treat the following cases: (A) electron-
electron scattering; (3) electron Cornpton scattering;
(C) photon-photon scattering (at this point, we finish
all the previously treated cases' '); (D) repeated
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ECENTLY, we have carried out a systematic
investigation of all two-body elastic scattering

processes at high energies in quantum electrodynamics.
Our study is based on perturbation. theory and is
limited to certain classes of diagrams. From the asymp-
totic form so obtained of the scattering amplitudes, a
clear picture of high-energy scattering emerges.

Although our final results are simple enough, ' we
have often heard the complaint that our calculations
are impossible to follow. It is usually true that, once
the answer to a problem is found, it can be readily
reproduced in many diferent ways. One such way of
simplification was in fact already outlined in IV. We
shall here carry it one step further, and shall give a
simple set of rules for obtaining high-energy asymptotic
behavior. With this set of rules the calculations are
almost reduced to triviality.

Before learning these rules, it is desirable to under-
stand more completely the so-called exponentiation.
In the limit of high energies, we have found'' that,
if we take into account the exchange of an arbitrary
number of photons between two electrons at high
energies, an exponentiation appears, similar to that
in the droplet model. "Because of the extreme sim-

plicity of the result, it must be a deficiency of our
method that this exponentiation is obtained by summing
a class of diagrams, and it must be possible to avoid
this clumsy summation, or indeed all of the dificult
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depend on V only through the integral

V(xi,s)dz.

3. DELBRUCK SCATTERING

E,= (M2+ri2)'~2~co+-'2ri2/0i. (3.1)

We draw the diagram of Fig. 1(a), which represents
graphically that the scattering proceeds through three
steps: (1) An electron-positron pair is created by the
incoming photon; (2) one particle of the created pair

Next we turn to the scattering of a high-energy
photon by a static field V(x). When V(x) is the Coulomb
potential, this process is Delbruck scattering. We shall
again reproduce the scattering amplitude' —' of this
case at high energies with a very simple procedure.

As we have mentioned in Sec. 1, the photon is an
electron-positron pair part of the time, and it is the
scattering of this pair by the external field that effects
the scattering of the photon. Since the solutions for an
electron or a positron in the static field V(x) have
been obtained in closed form for high energies, we shall
be able to take care of V(x) to all orders, and make
perturbation expansions only for radiative corrections.

The physical picture of this photon scattering process
is therefore the following one': The high-energy photon
creates an electron-positron pair; both particles of this
pair carry very high energies and travel together like a
fireball; they are separately scattered by V(x), as
treated in Sec. 2, and then annihilate each other to
form a photon. We must now remember that if we
write down the scattering amplitude for the above
process by the Feynman rules, we automatically include
also the processes in which the pair is created or
annihilated by the external field and scattered by the
high-energy photons. This is precisely the reason why
Feynman's method is usually far superior to the more
dated method of perturbation. However, in high-energy
scattering the latter processes are negligible, and the
calculation in fact simplifies if they are excluded from
the beginning. We shall therefore abandon the Feynman
rules altogether and revert back to the more dated
perturbation method. This point was related to one
of the authors by Feynman himself.

In the standard perturbation method, a typical term
of the perturbation series for the scattering amplitude is
of the form H~ 'H„' Hi,'(E;—E ) ' (E,—Ei,) ',
where E; is the energy of state i and II' is the inter-
action. Let us first study the denominator factors in
our problem. Choose the positive s axis to be in the
direction of the average momentum of the incoming
and the outgoing photons, and call the s component of
the momenta of these two photons cu and their transverse
momenta —r& and r&, respectively. '' The total mo-
mentum transfer is therefore 2r&. The energy of the
incoming or outgoing photon is therefore equal to

(a)

(b)
Fio. 1. Schematic diagrams for Delbriick scattering.

is scattered by the static Geld V(x) and receives a
momentum transfer 2ri (this scattering can be solved
in closed form and is represented by a black round dot);
and (3) the scattered particle annihilates the other
particle of the pair to produce the outgoing photon.
The momenta pi, p2, and p2 in Fig. 1(a) will be de-
noted by

pi= EP'0~p&7 ~

p2= L(1-P)~, —p.-ri7,

p, =l (1—P)~, —p,+r,7,
where the quantities in brackets are the s component
and the transverse component, in that order, of the
corresponding momenta. Denote

E = (p'+2222)'"

then

Ei-p0~+-2' (p,2+2222) p-'0i ', (3.2)

.-(1-~) +!L(p.+")'+ '7( -~)-' -', ( 3)

E.-(1-~) +-:L(p.-")'+ '7(1-~)-' -'. (34)

Accordingly, the denominator factors for the scatter-
ing amplitude are

(E0 E1 E2) (EO Ei E8)
= L2cvp(1 —p)72l (p +pri)2+22227 '

&&L(p.-~r)'+ '7-'. (35)

The last two factors in (3.5) are recognized as the two
denominator factors in di as given by (4.12) of IV, for
example, and were obtained only after two integrations
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Next we consider the diagram in Fig. 1(b). The scattering amplitude for this diagram is easily written down to be

ie4
dpi cod/

(2n.)' 0 1 2 4 5

V (q,+r,)V,(—q,+r,)
X Q L&ss(p2)ps'i'sy(pl))L&sz(p1)70&ss(p4) j[ess(y4)'Yjttss(pa))LNss(p5)|'0+ss(p2)]

~ls~2s~4s85 (Eo—Ei—Z~) (Eo—E4—E5)

e4i

4a)(2x)'

»Lv'( —pi+~) vo( —p4+~)vt(ps+~) vo(p~+~)1
dqi dp, dP — V (qi+ri) V~( —qi+ri) . (3.13)

L(pi+Pri)'+m'3{ Lp&
—q&+(1—P)rif'+no'}

The amplitude for the scattering of a photon in the static field V(x) is equal to the sum of (3.12) and (3.13)
and can be written in the impact-factor representation

i~(2~) '
dq& d&(r&, q&) V (q&+ri) V+(—q&+r&), (3.14)

where
e4 pcs ' Trfy;( —p,+m)y, (p3+m)yo(P2+m))

8&(ri,q,) = — — dy, dP
2(2m)' o [(pi—Pri)'+m'jL(y, +Pri)'+m'J

-', ~—' TrLy, (—Pi+ m) yo( —P4+ m) y;(Pg+ m) yo(P2+ m) 7

[(y,+pr )'+m']{[p —
q + (1—P)ri]'+m'}

(3.15)

If we carry out the evaluation of the two traces
above, (3.15) is seen to be exactly the photon impact
factor given before. ' '

For the scattering of a vector meson of mass X in the
external field V(x), the impact-factor representation
(3.14) still holds, while the impact factor of the vector
meson is given by (3.15) with m' in each of the de-
nominator factors replaced by m' —P(1—P)X'.

4. RULES FOR ELASTIC SCATTERING

We are now ready to list the rules for obtaining high-
energy scattering amplitudes in an external field. Each
term in the perturbation series will be represented by
a diagram. These diagrams are not Feynman diagrams
and shall be called "impact diagrams. " They are
always drawn from left to right as time increases. There
is no vertex at which high-energy particles are created
or annihilated by the external Geld or by the vacuum.
More important, all of the black dots, each representing
the scattering of an electron or a positron in the external
fields, must be located at the same vertical position.
Two examples of impact diagrams are already given
in Fig. 1.

We choose the s axis to be perpendicular to the
momentum transfer. The momentum of each particle
in the diagram is then divided into a longitudinal part
(the s component) and a transverse part. The total
longitudinal momentum of the system is therefore not
changed during the scattering process and will be de-
noted by cv, which is very large. The longitudinal
momentum of a particle in the diagram is a positive
fraction of co and is denoted by P,&o, where 0(P;(1.

The system receives a transverse momentum transfer
of the amount of 2r~ during the scattering process.
This momentum transfer is supplied by the external
potential at the black dots. We shall denote the mo-
mentum transfer supplied by a black dot as q;&, which
is shown in Appendix A to be always transverse. Thus
P q,,=2ri. At each of the vertices, the spatial mo-
mentum is conserved.

Once a diagram is drawn and the momentum of
each particle is designated, the corresponding scattering
amplitude is easily obtained with the aid of the following
rules.

(1) A factor ev; for the vertex involving a real
photon with polarization in the ith direction.

(2) A factor ey„ for a vertex involving a virtual
photon.

(3) A factor eyoV (q,,) for a black dot on an electron
line and a factor eyoV+(q;, ) for a black dot on a positron
line, where q;& is the momentum transfer supplied by the
external field at the dot.

(4) A factor P+m for a virtual electron line with
momentum p, and a factor —p+m for a virtual positron
line of momentum p, where p=(p'+m')'t'yo —p y.
The definition of p is the only difference of the rules
here with the Feynman. rules: The four-momentum p
is on the mass shell.

(5) Traces, with minus signs, are taken for closed
loops. The order of the 7 matrices follows the electron
line just as in Feynman's rules.

The rules for obtaining the denominator factors are
quite different from the Feynman rules. For particle j
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with longitudinal momentum Ag, co and transverse mo-
mentum p;&, the difference of its energy with its longi-
tudinal moinentum is approximately 2 (p;i2+nzi2)P; 'co ',
where m; is the mass of the jth particle. Since the total
longitudinal momentum of the system is not changed
during the scattering process, the difference of the
initial energy of the system with an intermediate-state
energy of the system is'

8O 8—= ,'(u -'f(ri2+M') Q—(pi'+m')/P j (41)

where 3f is the mass of the incident particle and 2r~
is the momentum transfer as before. The denominator
factors of the scattering amplitude are obtained as
follows:

(6) Cut the diagram vertically in all different ways
possible. Each cut represents an intermediate state
and contributes a denominator factor equal to the
right-hand side of (4.1).

In addition, we have the following:
(7) A factor (2P;&u) ' for each virtual electron or

virtual photon of longitudinal momentum P,or.

(8) An over-all factor ( i)'v—', where X is the
number of black dots. (This factor comes from the
integration over q;3, the longitudinal momentum
supplied by a black dot. )

(9) Integrate over all possible transverse momenta
with g, l dp;, (2n.) '), subject to the condition of
momentum conservation at all vertices.

(10) Integrate over all possible longitudinal momenta
with g, trod/, (2m) ij subject to the conditions of
momentum conservation at all vertices and 1)P;)0.

For a reader who has gone through Secs. 2 and 3
carefully, these rules are simple enough to verify. The
proof is therefore omitted.

5. ELASTIC SCATTERING OP TWO
RELATIVISTIC PARTICLES

Ke shall now remove the only nonrelativistic
feature in our previous discussions, i.e., the existence of
an external potential. Instead, we shall consider the
elastic scattering of two relativistic particles at high
energies. In other words, the held experienced by one
particle is now originated from the other, which also
obeys the laws of relativistic quantum mechanics.

The generalization of the rules in Sec. 4 to the present
case is almost trivial. I et us study the scattering
process in the c.rn. . system. We choose the positive s
axis to be in the direction of the average of the in-
coming and the outgoing momenta of one of the
particles; then the average of the incoming and the
outgoing momenta of the other particle is in the direc-
tion of the negative 2' axis. An impact diagram now has

9 The quantity (pq'+m~)/p is called the "match" by Feynman,
while the right-hand side of (4.1), aside from the factor —',co ', is
called the mismatch. " We are indebted to Professor Feynman
for showing us the importance of the mismatch. Compare also
S. Weinherg, Phys. Rev. 180, 1313 (1966).

two parts which are joined by dotted lines. Each of the
lines in the 6rst part represents a particle with very
large and positive momentum in the s direction, while
each of the lines in the second part represents a particle
with very large and negative momentum in the s
direction. The interaction of an electron (or a positron)
in the first part with an electron (or a positron) in the
second part is represented diagrammatically by two
black dots, one on each electron (or positron) line,
joined by a dotted line which represents the sum of all
multiphoton exchanges. As before, the diagrams are
always drawn from left to right as time increases, and
the black dots are located at the same vertical position.

Aside from some trivial factors, such as an over-all
factor of 2, the generalization of the rules in Sec. 4 is
immediate. We have now two black dots for each
dotted line of multiphoton exchange. Let the mass of
the photon be ); then the propagator for an exchanged
photon is (q i2+&') ', since the momentum of the photon
is transverse. This propagator is proportional to the
Fourier transform of V in Sec. 2. Thus in this case

V(xi,s') ds' =
e —'th) 4'

8gg
(2') ' g, '+),'

We shall denote

I
P~(q&) =&— dx& e'« *i

M

ie'
&( exp &—EOP. lxil) —1 . (5.2)

2Ã

Note that in the lowest order of e, P+(g, ) is simply the
propagator (qi2+X') '; rule (3) in Sec. 4 is to be re-
placed by:

(3') Each black dot gives a factor ego and each
dotted line gives a factor P (q, ) LP+(q, )$ if it joins two
fermions of the same l opposite/ charge.

' This over-all factor of 2 comes about in the following way:
First, we must sum over the polarization of the exchange photons.
For high-energy scattering the polarization of an exchanged
photon is longitudinal. Since the contributions from the two
longitudinal polarizations are equal, we shall pretend that only
one of the longitudinal polarizations (say, Ao) contributes and
give the scattering amplitude an over-all factor 2+&, where Ã~
is the number of dotted lines. Secondly, we remember that rule
(8) is obtained from

(2 ) 'f &c ( 2 )&(&1=—';—'

now we have, instead,

(2n) dqodqg( 2mi)'B(qa+qa)S(qp —
q3) = —, —

for each integration over the longitudinal momenta of the ex-
changed photon. Thus we get another factor (~)~D '. Thus the net
result of these two factors is an over-all factor of 2 for the scat-
tering amplitude.
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%e may consider a two-body scattering process as
one in which each particle experiences the field origi-
nated from the other. Thus rule (6) must apply to the
two parts of the diagram separately. This means that
there are two sets of energy-denominator factors, one
for each particle.

Rule (8) of Sec. 4 is to be replaced by:
(8') An over-all factor 2(—i)~& ', where X~ is the

number of dotted lines.

I
.I

2r1

6. EXAMPLES

In this section we shall demonstrate the power of
the aforementioned rules by treating several different
processes. As usual, we shall denote the average of the
incoming and the outgoing four-momenta of the first
(second) particle by r2 (r3). The positive s axis is
chosen to be in the direction of r2 in the c.m. coordinate
system.

A. Electron-Electron Scattering

The lowest-order impact diagram for electron-
electron scattering is illustrated in Fig. 2. The two
black dots give

e (tt270nl) (tt2 F0+1 ) e ~ m 'b12bl'2' (6.1)

where 8~~ ——1 if the spin of the first electron is not
Qipped and 8»=0 if it is Ripped, and similarly for
8q 2.. The dotted line gives a factor P (2r~). With an
over-all factor of 2 according to rule (8'), the electron-
electron scattering amplitude is obtained to be

2e'~'m —'b, gag, P (2rg),

in agreement with (2.26) of Ref. 3.

(6.2)

B. Electron Compton Scattering

The electron Compton scattering process is depicted
diagranunatically in Fig. 3. In Fig. 3(a), the black dot
on the lowest electron line gives a factor eN2'yon~', the
dotted line gives a factor P (2r&) P'+(2r&) j if the upper
black dot is on an electron Lpositronj line, and the
electron loop gives precisely the same factor as it did
in Sec. 3. Thus the contribution of diagram 3 (a) is equal
to the right-hand side of (3.12) multiplied by 2u2'youq',

if V V+ is replaced by e'I'M+.

FgG. 3. Impact diagrams for electron Compton scattering.

Similarly, in Fig. 3(b), the black dot on the lowest
electron line gives a factor en2'yoN~', the two dotted
lines give a factor P (q&+r&)P+(—q,+r&), and the
electron loop gives precisely the same factor as it did
in Sec. 3. Thus the contribution of Fig. 3(b) is equal to
the right-hand side of (3.13) multiplied by 2tt2'po+x',

if V V+ is replaced by e'P P+. From (3.14) and the
above considerations, we get

m &'&-4i(u'(2n) 'dq, . —

X 8&(r„q,) 8'P (q,+r,)P+(—qg+rg), (6.3)

where 8' is the electron impact factor given by

8'= ~e'm '8g ~

FxG. 2. Impact diagram for electron-electron scattering.

An alternative expression of BR&'& can be obtained from
the following observation If we set q, .equal to r~ or —r~

in Fig. 3(b), this diagram is reduced to Fig. 3(a). This
is because when q& ——~r&, only one of the dotted lines

carries momentum transfer, and in essence only one
particle of the created pair interacts with the incident
electron. This can be demonstrated mathematically as
follows. If we set q, =r~ in the trace as well as the
energy-denominator factors in (3.13), then, referring to
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FIG. 4. Impact diagram for photon-photon scattering.

ln (6.5), dp is the contribution of Fig. 1(b) to the
photon impact factor, or, to be more precise, the
second term in the right-hand side of (3.15). The
8-function term in (6.5) is to ensure that the contri-
bution of no scattering for both particles of the created
pair is not included. This term vanishes unless r~ ——0,
and can be omitted in nonforward directions.

Equation (6.5) has a serious defect: Strictly speaking,
d&&, as defined by (3.15), is not a meaningful quantity
because of the divergence of the integration over p&.

Thus in (6.5) we must first integrate over q„before we
integrate over pj. A more satisfactory form can be
obtained as follows. The first term in the photon impact
factor as given in (3.15) is independent of qi, and will

be called di&. Replacing 8~~ with di& in (6.5) gives an
amplitude equal to zero after the integration over q&.

Thus (6.5) can be written as

Fig. 1, we have p» ——pi, p;= p3. Thus

(—Pi+m)7o( —P»+~) = (—Pi+~)7o(—Pi+~)
= —2pi, (—pi+ad),

because pi2=yn'. The trace in (3.13) is therefore, aside
from a factor —2pio, the same as that in (3.12), and

(3.13) is then equal to (3.12). A similar consideration

applies when qi ———ri. Thus, if we replace P (ri+q, )
XP+(ri —q, ) by 5 (ri+qi)S+(ri —qi) in writing down

the scattering amplitude corresponding to Fig. 3(b),
where

~+(q.)=P (q.)+(~i") '(2 )'~(q ) (64)

then the contribution from Fig. 3(a) is automatically
included. This is because the second term on the right-
hand side of (6.4) gives the term of no scattering at the
corresponding black dot. Thus we have

OR('-4(u'i(2»r) —'

OR &' 4a)'i(2»r) —'

X dqi 4&(ri, qi) O'LS (ri+qi)5+(ri —q,)

—e '(2m)'8(ri+qi) 5(ri —qi)]. (6.6)

In this form, the photon impact factor 8& reappears.

C. Photon-Photon Scattering

A typical diagram for photon-photon scattering is
illustrated in Fig. 4. We must also take into account
diagrams in which some of the dotted lines carry no
momentum transfer. Alternatively, we may just write
down the amplitude corresponding to Fig. 4, and
replace I'+ by 5+ everywhere. Let us denote

qxi+ qm. =ra+ q,i,
q„+q», ——r,—q„
q„+q„=r,+q, ',

X dqi82'(ri, qi) 8'$5 (r&+qi)5+(r, —q,)

—o '(2~)'5(ri+qi) 6(r&—qi)]. (6.5) then we have

q2i+q»i=ri —qi i

OR 2a& i(27r) dqiidq»dqaidq»i 82~(ri, qi) 82~(ri, qi') (2n.)~8(qii+q2i+qai+q»i —2ri)

&«'&5'+(qii)~-(q»)~-(q3. )5'+(q»i) —(2~)'(~') '&(qii) ~(q») 8(q3i) 8(q»i)]. (6.8)

As discussed in Sec. 6 3, &2& is not a meaningful quantity. We want to show that in (6.8) @&~ can be replaced by
@~, the photon impact factor. First note that, as a consequence of (5.2) and (6.4),

dq dq '8(q +q ' —Q )5 (q )S (q,') = (2 )'(e')—'8(Q,) . (6.9)
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We therefore have

dq„dq„dq„dq4, &,&(r,)&,&(rg,q4')&(q»+q24+q»+q44 —2r&)[S4 (qg4)S (q»)S (q44)S+(q44)

=0.

dq&'dq»dq2ldq»dq44 d&&(») de(ri, q4') &(q»+q» —ri —q4') &(q»+q44 —ri+q4')

X[S+(q»)S (q2&)S (q»)S~(q4&) —(24r)'(e') —'8(q») 6(q») 8(q») b(q44)]

dq, '
d&&(r~) 82&(r~,q4') ([(2m) '(e')—'8(r +q ')][(24r)'(e')—'5(r~ —q4')]

-(2 )'(e') '~(r +q')~(r —q '))

(6.10)

Since (6.10) clearly still holds if the remaining 8,& is also replaced by d~&, we get from (6.8) that

BR~»~ 2a&'i(24r) 4 dq»dq24dqa&dq44 5~(r&,qi) &~(r&,q4') &(q»+q»+q34+q4& 2rl)

Introduce Q, such that
Xe'[S+(q»)S-(q»)S-(q»)S+(q4~) —(2~)'(e')-'~(q») ~(q») ~(q») ~(q44)] (6»)

q». ==2ri+zq4+2q4. +Q4 q~4=2ri+kq4 2q4 —Qi

then (6.7) becomes
q4 =2r& kq+2q Q and q4, ———,'r~ ——',q,——,'q, '+Q, ;

sit&»'-44''4(27r) ' dqidq&'dQ& s&(rp, q4) s&(rp, q&')

X[S4.(-', rg+-', q4+-', q~'+Q~)S (-', rg+-,'q~ ——',q4' —Q~)S (-', rg ——',qg+-', qg' —Q,)

XS+(vari —lq4 —lq'+Q4) —(2~)'e-'&(-:r~+kq4+lq4'+Q~)

Xb(-'ri+-'q4 —-'q4' —Qi) 5(-'rx ——',qi+-', q4' —Q4) 8(-,'ri —-', q4 —-'q4'+Q4)]. (6.12)

For r~NO, this is the same as Eq. (5.9) of Ref. 3.

D. Repeated Delbriick Scattering

We have seen in Sec. 2 that repeated scattering of an
electron in an external field leads to exponentiation for
the electron scattering amplitude. It is natural to ask.
whether repeated Delbruck. scattering will lead to
exponentiation for the photon scattering amplitude in
an external field. Thus we erst consider the Feynman
diagrams of double Delbruck scattering illustrated in
Fig. 5.

We first note that it is impossible to draw impact
diagrams for double Delbruck scattering. One attempt
is made in Fig. 6, in which the photon line connecting
the two loops is not legitimate. Thus we conclude from
impact diagram that the amplitude for double Delbruck
scattering vanishes in the high-energy limit, and the
scattering amplitude for a photon in an external 6eld
does not exponentiate.

In order to verify this conclusion we study the
Feynman diagrams in Fig. 5. We shall comment on
Fig. 5(a) only, as the other diagrams in Fig. 5 can be

similarly t'reated. In Fig. 5(a), the denominator factors
which involve Q are

[(p+g)2—~ ] ~[(rg—ry+g)~ —)P] ~[(p'+g)2 —m27 ~

(—2p,g,+is) '(—2cog,+i4) '

X (—2p. 'g,+'.)-', (6.»)
where p4, Q4, and p,

' are the z components of p, Q, and
p, respectively. Since, in the region of integration which
contributes to the high-energy amplitude, p& and p3'
are both positive, the poles in the above denominators
are always located at the upper half-plane of Q&. Thus
the amplitude corresponding to Fig. 5(a) vanishes
because of the integration over Q4.

A generalization of the above arguments shows that
it is not permissible to join two external field vertices
with lines all of which carry positive longitudinal mo-
mentum. This once again explains why black. dots must
be located at the same vertical position in an impact
diagram. The above considerations also show that by
drawing impact diagrams many noncontributing Feyn-
man diagrams are automatically eliminated, with no
calculation necessary.
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lp+li+p —
I p+ r)+ P

p+q Q q~-Q p+q,

FIG. 5. Feynman diagrams for repeated Delbruck scattering.

E. Lowest-Order Radiative Correction
to Electron Impact Factor

In Ref. 11, we calculated radiative corrections to the
electron impact factor and found that, up to the
fourth order, it is proportional to the electron form
factor. In the present formulation, this conclusion can
again be reached with no calculation required. The
impact diagram for the lowest-order radiative correction

"H. Cheng and T. T. Wu, Phys. Rev. 184, 1868 (1969).

to the scattering amplitude of an electron in an external
field is drawn in Fig. 7. By inspection it is seen that this
scattering amplitude is proportional to the vertex
function. To be more precise, this amplitude is equal to
Ao(r2 —r~, r2+r~)eV (2r~), where the vertex function F„
is given by

In a later paper of this series, we shall treat problems
connected edith renormalization.
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FIG. 7. Impact diagram for the lowest-order radiative
correction to the electron impact factor.

FIG. 6. An illegal impact diagram to illustrate the impossibility
of drawing an impact diagram for repeated Delbruck scattering.

F. Hierarchy of Imyact Factors for Electron

We have found" that, up to the fourth order, the
electron impact factor is a function of r& only, and is
independent of any intermediate-state momentum q&.

From the present point of view, it is quite obvious why
this is so. The diagram in Fig. 7 has only one black dot,
and no integration over any momentum supplied by
the external field needs to be performed. The impact
factor is therefore always a function of r& only, if we
take into account only the impact diagrams with one
black dot. In general to all orders, the impact factor
from those impact diagrams with only one black dot is
always proportional to the form factor."

The number of black dots is equal to the number of
electrons and positrons which receive momentum
transfer from the external field, and the number of
independent transverse momenta supplied by the ex-
ternal Geld is one less than the number of black dots.
Thus an impact factor which is contributed by an
impact diagram with an intermediate state of e elec-
trons and positrons is a function of e—1 q, variables.
The hierarchies mentioned before" are therefore classi-
fied according to the intermediate states of the impact
diagrams.

As an example, consider the impact diagram in

Fig. 8. The impact factor from this diagram is a function
of two variables, say, q» and q», and the corresponding
scattering amplitude is given by an integration over

q~& and q2& of this impact factor multiplied by factors
of a single-electron scattering amplitude discussed in

Sec. 2. The detailed calculation of this scattering
amplitude is straightforward and will be presented
in a later paper of this series. Note that the impact
diagram in Fig. 8 includes the Feynman diagram in

Fig. 3 of Ref. 11.

7'. PHYSICAL PICTURE

Because of the simplicity of the present calculation,
it is natural to ask whether there corresponds a simple

picture. The answer is yes, and we attempt to describe
this physical picture here. "

We first emphasize the following two features of our
analysis. The first one is best learned from the electron
scattering problem treated in Sec. 2. As already ex-

plicitly stated at the end of that section, the scattering
amplitude for this problem, as given by (2.7), for
example, is dependent on V (x) only through the integral

V(xg, s)dz.

Thus, if the potential V(x) is replaced by

the scattering amplitude is not changed. It is not
difficult to see why the potential can be treated as a 8

function in s. Let us imagine that the potential has a
finite dimension. Then to an electron traveling in the s
direction the s dimension of this potential is Lorents

FIG. 8. An example of impact
diagrams for a higher-order
impact factor of the electron.

"In the long run, the physic@) pic~gpt, may be expected to be much more important than most of the detailed computations.
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contracted by a factor (1—e')'~'. Thus to an electron
traveling near the speed of light this potential appears
to be squashed into one with an infinitesimal width
in the s dimension and becomes, in essence, a 8 function.
This simplification of the potential into a thin slab at
high energies naturally leads to a simplification of the
amplitude, and accounts for the exponentiation phe-
nomenon discussed in Sec. 2.

The second physical feature is best learned from the
photon scattering problem treated in Sec. 3. This
problem is depicted pictorially in Fig. 1, where the
photon of longitudinal momentum or turns into a pair
of particles with longitudinal mornenta Pre and (1—P)r0,
respectively. In the special case where there is no
transverse momenta, the invariant mass of this pair is

approximately

which is finite as &u ~ee, provided that P/0, 1. This
conclusion is not altered by the presence of transverse
momenta independent of co.

We are now in a position to state the physical
picture. ' Consider a particle moving in the s direction
with very high energy or. Because of strong or electro-
magnetic interactions, this particle is sometimes dis-
sociated virtually into n particles with momenta P;&o

in the s direction and p;& in the xy plane. For fixed p;&

and/, satisfying 0(P;&1,i=1, 2, . . . , n, such a virtual
state of m particles has a finite invariant mass as or —+.
By the uncertainty principle, this virtual state can exist
for a finite length of time in its own c.m. system. By
time dilatioe, this virtual state can be present for a time
proportional to or for large or. During this lifetime of
order or, the separations of the particles are of the
order or ' in the s direction and of order 1 in the x and y
directions. Since distances of order 1 or or ' in the s
direction are negligible, these m particles interact inde-
pendently and simultaneously with a thin slab, which is
either the external static potential or the e' particles
associated with the other incoming particle, as the case
may be. After this interaction, the e-particle virtual
states recombine to contribute to the scattered states.

8. DISCUSSIONS

Each impact diagram gives the high-energy behavior
of the sum of contributions from a class of Feynman
diagrams. We give an example of such a class in Fig. 9,
from which the general rule should be clear. There are,
of course, many Feynman diagrams that are un-
important in the high-energy limit; an example is
already given in Fig. 5.

The present approach to high-energy processes is
at best in its infancy. (Its trivial extension to scalar
electrodynamics is given in Appendix B.) Many
important questions can be immediately raised and
need to be clarified. We mention a few.

(A) What we have found is that, at high energies,

only certain terms or parts of terms in the perturbation
series are of importance. Since the perturbation series
can be obtained from the field equations, does this mean
that only certain terms in the field equations themselves
are important at high energies? We shall see in Paper III
that this is indeed the case.

(3) In the case of scattering of two relativistic
particles as discussed in Sec. 5, the rules are given in
the c.m. system for the sake of definiteness. Actually,
they hold in any system where the incident particles
are both energetic. In other words, the center-of-mass
system does rot define a particularly significant co-
ordinate system for high energies. This point is im-
portant in connection with the so-called pionization.

If the c.m. system is not clearly the most convenient,
what other coordinate systems are perhaps also useful?
Taking a lesson from the droplet model, "we should
consider the laboratory system and, by symmetry, the
projectile system. "In Paper II here, we shall study the
impact factors in these systems.

(C) In the physical picture of Sec. 7, n-particle
states are scattered. There is no reason why, after
scattering, these m-particle states need to recombine
into the original incident particle, or indeed need to
recombine at all. This means that this impact picture
must also be applicable at high energies to diffraction
scattering, and more generally to inelastic processes.
With the help of the projectile system, this extension is
quite straightforward.

(D) We next mention a couple of much deeper and
Inore difficult problems. In discussing the possible.
high-energy behavior of total cross sections, "we find
the presence of numerous factors of lns, where s is as
usual the square of the total energy in the c.m. system.
That the rules of calculation as given here fail to
accommodate such factors implies the necessity of
some modification when the order of perturbation is
suKciently high. 8

(E) One of the major differences between the impact
picture and the droplet mode14' has the following
simple origin. As noted in Sec. 7, the transverse sepa-
ration of the e particles in the impact picture is of the
order of 1 at high energies. This separation due to
transverse momenta is not properly taken into account
in the droplet model, and is presumably responsible for
its failure to give the Delbruck amplitude, for example,
at high energies.

Another consequence of this transverse separation
is the impossibility of assigning an eikonal path to, for
example, the photon in Delbruck scattering. It is for
this reason that the Delbruck amplitude, unlike the
scattering amplitude for the electron, does not ex-

ponentiate, as discussed in Sec. 6 D. In the language of
quantum electrodynamics, this is easily understood by

"The projectile system is being used in connection with the
droplet model by T. T. Chou, C. N. Yang, and E. Yen (private
communication from Professor gang).

'4 H, Qheog and T. T. Wu, Phys. Rev. Letters 22, 1405 (1969).
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FrG. 9. A simple example to illustrate the relation between impact diagrams and Feynman diagrams.

saying that the Coulomb 6eld interacts directly with
the electron 6eld but not with the photon 6eld. It is a
most interesting question to ask whether there is a
corresponding statement for strong interactions and
what does this mean.

transfer received by the system is denoted by 4, which
is transverse. The momentum transfer received by the
ith particle of the system is denoted by q;, which has a
longitudinal component Q; that satisfies
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The initial longitudinal momentum of the ith particle
is denoted by P;cv, where 0(P;(1,

APPENDIX A

We con;:,ider a system of X electrons and positrons
in an external potential V(x). The total momentum p;(a+Q~+O(o) ') . (A2)

and co is very large. The on-shell energy of the ith
particle after scattering is therefore equal to



H. CHENG AND T. T. WU

y —e
—ts (t—z)P (x) (82)

where E is the energy of the particle and is very large.
Substituting (82) into (81), we getI'1 && P1 P2

X(—Q) t.
—Qz, — —Q) ()t ()+ie) '. (A3) ()P/()s~ —ieVf.

Let us consider the process in which the particles are Let us put
scattered by the potential in the successive order of I'i.
Then the denominator factors are approximately

Summing (A3) over all perrnutations and making use
of Eq. (2.20) of Ref. 3, we obtain

Solving (83), we obtain

(—2i~)~-~ P S(Q;).
exp —ie V(x„s')ds'

If we integrate (A4) over
The scattering amplitude for a charged meson in V(x)
is obtained from (84) to be

N—1

2 (dQ'/2~),
2ev (~)Z. (85)

we get ( i)~—' Thu. s, to obtain the scattering arnpli-
tude, we may set Q, =O, i=1, . . ., 1V, and ignore all
denominator factors like (A3) as well as the integration
over Q, . An over-all factor ( i)+—' must be multiplied
to the scattering amplitude, as was stated in rule (8)
in Sec. 4.

APPENDIX 3
ln this appendix we shall extend the treatment in

this paper to scalar electrodynamics. Let us erst
consider a charged scalar particle in an external
potential V(x). The Klein-Gordon equation is

()2
(1I——— —Vt,2+ttt' tttt= 2ieV +e'V'tt .—(81—)

kaP as' a~

The scattering amplitude for the antiparticle of this
charged meson in the external potential V(x) is similarly
obtained as 2eV+(ck)E-.

To obtain the high-energy scattering amplitude for a
general process in scalar electrodynamics, we first draw
the corresponding diagram in the same way as dis-
cussed in Secs. 4 and 5. The rules for obtaining the
numerator of the scattering amplitude are exactly the,
same as the Feynman rules, with the following addi-
tional one:

A factor 2eV (q,)Z Lor —2eV+(q, )E] for each black
dot, where q& is the momentum transfer supplied at the
black dot.

To obtain the rest of the factors, we use the rules
(6)—(10) in Sec. 4, with the following additional one:

A factor (2P;E) ' for each virtual scalar particle of
longitudinal momentum P;E.


