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Theory of Deep-Inelastic Lepton-Nucleon Scattering and Lepton Pair
Annihilation Processes. II. Deep-Inelastic Electron Scattering
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This is the second in a series of four papers devoted to a theoretical study based on canonical quantum
Geld theory of the deep-inelastic lepton processes. In the present paper we present the detailed calculations
leading to the limiting behavior —or the "parton model" —for deep-inelastic electron scattering. It follows
from this work that the structure functions depend only on the ratio of energy to momentum transfer
23Er/g as conjectured by Bjorken on general grounds. To accomplish this derivation, it is necessary to
introduce a transverse momentum cutoff so that there exists an asymptotic region in which q~ and 3fv can
be made larger than the transverse momenta of all the virtual constituents or "partons" of the proton that
are involved. We also derive the ladder approximation for the leading contribution, order by order in the
strong interaction and to all orders in the coupling, to the asymptotic behavior of these structure functions
with increasing ratio of energy to momentum transfer. Finally, we draw and discuss the experimental
implications.

I. INTRODUCTIOÃ

~ 'HIS is the second in a series of four papers devoted
to a theoretical study based on canonical quan-

tum field theory of the deep-inelastic lepton processes
including (along with other hadron charges and SUs
quantum numbers)

e +p ~e + anything,

e +e+-+ p+ anything,

t+p-+ e-+ anything,

t+p ~ e+ + anything.

Electron scattering from hadron targets, and the crossed-
channel process of electron-positron annihilation to
hadrons, share a singularly attractive feature relative to
the various processes of hadrons scattering from hadron
targets: The electromagnetic field generated during the
electron's scattering is understood if indeed anything is
in particle physics. Dirac tells us the transition current
of the scattered electron and Maxwell tells us the rest.
Therefore, in these processes we are probing the struc-
ture of the hadron by an electromagnetic interaction of
known form. There is an additional advantage in
studying this process and that is its weakness. Ke can
do our theoretical analyses to lowest order in the fine-
structure constant rr= 1/137 which is a comfortable ex-
pansion parameter for quantitative results. Similarly,
to the extent that we have con6dence in the V—A

theory of weak couplings, the neutrino reactions directly
measure the matrix elements of the hadronic weak
currents and can, in principle and in practice, be related
to the electron processes.

Certain structure functions of the hadron summarize
these processes when we detect the energy and mo-
mentum of only the one particle indicated explicitly in
the above list of reactions and sum over all other 6nal
states. This summation over all other hadron states
permits us to make headway with the theoretical

*Work supported by the U. S. Atomic Energy Commission.

formalism by making full use of unitarity and com-
pleteness. As a result, the distribution of the secondary
particles will not be analyzed in detail in our approach.
Nevertheless, statements about certain characteristic
features of the secondary particle distribution still can
be made.

In Paper I,"we placed primary emphasis on the
physical ideas behind the proofs showing how the
structure functions of the electron-nucleon scattering in
the Bjorken limit of large momentum and energy
transfer become universal functions' of the ratio of
momentum to energy transfer and probe the longi-
tudinal momentum distribution of the "elementary
constituents" in the nucleon in an infinite-momentum
frame; how the continuation of these structure func-
tions below the inelastic scattering threshold gives
predictions for "deep-inelastic" electron-positron an-
nihilation into a proton plus everything else; how the
neutrino and antineutrino scattering are related to
each other and are closely connected with inelastic
electron scattering4; and Anally how one can under-
stand, at least qualitatively, both the rapid falloB of
the electromagnetic nucleon form factors for elastic
scattering with increasing momentum transfers and the
nonvanishing structure functions for deep-inelastic
electron-proton scattering. In this second paper of the
series we present the detailed calculations leading to the
limiting behavior —or the "parton model" —for deep-
inelastic electron scattering. Ke also derive the ladder
approximation as discussed in Ref. 1 for the leading

~ Preliminary results of this work have been reported by S. D.
Drell, D. Levy, and T. M. Yan, Phys. Rev. Letters 22, 744 (j.969).

2 S. D. Drell, D. Levy, and T. M. Van, Phys. Rev. 187, 2j.59
(1969).This paper emphasizes the general ideas, assumptions, and
implications and omits detailed calculations. This paper is referred
to as Paper I or I.' J.D. Bjorken, Phys. Rev. 179, 154/ (1969).

4 R. P. Feynman (unpublished); J. D. Bjorken, in International
School of Physics "Enrico Fermi, " edited by J. Steinberger
(Academic Press Inc., New York, 1968), Course XLI; J. D.
Bjorken and E. A. Paschos, Phys. Rev. 185, 1975 (1969).
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contribution, order by order in the strong interaction
and to all orders in the coupling, to the asymptotic be-
havior of these structure functions with increasing
ratio of energy to momentum transfer. Finally, we draw
and discuss the experimental implications. 5

The interpretation of our formalism depends heavily
on the use of the old-fashioned perturbation theory in an
infinite-momentum frame. Therefore, Sec. II is devoted
to a brief introduction to rules for calculations in an
in6nite-momentum frame. Some peculiar phenomena
occurring in such a reference frame are discussed. Cal-
culational developments appear in Secs. III and IV and
the Appendix, and experimental implications are pre-
sented in Sec. V. The analogy between the Bjorken limit
and nuclear physics sum rules is also discussed.

II. PROPERTIES OF AN INFINITE-MOMENTUM
FRAME AND OLD-FASHIONED

PERTURBATION THEORY

As erst shown by Bjorken, ' the infinite-momentum
frame of the proton is very useful for studying the
structure functions of the proton (hadrons) in the limit
of large momentum transfer Q' and large energy transfer
Mi, with the ratio w—:2Mi/Q' fixed. Reasons for looking
in this asymptotic kinematic region in search of both a
simple, general behavior and interpretation of the
structure functions have been discussed elsewhere. ' '
Feynman, in particular, has emphasized that in a high-

energy limit, so that the incident electron and proton are
both very relativistic in their c.m. frame, the proton
may be viewed as an assemblage of "long-lived" or
almost "free" constituents as a result of the time
dilation. If the energy transfer from the electron to the
proton is also large as viewed in this same frame, the
interaction may be treated as a sudden pulse. During
the brief duration of this pulse, the constituents —or
"partons" —of the proton can be treated as instan-
taneously free so that an impulse approximation will be
valid. The kinematic conditions for this to be a valid
approximation are

I'~~ and I'))2Mi Q' 2Mi ~~ Q' —+~
with w—= 2Mi/Q' finite and Q'(w —1) ~~ .

This is the Bjorken limit in which we shall work. Since
the validity of the picture of long-lived constituents of
the proton that are almost "free" is important to help
our intuition, we shall find it useful to work in an
infinite-momentum frame in formulating our theory in
detail. This section develops the simpli6cations as well
as delicacies of doing field theory in such a frame.

The modern perturbation theory developed by
Feynman, Schwinger, and Dyson makes explicit the

~ E. Bloom et al. , Phys. Rev. Letters 23, 930 (j.969); M. Breiden-
bach et al. , ibid. 23, 935 (1969);W. Albrecht et al, , DESY Report
No. 69/7 (unpublished).' S. D. Drell, in Proceedings of the International School of Physics
"Ettore 3IIaj orana, " edited by A. Zichichi (Academic Press Inc. ,
New York, to be published), Course 7.

relativistic covariance of the S matrix at the expense of
manifest unitarity by grouping together intermediate
states with different numbers of particles and anti-
particles. On the other hand, in the so-called old-
fashioned perturbation theory, unitarity is more visible
but manifest relativistic covariance is lost. Weinberg'
pointed out that by applying the old-fashioned per-
turbation theory in a reference frame of infinite total
momentum there are substantial calculational sim-
plifications, and a new set of rules appears with prop-
erties intermediate between those of Feynman
diagrams and those of old-fashioned diagrams. Kein-
berg found in p' theory that the energy denominators
become covariant and all intermediate particles Inust
move forward with respect to the total infinite mo-
mentum. This latter property prevents creation of
particles from the vacuum and greatly simplifies both
the interpretation and calculation of the theory.

Unfortunately, as pointed out by Chang and Ma, '
working in an in6nite-momentum frame requires ex-
trerne care. They showed, for example, that in g'
theory vacuum diagrams (diagrams with no external
lines) which should vanish according to Weinberg's
rule acquire nonvanishing contributions from end points
of allowed longitudinal momenta carried by the internal
particles. More complications arise in a theory of
particles with spin, as we shall illustrate below. How-
ever, we should emphasize that despite these unpleasant
complications it still can be useful to work in an
infinite-momentum frame. This is true if we are dealing
with amplitudes in which intermediate states are long
lived because of relativistic time dilation. If this is the
case, the internal particles are almost real and the
violation of energy conservation can be ignored. It is
precisely this property which enables us to derive the
parton model as sketched in Paper I. It is a property of
particular amplitudes and of special kinematic regions
and not of the theory in general, however. Therefore,
it is not a general simplification for all processes as will
become clear in the following.

In the model discussed in Paper I, i.e., the canonical
quantum 6eld theory of pseudoscalar pions and nucleons
with charge-symmetric y5 coupling, the strong dynamics
of the pion-nucleon system is described by the inter-
action Hamiltonian

Hr(t) =ig d'x P(x,t)ys~P(x, t).~(x,t)

where it is understood that mass renormalization
counter terms for the nucleons and the pions are im-

r S. Weinberg, Phys. Rev. 150, 1313 (1966).
8 S. J. Chang and S. Ma, Phys. Rev. 180, 1506 (1969).
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where
~ (*)=U '(t) (*)U(t), (3)

U(t) =
I exp i—

plicitly included. The electromagnetic current of the
hadrons is

Jp = tpp rp)kg+ $77 8p'r (2)

Equations (1) and (2) do not give a full statement of
the theory in our model for the following reason. The
value of working in an infinite-momentum frame lies in
the simplification of being able to label intermediate
particles in a perturbation calculation according to
whether they are moving along or in the opposite
direction to the infinitely large longitudinal momentum
de6ning the reference frame. Such left-right distinc-
tions are only clear and useful if the transverse mo-
menta at all interaction vertices are small in ratio to
the longitudinal momentum. In our theory, this re-
quires us to introduce a transverse momentum cutoff
in doing the calculations. This point was discussed more
fully in I, and its need and role will become clearer in
the following formal developments.

As discussed in I, it will be useful to undress the
Heisenberg operators and go into the interaction
picture by the usual U-matrix transformation. For
example, the Heisenberg current operator J„(x) and
the corresponding bare or free current j„(x) are related
by

introduced by the interaction matrix elements in the
numerators of (5) as well as by j„(x) and identify the
leading terms in an infinite-momentum limit. We turn
first to the properties of the vertices. To study the
properties of the bare vertices in an infinite-momentum
frame, it is convenient to use the familiar representa-
tion of the Dirac matrices':

1 0~ 0 o~ t'0 1~
v =I

0 —1i —~ Oi 51 oi

where o= (oq, o2,o))) are the 2&(2 Pauli spin matrices.
The positive (negative) energy solutions of the Dirac
equation, denoted by N~ (v~), are

n+(P) = E+M~"' 1

2M i e P/(E+M)i
E+M)'t' e P/(E+M)

o+(P) =
II2 I

Ug,
2M i 1

where + and —denote the solutions with the third
component of the spin in the rest system pointing up
and down, respectively; and U+ are two-component
Pauli spinors.

In terms of these spinors, the bare y5 vertex has the
following properties, as the momentum P tends to
infinity along the third axis:

and j„has the same form as (2) written in terms of the
free particle in-fields. A basic formula in the old-
fashioned perturbation theory which we repeatedly
employ is

In, & &n, Ia, (0) Ia&
Ul a&=(v'Z. ) I a&+ 2'

E E„,+ie—
, l»&&n2I &r(0) Ini&(n~ I &r(0) I a&+~' +

» s (E, E„,+is)(E, E—,+is)—
U= U(0) (5)

where g' indicates the summation over all intermediate
states except the initial state a; and Z, the so-called
wave-function renormalization constant, is determined
by the normalization condition

(a'I U-'UI a) =~....
The states in In&&, In2), etc., are properly synnnetrized
(antisymmetrized) with respect to identical bosons
(fermions) present in these states.

The value of undressing the current in (3) and of
assembling the strong-interaction effects into the
description of the states lies in the possibility of classify-
ing terms in the infinite-momentum frame. One can
separately study the behaviors of the energy de-
n.ominators in the expansion (5) and of the bare vertices

a(qgP+kgg)ysu(g2P+kgg)

( n2

2M ggi

$(qgP+kg))ps'(qgP+k2))

2M &&,i

8(ggP+kU)y);o(ggP+k2, )

—~MI1 ——
I

U„
g,)

1 ))')t&~'t'
Ug* 1+—IM —ope k2),

2M Eg,) g,i
n2

+o 3e kg),—U2, (9)
'g 1-

9 These will be our standard notations. Momentum and energy
for a nucleon will be denoted by P; and E;, respectively, those for
an antinucleon by P; and E;, respectively, and those for a pion
by k; and co;, respectively. The symbols P and E.„are reserved for
the momentum and energy of the initial nucleon. The nucleon
mass and pion mass are 3EI and p, , respectively. Otherwise the
notation is that of J. Bjorken and S. Drell, I/elativistic QNantgm
3fechueics (McGraw-Hill Book Co., New York, 1964).
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N(W 2/1P+k, 1)y2N(W2/2P+k2. )

=+2(nrq2) 1/'&U1*~2U2,

8(W 2/1P+k»)y21/(W2/2P+k21)

=& 2(2/12/2) 1/2E U1~0 2 U2,

u(+ 1/1P+k»)y, 2/(W2/2P+k21)

= —2(1/12/2)1/2E U1*U2,

where 2/1, 2/2 are positive numbers and k», k21 are the
transverse momenta. Specifically, by infinite-mornen-
tum limit we mean that the ratio k,/8 ~ 0 for all k,.
As mentioned earlier, to enforce this condition it is
necessary to impose a cutoff on the theory described
by (1) and (2). The important thing to notice in (9) is
that when both nucleons (antinucleons or nucleon and
antinucleon) move opposite to each other, the vertex
becomes infinitely large as I'; when they both move
forward, the vertex is of order unity. It is this peculiar
property that invalidates Weinberg's original argu-
ment that all particles must Inove forward along the
direction of the infinite total momentum.

We also need the properties of the bare electromag-
netic vertex of the nucleon current in the in6nite-
momentum frame. They are

p0 p
21(2/, P+k») N(2/2P+k21) = (1/, 2/2)

78 M

) 1/2

+ U1* — ~2~ k21+ —
l

~ k»~2 U2,2' q, g2i

2c(g,P+k») y,u(g2P+k21) =O(1),

g(W2/1Pyk1, )pic(W2/2P+ k21)

p
=W (2/12/2)'/2 —Ur*e10 2 U2+O(1),

3f (1o)

~0
u(W1/1P+k») u(W2/2P+k21) =O(1),

l
UI &=UlI &

ig 2M d'k~
(&z,) I

I'&
(22r)2/2 (2p )1/2 (2~1)1/2 (2p )1/2

d'I'
g

QP1P 5QP
&&0'(P1+k1—P) lP1k1&

+j. ~l

not have the abnormal property exhibited by the pion-
nucleon vertex; namely, the electromagnetic vertex
does not introduce any extra power of I' when the two
nucleons (two antinucleons or nucleon and antinucleon
pair) at the vertex have opposite longitudinal rno-
menta. This is also true for the electromagnetic vertices
of the pion current. For the transverse components of
the nucleon current, the electromagnetic vertex be-
haves in exactly the opposite way. Therefore, if it is
possible to restrict our attention to the time and third
component of the electromagnetic current, then Wein-
berg's argument holds and no particle of negative
longitudinal momentum may enter or leave the elec-
tromagnetic vertex. For this reason the time component
and the third component of J„are referred to as "good
currents. "' For processes such as the electron-proton
scattering in which the bare current acts only once in
the one-photon-exchange approximation it is possible
to use only the good currents, and take full advantage of
Weinberg's~ arguments; the contributions from the
transverse components can be inferred from covariance
requirement.

To illustrate the techniques of calculation in an
in6nite-momentum frame and simultaneously develop
several useful results for the calculation of nucleon
structure in Sec. III, we compute to second order in the
coupling (1) the wave-function renormalization con-
stants Z2 and Z3 for the nucleon and the pion, the mass
renormalizations bM and bp' for the nucleon and the
pion, and the electromagnetic vertex renormalization
constant Z~. The wave-function renormalization con-
stant Z2 for the proton is defined by

p0
2/(a1/1P+k») v(W2/2P+k2, ) =O(1),

a(&2/1P+k11)y12/(W2/2P+k21)

p
= (2/12/2)

'"—Ur*e1 U2+0 (1),
M

where y1 (e1) denotes yr or y2 (0.1 or o.2). The matrix
elements 8&p„v2 can be obtained from above by charge
conjugation. They are very similar to the corresponding
ones zlry„N2. The important thing to notice in (10) is
that for the time component and the third component
of the nucleon current, the electromagnetic vertex does

(22r)8/2 (2Q )1/2 (2~ )1/2 (2p )1/2

d P] QP1+5V Py
X &'(P1+P1+4)

(2E )1/2 +P1 EPj, 1

X l»1P.~1&+O(g2)+", (»)

where
l 8& is a one-proton state with momentum P and

energy E1, and lP1k1& is a state with a proton of mo-
mentum P& and energy Ej and a neutral pion of mo-
mentum k& and energy co&, etc. The contribution of

We thank. Fred Gilman for a discussion of this terminology
and its meaning in current algebra.
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charged pion can be calculated similarly. We have
dered

v—= v(o).
The normalization condition

(vp~ vp') = ss(p —p')

determines Z2. To order g', we have

d ky d~pj

p~ / kg

(c)

FIG. 1. The three diagrams contributing to the wave-function
and mass renormalizations of a nucleon. In the in6nite-momentum
frame only (a) contributes.

Z2 ——1—
(2~)'2Ei 2rdi 2Ei

(—2) (M' —PP i)
X&'(Pi+ki —P) . (14)

(E„—Ei—roi)'

In the case of Zs as given by (14), a simple inspection
shows that only when the g defined in (15) is between 0
and 1 is the integral nonva'nishing as P —+~. It is
this property which makes the infinite-momentum
frame so useful; namely, the g integrations are restricted
to certain well-dered intervals. Thus

This is represented graphically by Fig. 1(a), where, as
always, the solid lines are for nucleons and dashed ones
for pions. The contributions from Figs. 1(b) and 1(c)
will be discussed shortly —as will their absence from
(14). Let us parametrize the momenta as follows:

Pi ——~1P+k, ki ——(1—g)P —ki k, P=o. (15)

In an infinite-momentum frame, P —+~, we have

M'~ ( ki'+M'y
EI —Ej—cog

——P — g P

g2 I

Zsi. oi =1— dki' dg(1 —g)
16m2 0

ki'+M'(1 —ii) 'X,(18)
t k, '+M'(1 —rl)'+ii'g)'

where the subscript x' indicates the contribution of
neutral pions to Z2. The k& integration is logarithmically
divergent, as expected from covariant perturbation
theory. The corresponding charged-pion contribution to
Z2 can now be written down. It is

k s+~s
1—nP

=2g P+0(1 /P), g(0
=2(~—1)P+0(1/P), ~&1

g2
Z2 (g+) —1

SX2
dki' de�(1—ri)

ki'+M'(1 —g) '
X . (19)

Lki'+M'(1 —g) '+p'g j'
ki'+M'(1 —g)'+ii'rl

2g(1 —ri)P
, 0«&1 (16)

—2(M' —P P,) =4„P'+0(1), &&0

1
= -$k,s+M'(1 —~)sj, ~&0. (17)

Notice that if all the particles move forward, i.e.,
both g and 1—g are positive, the energy denominator
E~—Ei—rot is proportional to 1/P; on the other hand,
it is proportional to P if any of the particles in an
intermediate state moves backward, i.e., either g or
1—p is negative. When there is no possibility of in-
troducing compensating powers of P in the numerator
as in p' theory, this property enables Weinberg to con-
clude that all particles must move forward. But from
(9) or (17) we see that in a theory of particles with spin
such as (1) when one of the nucleons moves backward,
the vertex becomes proportional to P. The change of
P' in one energy denominator can be compensated by
two big vertices. An example of this kind is provided
by the calculation of bM below.

In the above discussion we have temporarily ignored
the contributions of four-particle intermediate states
to Zs represented by Figs. 1(b) and 1(c). According to
the old-fashioned perturbation theory, as in the
covariant perturbation theory, we are instructed to
omit all disconnected diagrams in calculating a physical
amplitude. Thus the contribution of Fig. 1(c) should be
excluded. The contribution of Fig. 1(b) is given by an
expression similar to (14). Its value is zero as P —+~,
since at least one of the intermediate particles has nega-
tive longitudinal momentum. The two large vertices
in the numerator are not enough to overcome the large
energy denominator squared in (14) .

The wave-function renormalization constant for the
pion, Z3, can be computed analogously. The result is

g2—1
4m'

ki'+M'
dk, ' dg - . (20)

Lkis+ M' —p, 'g(1 —g))'
The diagrams contributing to Z3 are shown in Fig. 2.

2g' 1 d'P 4(M' —P P)
Z8=1—

(2s.)' 2(o 2E 2E(~—E E)'—
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d'ki u~(M yPi)p„(M—yPi)u„—
(2Ei)'(E.—Ei—~i)'

d'k (—2)(M' —P Pi)u, Pi„u„
(23)

2(ui (2Ei)'(E„—Ei—(oi)'

(22)

ki2+3I'(1 —q)
'

(24)
[ki'+M'(1 —q)'+u'g j'

In comp
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dk).'
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(33)

g2 1

g2

gm'
g))(1 n)—

(34)

k,'+M'(' "), (»)
~+M'(1 n)'—+'I' "j g2

(%~2
6&2 2

d'g

„(1—~)
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~
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(36)(3)&')+ RV ),~"+8M b83lg ——6M g

g2 ]
(37)dkg2

16x2 2M
M&(') =

I( I
& (0)I )I'

(29) g2

16 '2'
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and
g2

16m' 23EI

the cutoff e is unnecessary and therefore is set to zero.
It is interesting to notice that if 8352&'& and RVq('& are
ignored, bM vanishes with p, in conQict with the
known result in covariant perturbation theory. Thus,
the main contribution to 835 must come from the
infinitesimal regions of g, i.e., HI &'~ and SWAN('~. We
verify this statement by explicit calculation. Vsing (15),
we have for g 0

(M2——P P,) = P/&—p (&2P—2yu, 2yM2) it )
~P (~2P2+P 2+M2)1/2 (40)

and before doing any integration, the diagram diverges
at the end points of the g integrations.

III. DERIVATION OF PARTON MODEL FOR
BEEP-INELASTIC ELECTRON SCATTERING

We turn now to the physical process of inelastic
electron-nucleon scattering. We are interested in the
two structure functions summarizing hadron dynamics
as probed by experiments that detect only the four-
momentum of the outgoing electron and sum over all
hadron final states compatible with the over-all con-
servation laws. These functions are labeled 8'~ and 8 2

and defined as earlier by"

Ey
W =42r2 (dx)e+'2'(P

I J~(2)7 (0) Ip)
, M

e

1.e.)
g2

SM.(» =
16m' 2M

(Pe)'
dkg' ln

ki2+M2
(42)

dk~' (41)
2+ (P2+M 2) /P 211 i 2 E„

2- (P I J.(0) I ~)(~J.(0) IP)
3II

X(2 )'~'(q+P-P. )

Similarly, using (35), we obta, in
W' q2 v jP q

g 1 (P)'
dk, 2 ln

162r2 2M ki2+ p2
(43)

P qP„— q„W2 q', v, 47
q' )

Observe that 835, ('~ and bM&&'~ separately diverge as
P ~~ or e —+ 0. The sum of the two, however, becomes
independent of both P and e.

g2

8M.~"+5M2&" =
16m2 2M

k12+M2
dk, 2 ln — . (44)

k 2+ii2

Finally, 8M can be written in the parametric form

M(1 —g)g2 1

WxI = — — dkg' dg (45)
162r2 0 hi'+M'(1 2j)'+122—

which can be verified to be in agreement with covariant
perturbation calculation.

The mass renormalization of a pion, 8p', can be com-
puted similarly. We record here only the contribution
of the diagram of Fig. 2(b) in which both intermediate
particles move forward. This contribution will be
referred to later. It is

2g2
(~~').2=

(22r)'

d'Pi Tr{(M ypi) (M ypi) )— —

2E1(~ei—Zi —Ei)
(46)

In this section we have seen in simple examples some
of the subtleties in the infinite-momentum-frame cal-
culations. Sufhcient care Inust be exercised if calcula-
tions are performed in such a reference frame. As a
general rule, there is need to use extra care in handling a
diagram if, and only if, after taking the limit P —+~

2Mv —Q'
0—

4I'

—2M1 —Q'

4I' (48)

I ~. l =&(Q )+o(1&P ),
with the nucleon momentum P along the 3 axis. We now

"S.D, Drell and J. D. Walecka, Ann. Phys. (X. Y.) 28, 18
(1O64),

where
~
P) is a one-nucleon state with four-momentum

P„, q„ is the four-momentum of the virtual photon,
q'= —Q'(0 is the mass squared of the virtual photon,
and Mv= q P is the energy transfer to the nucleon in
the laboratory system; w—= 2Mp/Q2. An average over
the nucleon spin is understood in the definition of W„„.
Since (q+P)2&M2, we must have 1(w(~. If w=1,
only the elastic process e+P —+ e'+P' contributes to
(47). However, as long as w —1WO, the invariant mass of
the final hadrons, (q+P)'= Q'(w —1)+M', becomes
very large as Q', Mv ~~ with w fixed. Therefore all
possible inelastic channels contribute to (47) in this
deep-inelastic region. Since we are interested in the
deep-inelastic continuum and not the resonance excita-
tions, we shall always require 2M2 —Q'= Q'(w —1)))M'
in the following.

We perform our calculations in the infinite-momen-
tum c.m. frame of the electron and nucleon P ~~,
where P is the energy of the incident electron and
proton, and the components of the momentum transfer
are
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undress the current operator with the aid of (3) and
rewrite (47) as follows:

Z (UP I j.(0)Ul )( IU- j,(0) I U»
3f

&& (2~)'8'(q+P —P ) . (49)

In approaching the task of evaluating (49), we recall
several general features of old-fashioned perturbation
theory that simplify, our task. First the spatial mo-
mentum is conserved at each vertex and the energy is
not. This is already clear in (11),where the momentum
8 functions result from the volume integral in the
interaction (1), whereas the energy denominators arise
from the time integral from 7-= —~ to 7 =0 in the U
matrix in constructing (5). Since the currents and 6elds
have been uridressed by the U transformation, free bare
particles are being created and destroyed at the vertices
and, although not on their energy shells, they are on their
mass shells —i.e., cog=A. '+p' and E„'=PAL+M'
everywhere. Furthermore, we understand that all dis-
connected diagrams are excluded" in our discussions
and calculations and in particular in the expansion of
(49).

Many diagrams in the expansion of (49) vanish in an
in6nite-momentum frame which otherwise contribute.
First we recall the general rule derived in Sec. II that a
large or bad energy denominator requires two large
vertices to overcome it. This rule eliminates diagrams of
the type shown in Fig. 5 if they appear in the expansion
of

~
UP) or U~n). In these diagrams either a pion

created from the vacuum carries a negative longitudinal
momentum or a nucleon (antinucleon) with negative
longitudinal momentum traverses across a vertex
without being annihilated or converted into a particle
with positive longitudinal momentum.

We may also restrict our attention to good com-
ponents of the current j„in (49), i.e., p, =0 or 3, since
the covariant structure (47) allows us to infer Wq and
B/ ~ from H/'Oo and TV33 In the in6nite-momentum frame
where q is almost transverse, as indicated in (48), the
electromagnetic current does not alter signi6cantly

( 1/P relative to P) the conservation of longitudinal
momentum of the hadrons at the electromagnetic
vertex. Then the discussion in the preceding paragraph
shows also that an electromagnetic vertex cannot occur
in between two strong vertices where the intermediate
state contains particles with negative longitudinal mo-
mentum. Also, a charged particle and its antiparticle
cannot annihilate at the electromagnetic vertex since

"There are particular diagrams in which particles created from
the vacuum at a single vertex may all appear as final real particles.
Bubbles with no external lines may also be part of a diagram.
Furthermore, a counter term should be introduced into Hl of (1)
to account for the energy shift of the vacuum state in the presence
of interaction. It is well known that contributions of these three
classes of diagrams to any physical quantity cancel among them-
selves, and therefore as a whole they make no effect on the final
answer.

(c)

FIG. 5. Examples of parts of diagrams which cannot appear
in the infinite-momentum frame.

they must have longitudinal momenta opposite to each
other in which case the electromagnetic vertex is re-
duced by 1/P. For these diagrams, the powers of P
introduced by the large energy denominators are more
than can be overcome by the large vertices in the
numerator. Therefore, diagrams as illustrated in Fig. 6,
where the electromagnetic current operates at the vertex
marked g, are also eliminated in the in6nite-mo-
mentum frame we are working in.

We can also infer from these discussions the im-
portant conclusions that all the anal particles in the
expansion of

~
UP), i.e., all particles existing at the

instant of the current interaction as given by (11), and
the rea/ particles present in the Anal states ~n) must
have positive longitudinal momenta. Suppose there is
one particle in

~
UP) moving with negative longitudinal

momentum. This particle may scatter or be annihilated
by the electromagnetic current or may not even interact
with it at all. The electromagnetic vertex will not change
the direction of the longitudinal momentum of this
particular particle if it does not interact with the current
or if it scatters from the current, since the virtual photon
has to order 1/P only transverse momentum. As a
result in these cases, such a particle appears in U~n)
if it is present in

~
UP) and this thereby introduces at

least tzo large energy denominators and at most two
big vertices. Since the two denominators reduce the
contribution by (P')' and two big vertices enhance it
by at most I", this cannot contribute to leading order.

(b)

(e)

Fyo. 6. Examples of electromagnetic vertices which do not
contribute in the infinite-momentum frame specified by Eq. (48)
when only good currents are used.
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The case in which this particle with negative longi-
tudinal momentum is annihilated, together with its
antiparticle with positive momentum, by the current is
ruled out to leading order as discussed in the preceding
paragraph. Finally, suppose there is a particle in the
6nal state ~n) moving with negative longitudinal mo-
mentum. However, this possibility is ruled out by the
energy-conserving delta function in (49) since, to lead-
ing order as I' —+~, we must. have that E„—+E„=I'."

In the Bjorken limit of large Q' and 3A, (49) greatly
simplifies. This simplification is intimately related to
our fundamental assumption made in Paper I that there
exists an asymptotic region in which Q' can be made
greater than the transverse momenta of all the particles
involved, i.e., of the pions and nucleons that are the
(virtual) constituents or partons of the nucleon. Such
an assumption is consistent with present high-energy
data that strongly indicate that transverse momenta of
the Anal particles are indeed very limited in magnitude.
In our analysis we suppress large transverse momentum
transfers by simply inserting a transverse momentum
cutoff at every strong vertex as commented earlier.

The cutoff procedure employed in our formalism is
illustrated by the following examples of typical dia-
grams in Fig. 7 contributing to (49). Along with these
examples we also illustrate how the allowed values of
the longitudinal Inornenta are determined. Consider
the time-ordered diagrams in Fig, 7. The vertical
dashed lines intersect the real physical final states
produced from the initial proton by the current which
interacts at a vertex marked X. The momenta for the
nucleons and pions are indicated. For Figs. 7(a) and

"Detailed calculations verify that the extreme end regions
g~0 and q 1 contribute negligibly. Although we can give no
general proof of this, it can be explicitly verified for specific cases.

7(g) the momenta will be parametrized as follows:

Pg ——ggP+kg, ,

P2 —g2P~+ k2i,

k, = (1—qg)P —kg„
0(gg(1, kn. P = 0;

(50)
k, = (1—g2)Pg —k2g,

0&&,&j, J„P,=0.

For Fig. 7(b) they are parametrized as follows:

Pg= —Pr ——ggP+kn, kg= (1—gg)P —kn,
0(g~(1, k), .P = 0;

P2= g2Pi+k2. , kg ——(1—g2) Pr —k2g,

0(g2(1, k2g Pg=o.

(51)

For Fig. 7(c) the parametrizations are

Pg ——vgP+kg„

Pl = Pl+/,
P2 g2PI +k2l

kg ——(1—gg)P —kn,
0(gg(1, kn P=O;

(52)

k2= (1—g2)Pg' —k„,
0(g2(1, k2, Pg' ——0.

For Figs. 7(d) and 7(h) we adopt the parametrizations

P,= ggP+kg„

kg' ——kg+ q,
P2 '$2kl +k21

kg ——(1—gg) P—kn, ,
0(gg(1, kg, .P=O;

P,= (1—g.)kg' —k2„
0&g~&1, k2~ kg'=0.

(53)

The allowed regions for the g's given above are deter-
mined by our observation that all the final particles
in

~

UI') and particles present in the final states ~n)
must have positive longitudinal momenta.
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Our cutoff procedure states simply that the squared
length of the transverse momenta k;j's of each vertex
as defined above never exceed a maximum value

Notice that the "transverse momenta" k s
are not defined with respect to the fixed direction given
by I'. This definition of k;i.'s and the cutoff procedure
just described are reasonable since the cutoff, a property
of a vertex, should depend only on the characteristics
at the given vertex and should be independent of what
has happened preceding it. The simple sharp-cutoff
procedure may be replaced by a more elaborate smooth
one such as a form factor. Such a procedure, however,
will not change the basic features of the general for-
malism but only detailed numerical predictions of our
model. Since our detailed predictions of this kind, as will
be shown in Sec. IV, are insensitive to the precise cutoff,
we are justified to adopt such a simple cutoff procedure.
In the Present context the entire and sole use of the cutoff
is to make allintegrals over intermediate particle momenta
frnite as we let Q' —+0o, so that we can classify leading
terms in a hierarchy simply according to numbers of
powers of Q' in the numerator minus the number in the
denominator.

Return to the other diagrams in Fig. 7. Suppose that,
for Fig. 7(e), Pr, kr, Ps, and ks are parametrized as (50)
and Pr', kr', Ps', and ks' are to be determined by mo-
mentum conservation. Because of the sharp finite
cutoff for k;r and k;&', the relations between primed and
unprimed quantities are very corn.plicated. Again we
are not interested in the precise numerical values but
only in a classification according to leading powers of

Q . For simplicity, in these diagrams with crossed lines
we will use a slightly different parametrization. For
instance, the momenta in Fig. 7(e) will be parametrized
as follows:

Pr= rtrP+krr, kr ——(1—ter)P —kr, ——k,',
0(rtr(1, krr P=O;

Pr' ——ter'P+kr, ', kr' ——(1—rt, ')P —k„'=k, ,
. (54)0(rtr'(1, kr, ' P= 0;

Ps= (rtr+rtr' —1)P+(kr,+kr, ') =P,',
0(rtr+rtr' —1(1

where the allowed regions for g~ and g~' are such that
all the final real particles have positive longitudinal
momenta. The parametrization (54) implicitly as-
sumes the complete overlap between kr, ks and kr', ks',
although this is not. strictly true because the cutoff for
the transverse momenta is finite. This particular
pararnetrization has the advantage that it is sym-
metrical with respect to the two halves of the diagram.
In the same spirit we parametrize the momenta in
Fig. 7(f) as given by (54), but the allowed regions for
g~ are different. Since ki' is the momentum of a final
real particle, 1 —g&' can vary between 0 and 1. The
nucleon with momentum P'2 is virtual and therefore
may have positive or negative longitudinal momentum,

{a)

(A)

(b)

(A)

FIG. 8. Diagram illustrating pions and nucleons moving in well-
separated and identified groups along the directions P and
(I/w)P+q. This illustrates the eGect of the transverse momentum
cutoff and the meaning of an asymptotic region in our model.

corresponding, respectively, to the two allowed regions
of rir'. 1)ter) (1—rtr') and (1—rtr') )rtr) 0.

We now turn to the simplifications introduced in our
model of (1) with a maximum transverse momentum
cutoff when we go to the Bjorken 1imit. In this limit,
certain classes of diagrams in (49) vanish. To make
this simplification apparent, we consider the time-
ordered sequence of events in the old-fashioned per-
turbation-theory description of a scattering process as
represented by the matrix element (UP~ j„(0)U~n).
Before the bare current j„(0) operates,

~
UP) describes

emission and reabsorption of pions and nucleon-
antinucleon pairs. The bare electromagnetic current
scatters one of the charged constituents in

~
UP) and

imparts to it a very large transverse momentum
~q, ~

-Q(Q'). The unscattered constituents in
~
UP)

keep moving and emit and reabsorb pions and nucleon-
antinucleon pairs. They form a group of particles
moving very close to each other along the direction P
as large transverse momenta are suppressed by the
cut-off vertices. The scattered charged constituent also
emits and reabsorbs pions and nucleon-antinucleon
pairs. Analogously these form a second group of par-
ticles moving close to each other but along a direction
which deviates in transverse momentum by g& from
the first group. These two groups of particles, denoted
by (A) and (B), are illustrated in Fig. 8. As q, —+~, the
cut-off strong vertices prevent any particle emitted by
group (A) from being absorbed by group (B) and vice
versa. Consequently, there is no interaction between
the two well-separated groups of particles. It is then
obvious that diagrams corresponding to electromagnetic
vertex corrections (Fig. 9) or more complicated dia-
grams describing interactions between the two groups
of particles (Fig. 10) vanish in the limit qr —+~. It
is equally obvious that coherent interference be-
tween the two matrix elements (UP~ j„(0)U~n) and

(n~ U 'j„(0)
~
UP) in (49) is impossible unless they

both produce the identical sets of well-separated
particle groups (A), (B) and (A'), (B'). As a result
diagrams of the type given in Fig. 1f vanish as qi ~~.

We are now in a position to derive the parton model
for deep-inelastic electron-nucleon scattering. From



DRELL, LEVY, AND YAK

I

l

l
/

FIG. 9. Examples of electromagnetic vertex corrections which do not contribute in the Bjorken limit. In this work. , based on old-
fashioned perturbation diagrams, the vertices are all time ordered. A dashed vertical line in a diagram signifies that we are comp«-
ing the absorptive part describing the production of real multiparticle states. For the left (right) half of such a diagram, the positive
time direction is from left (right) to right (left).

here on it will be understood that in (49) we retain
only contributions (or diagrams) which do not vanish
in the in6nite-momentum frame and in the Bjorken
limit. We also work with the good components of the
current j„with p=0 or 3. Under the fundamental
assumption that the particles emitted or absorbed at
any strong vertex have only limited transverse mo-
menta, both

I
UP) and Uln& can be.treated as eigen-

states of the Hamiltonian with eigenvalues E„and
E„., respectively. To show this, let E„symbolically
denote the energy of one of the multipion-plus-nucleon
states in the perturbation expansion of Ulm). In the
infinite-momentum frame, E~—E„~ (as well as E„—E„„)
is of the order of 1/P multiplied by the sum of squares of
some characteristic mass. For example, consider Fig.
7(c). Here

I
UP) denotes a state of one nucleon and one

pion with momenta Pi and ki, respectively. The final
state In) contains one nucleon and two pions with mo-
menta Ps, ki, and ks, respectively. The state Uln)
contains one nucleon and one pion with momenta Pi'
and k~, respectively. The fractions of the longitudinal
momenta carried by these particles are positive and
between 0 and 1 as we have shown already. Using (52),
we find as I' ~~

M'i kis+M')
Ey —E-y= I' —ni~

2P) 2ritP )
~1& +P

1—nl p
2(1—i)t)P

2' i(1—r),)P

XPti'+M'(1 —rit)'+p'ri, j, (55)

4is+M'
E.—E .=I nsPi'+

2riiris(1 —its) P

&&9,.'+M'(1 —n, ) + ~,j. (56)

The differences in (55) and (56) will generally be
negligible" in comparison with the photon energy q'
as given in (48) and therefore can be neglected in the
energy delta function 8(qe+E„—E„) appearing in (49)
provided we work in the Bjorken limit, 2Mr, Q'))M'
and k, , '«Q'.

Having shown that both
I UP) and Uln) can be

treated as eigenstates of the total Harniltonian with
eigenvalues E„and E„, respectively, in the Bjorken
limit, the over-all energy-conserving delta function in

(49) can be replaced by the energy-conserving delta
function across the electromagnetic vertex. One can
then make use of the translation operators, complete-
ness of states n, and the unitarity of the U matrix to
obtain the parton-model result. We illustrate these
steps in the following operations on (49):

(dx) e"*

xp„(UP I
"'& (o).-' - *.

Ul~&

x(~IV- J„(0)l UP)

Ey
=4~' (dx)s"*~- (UP li.(x) Vl~)

3I
~(~IV-'~.(0) I»&

Ey
(dx) e+'s'

M

x(UP I J„(x)UU- ~.(o) I UP&

=4m' —(dx)e+'s'
M

x(UPI~.(*)i.(0) I ») (57)

It is useful to understand the physics behind this
derivation. As schematically indicated in Fig. 8, any
final state

I n) contains two well-separated and identified

groups of particles moving along directions differing

in transverse momentum by q&. The invariant mass of
each of the two groups is small since the transverse mo-

menta of the constituents do not spread far away from
each other. The energy differences between states IP)
and

I UP), and between states In& and Uln&, a,re
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FIG. 10. Examples of diagrams involv-
ing interactions between particles in
group (A) and those in group (B}.These
contributions vanish in the 8jorken
limit.

I
1

I

I

I

(a)

t
I

I

I

l

therefore negligible in the limit of large Q' and M&.
Furthermore, as Q' —+~ there is no interaction nor
interference between the two groups of particles. The
U matrix acts separately and independently on each
of the two groups (A) and (B) in Fig. 8. Our derived
result (57) simply states the fact that the total prob-
ability that anything happens among the particles in
each of two groups (A) and (B) is unity because of
unitarity of the U matrix. Formally one arrives at the
last of equations (57) from the first of (47) by replacing
U '(t) U(0) -+ 1. In words, this is equivalent to
remarking that in the Bjorken limit the interaction
occurs during such a short pulse of duration = 1/qo that
the strong interactions do not have an opportunity to
operate. The electromagnetic current thus "sees" the

"bare" constituents or "partons" of the proton in this
impulse-approximation limit.

Next we will check to see that the unitarity of the U
matrix is preserved in the presence of the 6nite cutoff
that has been introduced into our formalism. To do this,
we shall demonstrate by explicit calculations through
fourth order in g that when all contributions are
summed up, the total probability that anything
happens among the individual groups of particles (A)
and (B) in Fig. 8 is unity because of unitarity of U. This
verifies that Uln) ~

l n) in (49), and thus that (57) is
valid and U is unitary to this order. Three specific ex-
amples are offered to support this claim. First, consider
the contribution of Fig. 7(c) to W„„.Let this contribu-
tion be denoted by W„„&'&.Using (49) and (5), we obtain

g2 )2
W„,'"=—

(2m)3j 4M

d'&x d'k2 1
&&(q'+E —E2—(ai —(u2)

2+y 2&g 2Ei

Tr{(M+7P)75(M+7Pi)7 (M+7Pi )75(M+7P2)75(M+7Pi )7 (M+7P1)75j
X

(2Ei) '(E„—Ei—&di)'(2Ei') (2E2) (E2+(u2 —Ei') ' (58)

where the pions are assumed to be all neutral and the momentum labels are those indicated in Fig. 7(c). Using (48)
and (42), we have in the Bjorken limit

Furthermore,

Hence

(1/2Ei')&&(q'+E&, —E2—(vi —(ag) = &&(2M&»i —Q') = &&(2Pi q+g').

(M+7Pi')7g(M+7P2) 75(M+7Pi') = (+2)(M' —Pi' P2) (M+7Pi') .

(59)

(60)

g' ) —1 d'ki »{(M+7P)7&(M+7Pi)7& I M+7(Pi+g))V. (M+7Pi)75)
W.."'=(1—Z. &- &) I

— ~(~'+2P'~)
(2n.) 'I4M 2' i (2E,)'(E„—E,—(oi) ' (61)

where Z,
&

o& is given by (18) provided we identify the cutoffs introduced in (61) and (18). Equation (61) can be
rewritten as

W„„&'&+Z2 &.0& W„,&"=W„."', (62)

where W„„&'& is easily verified to be the contribution of Fig. 12(a) to E,„„.When the charged pion is included, (62)
becomes

W„,&"+Z2W„,&"=W„„&", (63)

where W„„&'&now stands for the total contribution to W„„when the pion with momentum k2 in Fig. 7(c) is neutral
as well as charged; and Z2 is the product of Z2&„0& and Z2&„+&., i.e., Z2 ——Z2&~o&+Z2&~+& —1=Z2&~o&Z2&~+& to order g .

FIG. Ii. Examples of dia-
grams involving interferences
between two different con-
figurations of 6nal particles
(A), (B) and (A'), (8').

/ ii r I

I

1

t

I

)e +-&
/ r

I

I

I~. !
/ !

I

(c)



D RELL, LEVY, AND YAN

k~

/

P~

I

I

I

I „o
A

P~ P

A
k&

/
P Pi.

I

I

I
7l'

I yk
I

I P

Fzo. 12. Second-order contributions to
W„„ from the nucleon current (a) and the
pion current (h).

The contribution of Fig. 7(d) to W„„can also be calculated similarly. Let W„„&'& denote this contribution. It is
given by

d'k d'p Tr((M+&P)z (M+7P )y„$M+v(P +q)fv. (M+vP )v )
5(q'+2P tq)

2Q)] 2E2 (2E,)'(E,—Et —(ot)'

Tr((M+yP2)y5( M+—yP2)ye)
X

(2(ot)(2E2)((ut —Et —E2)'
(64)

where both the I'I' and AX intermediate states are
included in (64). This can be rewritten as

W„„"&+Z3W &"=W (65)

where 8"„„('& is again the contribution of Fig. 12 to
W„., and Z3 is given by (20). To order g', the wave-
function renormalization constant Z' of a one-nucleon
plus one-pion state defined by

VIP,k,)=(&Z')(IP,k,)+". )

is related to Z2 and Z3 by

Z -Z2ZB
=Z~+Z3 —1.

Adding (63) and (65), we obtain

W„.&'+W„,"'+ZW„."'=W„,"l. (68)

Equation (68) is an example displaying that after sum-
mation over all possible Anal states, the U matrices
adjacent to the Anal states in (49) may be replaced
by unity; i.e. , Uln)~ ln). The graph drawn in
Fig. 13(a) was not included in this discussion since the
perturbation series (5) leads only to intermediate states

difrering from the one on which U operates, which in
this case is the state ln) of one nucleon plus pion as
illustrated. In contrast, the two graphs in Figs. 14(b)
and 13(c) do occur and combine to renormalize the
strong coupling constant g in the usual fashion. Also,
because of our finite cutoff for transverse momenta, the
amplitude corresponding to Fig. 9(a) vanishes as
Q'~~. Although the bare charge e, appears at the
electromagnetic vertex, to lowest order, however, in the
electromagnetic interaction eo is identical with the
physical charge e. In accord with the Nard identity,
Z~=Z2 as verified to lowest order in Sec. II, and the
photon's vacuum polarization enters only to higher
order in the fine-structure constant. Therefore, as long
as we have current conservation in our general for-
malism, as insured by constructing the form (47),
eo= e is the physical charge at the electromagnetic
vertex. In this example, we considered the nucleon-
current contributions. A similar discussion applies to
the pion-current contributions of Figs. 7(g), 7(h), and
12(b). The result is analogous to (68).

For the third example, we consider the contributions
of Figs. 14(a) and 14(b) to W„.. Let these contributions
be 8'„„(& and 8'„,"), respectively; then

g' 1 d'k2d'pe 1

(2m')32M 2cg2 2E22(opr~q
6(q'+~t —cok, +q)(2kt+q)„(2kt+q)„

d'k2 d'p2 1

2072 2E2 2COI lpga

g2 j

(2~)'2M
8(q'+(at —(op,+q)(2kt+q) „(2kt+q)„

Tr((M+yP)ve(M+yPg)pQ(M+yPp)pp(M+yP&)yp)
X (70)

(2Et)'(E„—Et —(ot)'(Et —E2—cog)(E' —E2—(ur —s)e)

Tr((M+yP)y (M+pP )y (M+yP )y, (M+yP )y, )
(69)

(2Et)'(E,—Et—"t)'(2"t)'(E2+~2—Et)(E,—K—"t—"2)

where &v&,',=P(kr+q)2+p2j''2; and we have replaced energy-conserving delta function across the electro-
the over-aO energy-conserving delta function by the magnetic vertex in the Sjorken limit. The only differ-
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FIG. 13. An example of graphs in a
fourth-order calculation that add to zero,
indicating that the total effect of U
operating on states (n) after the inter-
action with the electromagnetic current,
represented by the )&, can be replaced by
unity —i.e., V [I)~ [I).
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X,

P2 Pl P

jV

(7l) hms; Ws. =«' g~ le~I' (d*)"*
M

pi „(s)+g „(s)=0

ence between (69) and {70) is that one of the energy
denominator changes sign. Thus

which verifies again our assertion that unitarity of the
U matrix permits us to ignore the U matrices acting on
the final states In& in (49).

From these examples we see that to preserve the
unitarity of the U matrix, it is crucial to identify the
transverse momentum cutoff for the real final particles
appearing in (49) with the transverse momentum
cutoff for the virtual particles in the internal loops of
renormalization integrals. Experimental data on high-

energy collisions indicate that the transverse momenta
of the final real particles are limited in magnitude. By
the self-consistent requirement of preserving the
unitarity of the U matrix, it follows that the virtual
particles must also have only limited transverse
momenta.

The result of Eq. (57) establishes the parton model

by allowing us to work with free point currents and the
superposition of essentially free (i.e., long-lived)
constituents in describing the proton's ground state in
the infinite-momentum frame and in the Bjorken limit.
It also leads to a universal behavior of 8 l and v8 2 as
functions of zv, as predicted by Bjorken' and discussed
on the basis of this model in Refs. 1 and 2. To exhibit
explicitly that in the Bjorken limit both 8'l and vS'2

become functions of w only, we expand
I

UP& in terms
of a complete set of multiparticle states

&&{u I j.(x)j.(0) Iu& (73)

Since j„is a one-body operator, the evaluation of (73)
boils down to a calculation of a sum of contributions
from each charged constituent in every state

I
n&. Thus,

for a nucleon-current term,

(dx)e+*'& '(k.
I j„(x)j,(0) I k„&

1 1
(2k„„+q„){2k„„+q„)5(q'+2k„q),

4K 20) rl,

(75)

where
I k„& is a one-charged-pion state with momentum

k„. The symmetry of 8'„„ in indices ps allows us to
extract the tensor structure in (74) easily. Commuting

p„or y„ through $3I+y(P„+q)j, replacing y„y„by its
symmetrical part g„„, making use of Dirac equation,
and neglecting terms proportional to q„or q„(which
make no contribution to the cross section after con-
traction with the lepton trace), we obtain"

(dx)e+'s'*{P„,s
I j„(x)j„(0)I

P„,s'& = u~„(s)p„
4x' E

X$M+p(P +q) $y„u„.(s') o(q'+2P q), (74)

where IP„,s) is a one-proton state with momentum P
and spin s; and for a pion-current contribution,

l»&=K-~-Iu&, 2- I~-I'=~. (72) (dx)"*"(P-,s
I j.(*)j.(o) IP-,"&

As we have shown in the preceding discussion, the
evaluation of (57) involves only diogonal elements of
the product of the bare currents in the Bjorken limit

1
g„„Q'+4P„„P—„$8(q'+2P„q) . {76).

4~' 2E

/ ~ / L

I
t

I

I

I

I
I

/
/ r & r I

I

I

I

I

{c)

FrG. 14. Examples of diagrams to i]lustrate the difference between old-fashioned perturbation and covariant perturbation calcula-
tions. In the old-fashioned theory (a) is explicitly excluded but its effect is properly taken into account by the wave-function
renormalization constant Z in (5). (b) and (c) combine to renormalize the strong-coupling constant g in the usual fashion.

"Equation (76) still holds if the proton is replaced by an antiproton.
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Fro. 15. Dominant ladder diagrams for large m.

employ the notation:in I:
Fi(w) =lima; MWi(q', v),

F2(w) =limp; i W2(q', v) .
Equation (78) gives a sum rule

dQ)

F~(w) =2- (2'l~. ,") I
~-I'

(80)

Independent of details of the strong-interaction
dynamics, the parton which interacts with the current
must have the fraction 1/w of the longitudinal mo-
mentum according to (77). Collecting together (75)—(77)
into (73), and denoting by X;~ the charge of the ith
fermion (nucleon or antinucleon in our model) and by
XP the charge of the jth spinless boson (pion in. our
model), we arrive at

W„„=—P„[a.l (~l -P, (~, )'~~ ~,——

Referring to the scalar structure functions as defined
in (47), we see that Wi and i W2 are, as claimed, func-
tions only of x. Furthermore, their observed ze depen-
dence "measures" the longitudinal momentum distribu-
tion of the charged constituents of the proton in the
infinite-momentum frame. The ratio of 8'~ to vS'~ in
(78) has a fixed value for the nucleon current:

Wi/i W2= w/23/I (nucleon current) .

The pion current contributes only to 8'2, and

Wi= 0 (pion current) .

(79a)

(79b)

The dynamical details of the theory determine the
relative contributions from the nucleon and pion cur-
rents and hence the ratio of 8"~ to v8 2 in the observed
cross sections.

With the derivation of (78) and (79) establishing that
in the Bjorken limit the structure functions are universal
functions of zv, we have completed the 6rst major task
of this paper. Sometimes we shall find it convenient to

The 8 functions in (75) and (76) express the fact that
when the bare current j„ lands on a "parton" or
almost free charged constituent with momentuin P„
p, '=m, ', it scatters it onto the mass shell with p +q
and (P,+q)'=m, '. It can be further simplified by
writing, to leading order in I' —&~, y, = g P. , where y,
is the fraction of longitudinal momentum borne by the
constituent on which the current lands; then we have

b(2P. q
—Q') = 8(2g,lu —Q')

= (1/23Ii )b(g, —1/w) . (77)

(81)

where n, is the number of charged constituents bosons
plus fermions in state ~n). We have here implicitly
assumed that the constituents are either neutral or
have unit charge as is the case in our model. Thus, the
weighted integral of F2(w), (81), may be interpreted as
the mean number of charged constituents in the physical
nucleon. For a proton, n, +1 and thus the normaliza-
tion condition (72) on the a„s leads to the inequality

F2(w) & 1. (82)

IV. ASYMPTOTIC BEHAVIOR OF
STRUCTURE FUNCTIONS

FOR LARGE w

In Ref. 1 we claimed that in the Bjorken limit and in
the large-w region the structure functions Fi,2(w) are,

This inequality is trivial to satisfy if the SLAC data'
continue their present trend, since i W2 or F~(w) varies
very slowly for large zv and even may be approaching
a constant. Thus far, with measurements extending to

20, the area under the integral is roughly 0.7
from 1&w&w „.Equation (82) shows that the result
presented by (57) is actually finite and nonvanishing-
i.e., the Bjorken limit is a nontrivial result.

We may also remark briefly concerning the possible
existence of spin-1 constituents. There is no difficulty
to incorporate neutral spin-1 constituents in our
formalism provided a transverse momentum cutoff is
also introduced for vertices involving these spin-1
constituents. This will be done in Sec. IV. Difficulty
will arise, however, if charged spin-1 constituents are
present due to the extra g dependence at the electro-
magnetic vertex introduced by the higher spin and the
derivative electromagnetic coupling. This has the
consequence that the Bjorken limit for 8'„„will not
exist for contributions from the electromagnetic current
of spin-1 charged constituents. One may accept the
experimental data from SLAC as an indication that a
Bjorken limit indeed exists for 8'„„, to conclude that
spin-I charged constituents of the proton, if any,
contribute negligibly to deep-inelastic electron-proton
scattering. Similarly, specific Pauli anomalous moment
interactions of the elementary spin- —,

' constituents are
ruled out.
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(2~-)"' *'=' (2~')"'

76yM+7Pe —l)75' ' '75(M+7 1)7()N))S~n+5
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79a . Thus weF w or ) Wg needs to be considered, since ((zv) orinto (57) and using (75). Only F2(w) or)W~nee s o e ', '
zp or
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(2&~) (2 -) ( n

for two on-shell momenta I'1 and I'2'.aid of the following identity orThe trace may be evaluated with the

P —2 M' PP-M kg)(M+—yP2)+(M+yP2)(M kg) =2 M— P)P2 . — (85)
The result is

e d'k; (F„)'
F =

i
M) g "()(q'+2P„q)~

(2~)'j (=& 2'; F,

( )
M yP ))y5(M+yP„)y5 M

X— ' & —&i—~i)' (,—

M' P„P ).—(86)
M+yPg)y5}Tr f (M+yP) y5() (M+ P)) y5(M+yP„) ys

momenta as follows:Let us parametrize the mom

Then

P;= g;P; )+k;, , = 1—r)~)

0&pi&1, i=1, 2, ~ ~, n

P, (—k;g, k;g P; (=0,
(P =P for i=1).—i—1=

(87)

Equations (84), (86), and (88) give

-[k;),2+M'(1 —g~) '+p'));].
2))( g;(1—g;)P

(—2)(3II'—' —P — P )= —
I (&'.—nA.-x) +M'.(1—)) ~) '],

gi
(88)

t' c' q"
F2(~) (e. ) —( Q d'kg Ddg, s g(

W

Hence

1 —. [king'+M'(1 —gi)'] P.i +M'(1 —)).)']
' 1'([n(1-n)/(1-n)]P '+M'1-~ ' )'~~. +M ( n)

[&-2+M'(1—n-)'+) 'n-)]}')][A)),'+M'(1 —))()'+p')) x]([~ .n-(1 —n-)/(1 —
n

(89)

g d'k;
g2 e

F2(~)(- ) = dg1 ' dg2

1/ur g I 1/gg~ 'g2

dn -1
(

1/$1 ~ ' e0 yp n—1
(90)
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Vi= (1/w)""
viv2= (1/w)"",

0&gy'& 1

g '&g '(1

where { .) denotes the expression in the large curly
brackets of (89), with g„= 1/2ji ))„ iw. Introduce the
new variables

By explicit counting,

I'j= 1, Eg=2.
Finally,

P +X„=3" P„cV„—= (—1)"

which convert (95) to

(98)

(99)

and notice

1/g1, -"y~ 1m dn —1

2)n 1= (1/w)" n-'

where

F2(w) (»= F2(w) (")= 12cg-w& '

F (w)(» —F2(w)(")= ——,'cd (&'2+",

Fi(w) = -,'wF2(w),

(100)

(101)

(102)

dgj'
0

A--1'{ ) . (91) (103)

where

dig
0 4 ~

1

d2)n 1' ———— —($o lnw)" —', (92)
w (n —1) I

@1(W) (n'r ) 2WF2(W) (nx ) y

1 g &
t' (&1 )ninx

g,=———
i
in' 1+

4& 4~)
(9&)

and k&,„ is a cutoff introduced for the transverse mo-
mentum integrals in accordance with our fundamental
assumption. Summing over all numbers of ~"s, we find

F (w) ( ') = (to/w) exp((o Inw) = Pow"' ' (95)

To include the charged pions in the calculation, we
observe that an initial proton can emit a z' and remain
as a proton with coupling constant g or it can emit a x+
and become a neutron with a coupling constant v2g. An

analogous situation applies to a neutron. Let the con-
tribution from a final state with n vr"s and a proton be
taken as the basic unit, and denote the total numbers of
contributions from all possible final states with n
charged-plus-neutral pions by E„and E„ for the
proton and neutron, respectively. They satisfy the
recursion relations

P„=P„ 1+ 2'„1,
These give

zV„=2P„1+% (96)

P„+X„=3"'(Pi+A i),
P„CVn= (—1)" '(Pi —Ni). — (97)

Here we have succeeded in exhibiting the dominant
dependence of F2(w) on w as w-+oo. The limit w-+oo
can now be taken in the integrand. Since

211——(1/W)»' ~ 0 aS W ~oo fOr 0(gi'(1,
2)2= (1/w)»' »'-+ 0 as w -+~ for 2)1'())2'(1,

etc.,

we set all the g's in the integrand { ) to zero and
obtain

g2 n dI) 2 n I

F2(w)(„o) — ..
i

—(lnw)" '
(162r2 k&2+3I2

and the constant c is not fixed by summing a leading ex-
ponential series of powers of In@.

Contributions of all other diagrams in the E —+~
system are smaller by at least one power of lnzv, order
by order in g'. This follows from the parton-Inodel
result (57) and the properties of the pion-nucleon
vertex with a transverse momentum cutoff in an infinite-
mornentum frame, (9). Explicit verification of our
assertion has been carried out to g' for all diagrams. The
complete g4 calculation is straightforward and tedious.
We shall assemble explicit results in the Appendix for
reference since they will be needed when we study the
crossing properties of the structure functions 8'~ and
8'2 in our next paper on electron-positron annihilation
processes.

To understand in general why the contributions of
diagrams other than the ladder ones with interactions
via the nucleon current are smaller at least by one
power of lnw as w —+~, we recall from (9) that at each
nucleon vertex with y5 coupling to pseudoscalar pions,
the nucleon likes to give up most of its momentum to the
pion. In fact, according to (9), the (lnw)" ' behavior in

(92) comes simply from the fact that each segment of
the nucleon line has but a small fraction g((1 of the
longitudinal momentum of the one preceding it in
Fig. 15. Moreover, the delta function in (89) tells us
that the g's measuring the fraction of energy retained
by the nucleons are small for z»)1. However, when the
currents are attached to a pion line, the delta function
would dictate that a pion and not the nucleon pick up a
small fraction 1/w of the longitudinal momentum
from the initial nucleon, in the large-m region. This is
not favored by the vertex, and hence at least one power
of lnm is lost.

If two pion lines cross each other in a diagram, the
two virtual nucleons which connect the two pion lines
on each side have a momentum mismatch; i.e., if a
nucleon on one side picks up a small fraction of the
available longitudinal momentum, the nucleon on the
other side has to pick up a large fraction by momentum
conservation. For a diagram with a 6nal state involving
nucleon-antinucleon pairs, the virtual pion creating the
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pair is favored to have a large fraction of the available
longitudinal momentum. For a Z diagram (an anti-
nucleon or nucleon moving backward in time), the
vertex favors a high-momentum virtual nucleon (or
antinucleon). In all these cases at least one virtual
particle has a large fraction of the longitudinal mo-
mentum available; thus at least one power of Inm is lost.
For a vertex correction diagram such as Fig. 17(a) one
has added a power of g' without gaining an additional
power of lnzv along with it. For example, let most of the
longitudinal momentum of the initial nucleon be
picked up by the first virtual pion so that the vertex is
as big as possible. By the very nature of this being a
virtual pion, this large longitudinal momentum must be
returned to a nucleon before the nucleon interacts with
the current. Yet as 1/w -+ 0 this nucleon can have only
a very small fraction of longitudinal momentum from
the initial proton; in fact, this fraction is precisely 1/w.
Thus, it is impossible to make al/ the vertices large. All
other diagrams can be understood by this simple type
of argument. Having exhausted all possible classes of
diagrams, we now have der&ed the ladder approxima-
tion for the leading term order by order when ze&)1.

This structure for the asymptotically leading con-
tributions, order by order in g, is independent of the
specific property of the coupling (yz) and spin of the

g
2

Hr g' d'x——P„y„P„qP+
2

d'*(4 vs' )'

where p& is the vector field for the spin-1 particle; the
second term appears because the interaction Lagrangian
(given by the first term in this case) generally differs
from the interaction Hamiltonian for couplings with
particles of spin +1. Similar analysis shows that as
m ~~ the ladder diagrams of Fig. 13 also dominate in
this case. The contribution from a diagram involving
n p"s in the final state is

pion (zero) used in this example. By explicit calculation
it is easy to show this property for scalar mesons with
scalar coupling and, in a manner similar to the above,
derive the same structure as (95) for scalar spinless
bosons. Indeed, for any coupling via the so-called
"bad currents, " the nucleon prefers in the relativistic
limit to transfer the maximum possible fraction of its
longitudinal momentum to the boson.

To demonstrate that the formal structure of the
result (95) for w))1 is not sensitive to the spin of the
constituents and also to simulate possible final-state-
interaction effects of the pions, we consider brieQy a
model in which the proton interacts strongly with
neutral vector mesons which we call p . The interaction
Hamiltonian is taken as

g12 n ~ d8k. E )2
P~(w) (,') = '~(q +2P. q)

2(2~)' i=i 2&g~ E
Tl ((M+QP)r6i(M+rPi) ' ' 'r6 (M+'rP ) rf ' ' ' (M+QPi)y61}x~ , (104)

s," eu (2Ei)' (2E„)'(E„—E,—g,) (E„—E„—gi — .~„)'

where the momentum labels are the same as in Fig. 15 with pions replaced by vector mesons; and e&- e„are the
polarization vectors for the n vector mesons. The polarization sum and the trace can be evaluated to obtain

Tr((M+pP)7(i ~ 7e„(M+pP„)ve„(M+yPi)yei} =2[—2(M' —P Pi)+4@ '(P ki)(Pi. ki) —4M']
&1' '

x[—2(M' —Pi P2)+4p '(Pi kg)(P2 k2) —4M'] [—2(M' —P i P )+4)), '(P i k )(P —
k~) —4M']. (105)

g
2

~l

16m'

kP+M'+2)i'
dkg2

p'(kim+M')

Equation (107) has exactly the same structure as (95).
The point is that the "bad" or transverse components
y= (yi, y2) of y„dominate in this example and have the
same general properties as do the vertices y5 and 1

Using the pararnetrization (87), we obtain as w-+~

1
P2(w)(„,o) -.— [&'(Inw)" ']. (106)"-" w (e —1)!

Summing over all numbers of p, we get

(107)
where

already considered. The nucleon moving along P
initially will continue with its longitudinal momentum
along (rather than antiparallel to) P through the
interactions as it emits and absorbs bosons, because
only then do we retain the maximum possible powers
of in+, one for each order of interaction when the
intermediate nucleon line is near the mass shell. At
vertices of this kind, y, introduces a factor ())i/))2)"'
when g2((g~ in the large-x limit, and the structure of
the amplitude is the same as for the spinless case in
Eq. (9). The identical conclusion follows for axial-
vector meson s with axial-vector coupling y„y5 to
nucleons.

We conclude this section with comments on three
points.
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(a) The results of this section, based as they are on a
procedure of summing only the individual leading terms
both in Q'))M' and inn))1 in an infinite series, are on a
less firm basis than is our general procedure for deriving
the scaling laws for the structure functions. Being more
speculative they are more suspect. They may very well

meet the same ignominious fate as the unsuccessful
attempts to study asymptotic behaviors of the vertex
functions for Q' —+~ by summing the asymptotically
leading contributions order by order. "

(b) It is possible to understand, at least qualitatively
in terms of the virtuality of the internal particles, why
the renormalization effects and loops may not be crucial
in the large-zv region. To do this, we consider the
"ladder" Feynman diagram whose leading contribu-
tion in the above kinematic limit is given by the tirne-
ordered perturbation amplitude that we have computed
order by order. The invariant momentum transfers to
the virtual intermediate nucleon lines of the Feynman
graph are of minimum magnitude in the region m))1.
For example, the (spacelike) invariant mass squared of
the first virtual nucleon in Fig. 13 is

k]J,
+giM'= —kii2 for pi«1. (108)

The same result, i.e., that SI = —k;I.', can be similarly
established for each internal nucleon line.

(c) The "ladder" that we have derived is not a usual
t-channel ladder of the Regge models that one can
associate with Pomeranchukon exchange. On the
contrary, the electromagnetic currents are coupled
directly to the nucleon line in Fig. 15 which corresponds
to a nucleon exchange developing the ladder in the I
channel. Thus this mechanism does not correspond to
the physical picture discussed by Abarbanel, Gold-
berger, and Treiman" and by Harari'~ and, as recently
and properly emphasized by Gross and Lewellyn
Smith, " should not be associated with Regge-pole
exchanges in the t channel.

We have seen, however, that our cutoff k~,„applies
identically both to virtual and real particle emission and
we believe that its identification with strong-interaction
data is a crucial one. It is our view that it makes sense to
look at local canonical field theory as a basis for com-
puting physically interesting quantities and functional
dependence only if one chooses a starting point for
these calculations that bears some resemblance to the

'5 T. Appelquist and J. Primack, Stanford Linear Accelerator
Report No. SI AC-PUB-643 (unpublished). This contains refer-
ence to all earlier studies.' H. Abarbanel, M. Goldberger, and S. Treiman, Phys. Rev.
Letters 22, 1078 (1969).

'~ H. Harari, Phys. Rev. Letters 22, 1078 (1919).
' D. Gross and C. I lewellyn Smith, CERN Report No.

TH 1043 (unpublished). Mention of the similarity of this ladder
with the "Pomeranchukon" exchange was made in Ref. 1 and is
misleading.

real observable world. A finite series of perturbation
steps cannot and generally will not return you to a true
description of physical phenomena if the starting point
of these calculations is too far removed from this
realm —as is the case, for example, with point coupling
theories. We have attempted to avoid this difficulty in
our work by introducing, by hand, a cutoff AI, which
corresponds to characteristic high-energy behavior. It
remains for the future to verify that such a cutoff
emerges theoretically as the result of a complete self-

consistent dynamical calculation.

V. PREDICTIONS

)& F2(w)+2 —Fi(w) tan'(-,'0), (109)
M

where e and e' are the energies of the initial and final
electron and 0 is the electron scattering angle; and

(
do Sm.o.'

&2 cos2( 0)
dcose ~ (Q')'

(110)

is the differential cross section for Rutherford scattering
from an infinitely heavy pointlike proton. This result
shows explicitly that the existence of a Bjorken limit
implies a cross section for deep-inelastic electron-
nucleon scattering many orders of magnitude greater
than the corresponding cross sections in the resonance
regions at the same large values of Q'. This conclusion
is supported by the present SLAC and DKSY data'
which indicate that the strong dependence of the
electron-proton scattering cross section which decreases
roughly as 1/Qs relative to the pointlike-proton value
indeed disappears in the deep-inelastic region.

(ii) Experimental data are usually analyzed in terms
of the cross sections 0-f and 0~ for absorption of trans-
verse and scalar, or longitudinally polarized, virtual
photons of mass —Q' on the proton. " These cross

'9 L. Hand, Phys. Rev. 129, 1834 (1963).

We distinguish two kinds of predictions of our
formalism. Predictions of the first kind follow merely
from the general parton model we have derived and do
not depend on the detailed dynamics of strong inter-
actions. Predictions of the second kind follow from the
specific interaction Hamiltonian assumed to describe
the strong-interaction dynamics of the nucleon.

We first list a few predictions of the first kind. The
erst four of these, being general consequences of the
scaling law for the structure functions, are already con-
tained in Bjorken's and Feynman's work.

(i) In terms of Fi(w) and F2(w) defined by (80), the
differential cross section for deep-inelastic electron-
nucleon scattering in the laboratory system LEq. (2)
of Paper 1$ becomes

d'o do fe')2 1

dwd cos9 d cose si c I w
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sections are related to the structure functions 8'~
and 8"& by

Wz(z72, v) =
v —Q2/2M

Otp
4x'o.

1—Q2/2Mv
vW2(z7 vv) =— zrz+ oz

Q2
1+Q2/V2

In the Bjorken limit, these relations become

Fi(w) = 1——Mvo z,
4x'n m

1
F2(w) = 1——Q'(o.z+o.z),

4x'o. m

and, in particular,

Fz(w) tr,

F2(w) crz+ozl

(112)

(113)

We recall that the pion current contributes only to
F2(w) and the nucleon current contributes to both
structure functions with a fixed ratio given by (79a).
Consequently, if the pion current, or spin-0 currents, in
general, dominates, then

In the nuclear case of loosely bound, well-identified
nucleons, the inelastic scattering cross section d'o./
d~q~2dv as a function of energy transfer v, and for
constant and large values of the 3-momentum transfer
to the nucleus,

~ q ~

& 150 MeV/c, shows a quasi-
elastic peak at v=

~ q~ 2/2M. This is just the energy of
recoil of a single nucleon from the nucleus, and its
location tells the mass of the nuclear constituent while
its width measures the momentum distribution of the
nucleons bound in the nuclear ground state. The area
under the inelastic scattering curve is given simply in
the large-~ q~ limit —i.e. , the limit in which the correla-
tions between different nucleons are negligible and each
one scatters independently and incoherently —by

dv

dq'dp[q)=cons

4xn'
z. (116)

d 0 4xn'
dp

dQ dv zz const =(Q ) vcv;

dv W2. (117)

The analogous result in the relativistic problem of
deep-inelastic scattering from the proton is derived
from Eq. (2) of Paper I by going to the infinite-energy
limit so that e'/c ~ 1 and 0 —+ 0, yielding

Thus we can say that in the Bjorken limit of scaling,
F~(zej =0, or 0-& =0 ('spin-0 currents, 114

and if nucleon current (or spin-2 currents in general)
dominates, then

dK'

F2(w). (118)

Fi(w)
=2w, or oz=0 (spin-2 current).

F2(w)
(115)

Thus measurement of the ratio 0-& versus O-E will give
clues to the constitution of the electromagnetic current.
The same conclusions (114) and (115) are obtained by
Callan and Gross" from considerations based on direct
assumptions on the form of the interaction and of the
current operator for the hadron.

(iii) According to (81) the weighted integral of
F2(w), or z W2, represents the weighted square of the
charge in the constituents inside a physical proton-
or in our model in which all charges are of unit magni-
tude, it is the mean number of the charged constituents
inside a physical proton. If the present trend of SLAC
data continues, i.e., if vB 2 falls only very slowly with
increasing x or even stays Oat for large zv, the weighted
integral (81) may even diverge. One would conclude in
this event that an adequate description of the proton
structure in terms of elementary constituents requires
an infinite number of these particles. Thus, in contrast
with nuclei which are well approximated by structures
made up of weakly bound and well-separated individual
nucleons, the proton will not allow such a simple
description.

"C.Callan and D. Gross, Phys. Rev. Letters 22, 156 (1969).

In our model of a unit-charge proton made of unit-
charge constituents, we have seen in (81) and (82) that
the right-hand side is greater than or equal to unity and
gives the mean number of charged constituents in the
proton. Were the proton, on the other hand, composed
of a fixed number (say s) of charged constituents each
bearing a fraction 1/s of the charge, plus other neutral
constituents, then as (81) makes clear

s 1

S2 S
(119)

The 1/s is a finite suppression factor expressing the
ratio of sum of squares of charges for incoherent scatter-
ing, s, to the square of the sum of charges, s', for
coherent scattering. In this, s directly corresponds to Z
for a nucleus with the right-hand side of (116) written
as 4~(Zn)2izti2Z.

The preliminary SI.AC data suggest no such com-
fort for a simple nuclear-type "parton" model —at
least thus far. A quasi-elastic peak is not present and
the sum rule may well diverge, although thus far we
can say only that

"dm
F2(w) =0.7.



We should not be surprised if the right-hand side
does in fact diverge since, as indicated in (112), the
high-v limit of v82 is the same as that of the total
photoabsorption cross sections for very virtual spacelil-e
photons of mass q'= —Q'« —cV'. Underlying this
possible difference between the right-hand side of (118)
and a Qnite charge Z is the presence of an additional
physical interaction mechanism present in high-
energy processes but absent from the classical nuclear
realm, and these are inelastic channels for particle
production. Many new particle-production channels
open up with increasing energies, leading to constant
total eros~ sections in the high-energy limit as incident
nucleons, pions, or real photons are absorbed on a black
or very dark grey target hadron. Perhaps a similar
behavior will characterize the cross sections for incident
virtual photons of very large negative (mass)'. The
large-w or high-energy limit of our model as in Fig. 15
did not coincide with the usual picture of diffraction
scattering as represented by a t-channel ladder. How-
ever, it was dominated by the inelastic scattering to
multipion final states.

For this reason a literal "parton" model in terms of a
fixed number of parton constituents may be inadequate.
In their parton analysis, Bjorken and Paschos4 in-
troduced an infinite number of partons in order to
generate a Oat curve for vw/'~ and avoid the unobserved
quasi-elastic peak. In our present approach we have
given the "partons" a unique interpretation —i.e., they
are the series of constituents generated by the U
matrix operating on the physical one-proton stat- i.e.,
the series

~
VP) of Eqs. (57) or (72). In the present

model they are just the multiparticle pion-nucleon states
generated by the perturbation series.

(iv) In (79) the delta function 6(g„,,—1/w) projects
out the components in the expansion of

~
UP) with

charged constituents of longitudinal momentum (1/w) P.
Thus vW& or F&(w) is closely related to the longitudinal
momentum distribution of the proton's constituents in
an infinite-momentum frame. One should also ask, given
the information about the proton structure revealed by
the electron-nucleon scattering, what one can infer
about purely hadronic processes, such as proton-
proton scattering. The answer to this question is,
however, outside the scope of our present program.

(v) As discussed in more detail in the conclusion of
Paper I, our analysis shows that a picture of the proton
as composed of point partons for deep-inelastic scatter-
ing is consistent with a picture of the proton as a com-
posite charge structure with vanishing elastic form
factor for asymptotically large momentum transfers.
Thus the inequality (81) and the vanishing limit
F(q') ~0 as g' —+~ can both be understood in our
model if the probability of finding a bare proton in the
physical proton state vanishes —i.e., Z, =O in (11).

(vi) As discussed in connection with the simplifica-
tion introduced by the Bjorken limit (see Fig. 8 in
particular), each scattering process produces two well-

sepa. rated and identified groups of particles L(A) and
(B) in Fig. 8j in the final state. In the laboratory
system these two groups of particles look as follows.
Particles in group (B) recoil with large total momentum
along direction g and particles in group (A) are left
behind with small total momentum.

(vii) In Paper I we showed that the crossing prop-
erties of G.eld theory and the positivity of a physical
cross section lead to a remarkable theorem for the
threshold behavior of the structure function F~(w).
According to this theorem, if the pion current (or spin-0
current more generally) dominates near the threshold
m+1, then

F2(w)~C (w —1)'" n=O, 1, 2, . . . . (120)

On the other hand, if the nucleon current (or spin--,'
current inore generally) dominates near the threshold
~&1, then

F2(w) C~(w —1)'"+' n = 0,1,2, . . . . (121)

Therefore, a careful measurement of the curvature of
F2(w) as a function of w near the threshold will provide
interesting information about the current constitution
as well as the structure of the proton.

Specific predictions based on the particular model (1)
are summarized as follows.

(a) The recent SI AC data' indicate that iW2i&~ for
the proton depends only weakly on m for large z and
may even be approaching a constant for large m. This
demands

1, or ki, '/3II' 0.3, (122)

which is consistent with the indication from other
high-energy collision data, kI, , =400 500 IVI eV.
However, the precise equality )=1, if confirmed by
further experiments at higher energies, would have to
be viewed as an accident, since the ladder we have
derived in Fig. 15 for the limiting behavior for large

is not the t-channel one usually associated with
diffraction scattering, or the Pomeranchukon exchange.

(b) The fact that W&» and Wi"& approach each other
rapidly makes it desirable to estimate the next leading
contributions in lnzv, since the difference 8'(» —8'"'
is very important in calculating the proton-neutron
mass difference. Notice that the sign of H/(» —8'(") is
negative. However, since the series of 5'(~) —8"(") is
an alternating one leading to a sum smaller than its
individual parts, we think this result is not significant.
We also need these next leading contributions to
evaluate c and verify that the series of leading terms
yields the dominant sum.

(c) The ratio of structure functions in this limit,
Wi/vW2=+w/2M, corresponds to a vanishing of the
ratio of "scalar" to "transverse" photoabsorption
cross sections for virtual photons of mass Q' on protons.
It corresponds to the Callan-Gross' result for a spin--,'
quark current because, as we have seen, the current
interacts with the spin-2 nucleon in the high-m limit. It
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FIG. 16. Diagrams with ad hoc form
factors inserted at the pion-nucleon
vertices to dampen the amplitude when
the virtual pion (a) or nucleon (b) is very
virtual.

I

+ I +
-X --i---X- 7J

p 0' p P P I P

g'
Fs(zo)— ln~ 1+

8~'

(nucleon current),
(123)

2
&X max

(pion current) .
3II'

The virtual particle (a proton in the first case and a
pion in the second) has a large (spacelike) invariant
mass proportional to kr'/(zo —1). If a form factor is
included at each of the two pion-nucleon vertices, as
illustrated in Fig. 16, Eq. (123) becomes

( C
Fs ~ (zo —1)F„'~ (nucleon current),

Ezo —1

C'
~

Fs ee F~'
~

(pion current) .
zo —1i

(124)

"J.J. Sakurai, Phys. Rev. Letters 22, 981 (1969); C. Cho,
G. Gounaris, and J. Sakurai, Phys. Rev. 186, 1734 (1969).

is opposite to the limit proposed by Sakurai" from his
vector-dominance model which leads to o~/or ~ Q'/zn, '
for large Q' and hence to Wz/vWz —+ 0, corresponding to
absorption on a "boson" current.

(d) The multiplicity of pions produced is given by
n = $ lnzo. This follows from (92) and (95) if each term
in the series is weighted by n,, the number of pions.

(e) Our model also predicts that the pions are focused
in momentum space with transverse momentum
(k~, about the incident-electron direction while toe
nucleon recoils with the large momentum q. This is so
because in the large-z region the electromagnetic cur-
rent interacts only with the proton in the dominant class
of dlagl ams.

(f) We are not able to perform a reliable calculation
near m 1 from our field-theoretical model, since the
virtual particles involved are very virtual, and the
off-shell effects must be correctly taken into account.
Thiy is in contrast to our results for large zv))1, where
we found the intermediate particles to be close to their
energy shells and the vertex and self-energy corrections
to contribute lower powers of in@))1 for each order of
g'. However, a plausible conjecture can be made.
Diagrams without strong vertex corrections properly
included indicate that the pion current gives the
dominant contribution near re~1. For example, to
lowest order in g', we 6nd near zv& 1 from F~('") of the
Appendix for the pion current and from (89) for the
nucleon-current contribution that

g && mgx
Fs(zo)= — ln 1+ (zo —1)

16m' p,

The subscripts p or zr at the squares of the pion-nucleon
form factors indicate the particle which is virtual. H

and F behave similarly for large momentum
transfers, then the pion current will continue to domi-
nate with one less power of (zo —1) as zo —+ 1 when the
vertex corrections are included. On the basis of our
conjecture, we interpret Fs(zo) near zo 1 as a measure
of the asymptotic pion-nucleon form factor. Available
data from SLAC' are consistent with the 6t

Fs(zo) =Ci(zo —1)', zo&1

indicating that, if our conjecture that the pion current
dominates in the threshold region is correct, the pion-
nucleon form factor decreases with the 6rst inverse
power of the invariant momentum transfer squared, a
result that we consider as reasonable.

1Vote added in proof See th. e later discussion on this
point in S. D. Drell and T. M. Van, Phys. Rev. Letters
24, 181 (1970).

VI. SUMMARY AND CONCLUSION

A field-theoretical derivation of the "parton model"
for electron-nucleon scattering in the Sjorken limit is
presented in detail in this second of a series of papers
on lepton-hadron dynamics. A fundamental assumption
essential to this derivation is the existence of an
asymptotic region in which the momentum and energy
transfers to the hadrons can be made greater than the
transverse momenta of their virtual constituents or
"partons" in an in6nite-momentum frame. Present
high-energy scattering data indicate strongly that the
transverse momenta of the final particles are indeed
limited in magnitude. Ke suppress large transverse
momenta by a simple cutoR at each strong vertex. The
self-consistent requirement of preserving the unitarity
of the U matrix demands that the same cutoff be
applied to both the real final particles and the virtual
particles present in internal loops.

As discussed earlier, the entire role of the cutoR is to
make all integrals over intermediate particle momenta
finite as we let Q'-+~, so that we can classify leading
terms in a hierarchy simply according to numbers of
powers of Q' in the numerator minus the number in the
denominator.

Its specific form is of no concern for establishing the
general result that the structure functions depend on
the single variable zo=2cVii/Q'.

To move beyond this general derivation of the scaling
behavior and compute values for the structure functions
from our field-theory model, we must further restrict
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the kinematic region by taking the limit m))1 in addi-
tion to letting Q' and 3IIi grow asymptotically large in
the Bjorken limit. In this limit, the results as assembled
in Kqs. (100)—(103) depend on a transverse momentum
cutoff. However, as indicated by (108), the square of
the transverse momentum corresponds to the negative
of the invariant squared mass of the intermediate-
particle masses and thus the transverse momentum
cutoff has a I.orentz-invariant significance in terms of
the maximum invariant mass created at the individual
vertices.

Ke have now developed a formalism that not only
leads to a "parton" model for deep-inelastic scattering
but has provided the theoretical basis for accomplishing
the crossing to the deep-inelastic annihilation channel as
described in Paper I. This was our primary motivation
in turning to a canonical Geld-theory framework, as we
shall show in detail in the next paper of this series. This
is our justi6cation for presenting so inelegant an ap-
proach. We know of no other procedure for accomplish-
ing the crossing and arriving at predictions for the deep-
inelastic annihilation channel.
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APPENDIX

In this appendix we present the explicit calculations
of the structure functions in the Bjorken limit up to
fourth order in the strong-interaction coupling con-
stant g.

Results of all diagrams from nucleon-current con-
tributions are given, but only a few examples for
diagrams from pion-current contributions are listed.
These results are listed here partly because they will be
referred to when we study the crossing properties of the
structure functions W~ and 8 2 in our next paper on
electron-positron annihilation processes. In these results
the initial nucleon is assumed to be a proton. For
diagrams with the nucleon current contributing, all

the pions are taken to be neutral. For diagrams with the
pion current contributing, the pion which interacts
with the current is taken to be a ~+ and the others are
assumed to be neutral. Momentum labels and parame-
trizations are given along with these diagrams in
Figs. 17 and 18. Only F2(w) is given since Fi(w) is
trivially obtainable by using (75) or (76). The contribu-
tion of a particular diagram, say Fig. 17(a), will be
denoted by F2("~)

It sufhces to say that as m —& ~ none of these diagrams
gives a contribution to F2(w) comparable with the
contributions of the dominant class of diagrams given
in (92), as can be verified easily from the explicit ex-
pressions given below. A few further remarks about
these results are worth noting: (1) The contributions
J 2('~'» and J 2('"» correspond to the virtual nucleon
with momentum I' j"moving with positive and negative
longitudinal momentum, respectively; F2(' "» and
J 2(' '» correspond to the virtual antinucleon with mo-
mentum PI" moving with positive and with negative
longitudinal momentum. (2) Notice that F2 &'~"',

p (17s2) p (1741) and p (1?t2) separately diverge loga-
rithmically at the endpoints of the g' integration.
Nevertheless, the sums F &"'»+F &"'» and F~""»
+F2&'"» are divergence free. It can be shown, by a
calculation analogous to that for 83II, that if a small
and same cutoff is introduced for all the y' integrations,
the contributions from the infinitesimal regions of g',
when summed together, cancel each other. (3) As ex-
plained in Sec. IV, it is required by self-consistency that
the transverse momentum cutoff for the real final
particles be identi6ed with the transverse momentum
cutoff for the virtlal particles appeared in the internal
loops. This procedure assures the maintenance of the
unitarity of the U matrix in the presence of a finite
cutoff. As a result all the internal loop integrals are
unambiguously well de6ned, since the cutoff is 6nite.
For this reason we have not carried out the conventional
renormalization program for the vertex in the present
calculation. This can be done directly, if one wishes, by
computing the renormalized coupling constant in terms
of k~,„' and unrenormalized coupling constant ac-
cording to the method outlined in Sec. II. (4) In

(a)
( 2(wo)

Ik

I

p P I

I

Pl ~ P+kl ' kl

kl (1 ql)P kl

(b)

I
kt f~~ ~ klr/ j ~I& K IL

P Pl Pl t Pl Pl P

1 pip + kQ, kl = (l-ql)P-k~, k~ P = 0

P' =q'P+k&, k' =(1-v)1)P-k', &' P= 0

Pl = (&l + ~&-1)P + (kl + kl~ )

FIG. 17. Diagrams of nucleon-current contributions up to g . In these diagrams Z2( 0& is given by
Eq (18), RV by E. q. (45), WE, &'i by Eq. (33), and sy, ' by Eq. (46).
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kl t
+

P2
—

l P2 Pl X' 2 ~2 1 2' k = (l-g)pl-k2, k ~ P = 0

Pl=glp+kl =-Pl, kl=(l-q )P-k, k ~ P=0li 1' 1 1 1L' ll,

p I
2

P = -q P-k =-P', k = (1-g )P-k, k ~ P = 01 1 li 1'

2 2 1 21' 2 2 1 21' 2l 1

I

1 n ~

pf 1
i p1t p

P = '9 P+k, k = (1-ql)P-kl, kl ' P =0
1 1&'

Pl = (ql + q~l-1)P + (kl + k~1 )

Pl = -pip-kl, kl = (l-ql)p-kl, kit P = 0

P ~1' = (ql + jl'-1}P+ (kl + k~1 }

I

P ) P

Pl) P'

"~ /P~
I 1

p p I p
l

Pl[ I pf1
lvi 1

1 p

P =q P+k, k =(1-q )P-k, k ~ P =0

p' =qk +k, p' =(1-g }k -k, k k =0
2 1 2y ' 2l 1

Same parametrization as in (g)

P' =q'P +k', k' = (1-.'}P-k' k' P =0] 1 ly' j 'g ]g' ]g

P =qP+k g k =(j-q)Pk, k ' P=0
P" = (1-q -vP}P-(k + k' }

P1
I

P 1 I 1

Same parametrization as in (i).

1 I

p

P P'

p' = q' p + k', k' = (1-7}')P-k'

p =qp+k, k =(1 q)Pk

kl e p O1j.

k ~ p=O

rP1v v
p

p =qp+k
1 1

k =(1-v) )P-k, k p =0
1 '1 1l 1j.

Pro. 17. {Comtenged}
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(m)
l

l

J W M t
rw

pP&P

P =q P +'k, k =(1 g)Pk, k ' P =0
1 1 11' 1 1 ll '

P =q P +k, k =(1-g )P-k, , k P =0
2 2 1 2l

(n) Same parametrization as in (a)

(o)

k
.1

r

P2

I

I

I

Ik
1

I

I

!

I

I
—~

1 P

P

Same parametrization as in (c)

p =g p+k „=-p, k =(].-q)P k, k ' P =0

P1

/
P P1 I

Same parametrization as in (g)

P P
EP

t

I ~ k
I

1
I ir
I

Same parametrszation as xn (a)

lrP 1
/p &~ P

k'

I

kI ~1
I

rw

P1

Same parametrization as in (b)

k
1p11

1 Same parametrization as in (i)
p k'

1 1 P1

(u)

k
1

J P»
1

I

I

I

I

I 1
I

p =~ P+k, k =(1-q )P-k1 1 1l ' 1 1 1l 1l

P» =(& +&~-1) P+(k +k~ )

Fxo. i /. (Continued)
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(a)

)4I
I

P
1

I

/
P P P

Same parametrization as in Fig. 17(a).

Same parametrization as in Fig. 17(m).

t

k
(') ~ k I

/ r2t- I ~L
P P P

k I

p
(d)-

I

I

Same parametrization as in Fig. .17(m).

Same parametrization as in Fig. 17(o).

(e)

I

2 I

t

1~
/ l

Pff
1

pf
1

k l

p ~1k
P

L1

P P

Same parametrization as in Fig, 17(d).

Same parametrization as in Fig. ]7(h),

(g)

1&
l r-~

P P1 P2

1

I

I

/ I

SM(')

Same parametrization as in Fig. ].7(m),

Same parametrization as in Fig. ].7(a),

FIG. 18. Examples of second-order and fourth-order pion-current contributions. In diagram (h), Wf, & & is given by E&l. (33}.

Fig. 17(m) only the bubble in which both the nucleon
and the pion have positive longitudinal momenta is
included. The other bubble contributions are cancelled

by the corresponding mass renormalization counter
terms introduced into H&. This explains why only
l&3I, &'& is retained in Fig. 17(n). The same remark
applies to the nucleon-antinucleon bubbles and cor-
responding mass-renormalization counter terms on a
pion line as in Figs. 17(q) and 17(r). (5) After sym-
metrical integrations in the transverse momentum,

I

J 2('~~~ is seen to be cancelled exactly by F&&'~'~ with
BM given by (45). This is to be expected since, in a
Feynman-diagram calculation, the net effect of bubbles
on an external line after removing the mass renormaliza-
tion is known to be a pure wave-function renormaliza-
tion. The net eEect in this case is presented by E2~'"' ~

(6) The grouping of Fs&'ra& Ps&'rr& and F "rs& together
and E2(" & F2&'8+~, and F2(""~ together is particularly
useful in studying the crossing properties of the struc-
ture functions. To obtain F~(' ~'N:) and F2("b g"), the
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