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An elasticity theory in general relativity is formulated and includes a measure of the strain which is
identical to the classical concept. The theory is developed essentially by generalizing the classical elasticity
theory. The physical interpretation of the work is simplified by retaining the three-dimensional form of
the classical quantities. As a further aid to understanding the theory, some of the thermodynamics and
the weak-6eld limit are studied. As part of the latter investigation the classical theory is reformulated so
that there is no explicit dependence on the displacement u. The resulting equations near a strong similarity
to the general-relativistic field equations when they are cast in a manner called the (3+1) form.

I. INTRODUCTION

~ 'HE formulation of an elasticity theory in general
relativity has been discussed by several investi-

gators. ' ' However, none of these theories are totally
satisfactory. Synge's and Bennoun's presentations are
principally based on a modified Hooke's law which
states that the rate of stress is proportional to the rate

of sfraim This is. done in order to avoid defining an
absolute state of strain which they claim is impossible to
do. We show that this is not so. Rayner's work does
include a measure of the strain, but is still somewhat
arbitrary. A further discussion and comparison of these
theories to the one presented here is found in Sec. V.

By far, most of the past work in relativity has been
concerned with either the vacuum or Quid-type
materials. Yet there are several reasons why elasticity
theory and, more generally, nonQuid theories should be
well understood:

(a) Elastic bodies do exist. Even though relativistic
effects are small, the theory should still allow for these
solutions.

(b) Under "abnormal" conditions, matter requiring
relativistic description may possess nonfluid properties.
For example, Misner' has pointed out that in the early
stages of big-bang cosmology, for temperatures,
10' 'K& T&10' 'K, the collisionless neutrino radiation
possesses properties similar to those of an elastic solid.
It is also possible that the superdense materials of the
even earlier stages of the big-bang model or of neutron
star interiors might possess nonQuid properties.

(c) Static nonfiuid bodies can be aspherical (in
contrast to fiuid bodies) and hence can be of interest in
'studying aspherical effects in general relativity. For
example, ority nonQuid bodies can serve as sources for
the static, axisymmetric Weyl metrics. In fact, it is
also necessary that a nonQuid body serve as the source

of the stationary, axisymmetric Kerr metric which
represents the exterior held of a rotating body. '

We develop this elasticity theory by examining the
classical, nonlinear, three-dimensional theory and
generalizing it into the framework of general relativity.
A definition of the strain is given which is consistent
with the classical idea. E s an aid to the use and under-
standing of the theory, we look at some of the thermo-
dynamics and also the weak-field limits of the theory.
The latter is greatly facilitated by reformulating
classical elasticity theory into (3+1) notation, "a form
of the held equations sometimes used in general
relativity.

Our notation shall consist of using Latin letters for
the range (1,2,3), Greek letters for the range (0,1,2,3),
and capital letters for Cartesian coordinates. Paren-
theses around indices, e.g. , I'"",means the quantity is
a three-dimensional quantity only and is used whenever
there might otherwise be confusion. We also choose
units such that c=1.

II. CLASSICAL ELASTICITY THEORY

A. Mechanics

A brief review of ordinary elasticity theory follows. "
Assume we have an undeformed elastic body at rest in
a three-dimensional Euclidean space xx (K=1,2,3).
Then suppose that at some time t the body is deformed
so that each particle of the body is at a new position y~
in the same Euclidean space. Then

yK ax+,gK

where N~ is called the displacement vector. Let there
also be a set of intrinsic coordinates $' (i =1,2,3) which
move with the body. Then we have
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particles in the two states is given, respectively, by

(dli)'= dxxdxx =P,,d('d$',

(dl )'=dyxdyx=y dgd&'

with the metric tensors P;, , y;, given by

p, xlr,xK,

v"=x

(3)

(4)

(6)

where the subscript ",i" denotes a partial derivative.
The strain of the body at any time t is defined as

I* =k(v', p', )— (7)

be simply the force per unit volume due to the stresses
and the bar ( ~ ) indicates the covariant deriva, tive in
the three-space with respect to y, , The equations of
motion of the body are obviously

p~'= —P"i~—p4' (9)

where p is the mass density and a' is the acceleration
vector. For future facility, we have included a force per
unit mass given by the Newtonian gravitational
potential which satisfies the Poisson equation,

I,=4mGP, (10)

where G is the gravitation constant. Here p~,
' is just

the Laplacian operator expressed in curvilinear
coordinates.

B. Thermodynamics

The basic law of thermodynamics for an elastic
material can be written as

A symmetric stress tensor P" is defined by the require-
ment that

i Pij'

into the form

de = (P(y)'t'Tds ,'(—P—"+cy'&)dy,,

III. RELATIVISTIC THEORY

Now we shall incorporate the ideas of Sec. II into a
relativistic theory. Consider the congruence of world
lines of the many material particles mak. ing up our body.
We name these particles by the comoving coordinates
$', so that the world lines are characterized by $' =const.
Points along any one of these world lines is specified by
a time parameter t. There is still much freedom in the
choice of these comoving coordinates. We shall choose
the $' such that if a small section of the body were re-
moved and brought to a point where it is free of all
stresses, then the square of the incremental spatial
distances between nearby particles is given by

(dlo)'=p d3'd&' (16)

where P,, is a given tensor which depends on the
coordina, tes $', but not on the time, and it describes a
Oat three-dimensional space.

A. Strain

The metric of the four-dimensional space-time
continuum can be written as

ds' =g,,d Pd('+2go;d$'dr dr', — (17)

with the metric components functions of ($",r), and
where we have chosen goo= —1, i.e., t=7-, the proper
time. If we transform to a new proper time by the
transformation

&'=&—go'(b «)k',
where (&o,ro) are the coordinates of some fixed point,
then we get for the metric at that point

dQ= Tds+de,
ds' =y, ,d$'dP dr"—

where we have defined

(19)

where I is the internal energy per unit mass, s is the
entropy per unit mass, and |, is the elastic energy per
unit mass. In fact, by definition, a body is elastic when
this elastic potential exists. See page 72 of Ref. 11.The
change in the elastic energy per unit mass for a perfectly
elastic body is given by

'Ye =ge'+go~go~. (20)

(«)' =v'sdP4'. (21)

Thus the spatial metric of the body seen by a local,
comoving observer is simply

de = (P'&/p)du;, . — '

The equation of mass conservation is given by

(12) It follows that the natural definition of the strain,
which is identical to the classical theory, is given by

PV'V =poV'p, (13)

e= pQ. (14)

These last three equations allow us to finally get the
basic law of thermodynamics for an elastic material

where po is the unstrained rest mass density and p and p
are the determinants of the y,, and p,, matrices. The
internal energy per unit volume is given by

~' =l(v' p.,)— (22)

It also follows that all the results of Sec. II are also true
here on a local scale. In particular, a stress tensor P'& is
defined in the same manner. We will refer to the
coordinates ($',r') which lead to the metric form of
Eq. (19) at a chosen point as the local distorted rest
frame (LDRF), where distorted refers to the possibility
of nonzero strain, y,,WP;;, while rest frame reminds us
that go;=0.
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B. Stress-Energy Tensor

We are considering systems with no energy Aux

through the material, e.g. , no heat Row. Then an
observer in the LDRF sees as his stress-energy tensor

where we define the symmetric tensor

v 2 (u(&) uo) p &+u(2) u(&)pi") u +27&2 0u ' (37)

Computing Z,, in the ($', r) coordinate system, we can
directly show that

7 juv— (23)
5„—=0. (38)

Next, consider the four-vectors given by

V( )"=Bx"/B$'

u" = Bx"/Br

(24)

(25)

for any general coordinate system x"=x"($',r), where
the appropriate quantities are held constant in the
above partial derivatives. Now define three new space-
like vectors orthogonal to the four-velocity u&:

Hence, by interchanging partial derivatives, Eq. (37)
can be written in the form

Bu;)/Br =gu(o "u(i) "(up; p+up; p) ~ (39)

where B/Br=u"B/Bx" is the derivative with respect to
the proper time. This shows explicitly that if the four-
velocity vector u& becomes a Killing vector, then the
system is stationary, i.e., the local strains are constant.
Returning to Eq. (36) and using the result of Eq. (38),
this becomes

u(, )"= U(, )"+V(,)"u„u". (26) Bs/Br =0. (40)

These satisfy the relationships

u(~) u(i)w 'Y~i ~

u(, )"u„=0.
(27)

(28)

which simply states that the entropy per particle is
constant in time in agreement with the assumption that
this is a perfectly elastic solid and a local comoving
observer sees no heat flux. Equation (33) becomes

We claim that the stress-energy tensor is given globally
by

T""= eu"u" +P(")u(,)"u(,)". (29)

Be/Br = ', (r"+—ep—'&)By;,/Br (4&)

The local energy density changes as a function of strain
only.

The proof of this is easy. In the LDRF we have

u~= 8p, u(;) ~ ——5,~. (30)

C. Thermodynamics

Using the equation of energy conservation

u„ 1"" —0

and Eqs. (27)—(29), one obtains

—eu";„—e,,u"+u„u(:)";,u( )"P

(31)

(32)

Thus Eq. (29) reduces to Eq. (23), the T""of the LDRF.

D. Four-Dimensional Form

p&"'"=u( &u( vu( F""',(~) (i) (A:) (42)

The equations, as developed, are in mixed form with
Greek letters referring to four-dimensional tensor
quantities and Latin letters referring to three-
dimensional tensor quantities. Thus the quantities
P",u...y... and P;, have immediate physical significance
in terms of ordinary three-dimensional elasticity. At the
risk of losing this quality we can easily generalize our
theory to a completely four-dimensional form. The
general rule is given by

when we note that Ill"" " is a singular tensor. Thus the
The basic law of thermodynamics of Eq. (&5) can be stress-energy tensor can be written as
written as T""= eu "u"+P"" (43)

e, u"=(&h)"'Ts, .u" 2(P""+ex")v' u". —

The law of particle conservation is given by

(nu"); „=0, (34)
(44)ypv =gpv+upuv ~

33
where P&" is defined by the above rule.

Likewise, we can write expressions for u„„,y„„,and P„„.
One can also easily show that p„„can be written as

where e refers to the particle number density. Choosing
units such that n = (p/y) 'te and using dy =yy"dy;, , this
law becomes

u ,.p
——127'7;2,pu . (35)

Substituting Eqs. (32) and (35) into Eq. (33), we get

Of particular interest is the Lie derivative of these
tensors with respect to the velocity vector u& which,
when expressed in ($,r) coordinates, is simply B/Br.
For a second-order covariant tensor, the Lie derivative
has the form

(P/y) "'Ts,„u" P"2,, =0, —(36) a~ a a
uppv ppv; au Mppau; vMpavu; p ~ (45)
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Using Eq. (44), this becomes

~1$+PV fTP, V y (46)

By interchanging the order of partial derivatives and
using the transformation LEq. (52)j, we easily obtain

where

OIIv =
g QP v Qv P QP;~Q Qv DPQv rjrN

2K x..Pij', 0 =~j', i~'t'ai, j—2& P, ij'.

The last term of (57) can be rewritten as
(471

(57)

is normally called the rate-of-stra, in tensor. " One can
also show that

2~KyK . . 2~lyK yK (58)

Z.8„,=0.

Thus, we have the relationship
2v yij =,v ('Yiij+'Y, rjip, iji) ~, (59)

(48) Using the definition of the metric tensor of Eq. (6),
Eq. (58) can be rearranged to the form

&u&iv="rj 'rv (Na;ij+&rj;a) j (50)

where we identify the right-hand side as another form
for the rate-of-strain tensor.

(49)

An interesting form of O.„v can be obtained by applying
the rule of Eq. (42) to Eq. (39). Simplifying the result,
we get

However, this is recognized to be

2~KyK . . 2~/p (60)

r'j, o =vil j+v jl i. (61)

where F&,;j. is the familiar Christoffel symbol. Thus
Eq. (57) becomes simply, in terms of covariant
derivatives,

IV. (3+1) FORM

A. Classical Theory

Using Eq. (55), Eq. (9) becomes

pvio= o pv, ' +'i,
)j—p4— (62)

&z=& =Y,o& (51)

The equation of motion, Eq. (9), of classical elasticity
theory uses the concept of an acceleration a of the
displacement u. These equations are displeasing in the
sense that since the y,; determine a complete intrinsic
description of the body, it should be possible to recast
the dynamics entirely in terms of time derivatives of p, j
In fact, since general relativity does not, in general,
admit quantities like absolute displacements in space,
it is absolutely necessary that we remove this quantity
from the classical theory if we are to make a good com-
parison of it to the relativistic theory.

Consider the velocity vector

We can rega, rd Eqs. (61) and (62) as giving us the
equations of motion of the metric tensor y;, . Viewing
things in this manner, the introduction of a displace-
rnent (which is not a vector in the sense of its tra.ns-
formation properties) is no longer necessary and,
furthermore, the original definition of the metric tensor
LEq. (6)j is not even needed. It is also evident from the
derivation of Eq. (61) that this equation guarantees
that if y;, is initially flat (as indeed it must be to describe
a three-dimensional flat space), then it will remain flat
as it evolves in time.

B. Relativistic Theory

The four-dimensional metric g„„of general relativity
given in Cartesian coordinates. The velocity in the can be decomposed into the space-plus-time (3+1)
intrinsic coordinates is given by. the transformation

(52)

v*,o=y „~x+vxv, ',
where a~ is the acceleration

Taking the time derivative of Eq. (52) and inter-
changing order of partial derivatives, we get

(53)

ds'= g,jd$'dP+2Nidj'dt (N' N;N')dP —(63)—

where we have picked the three space coordinates to be
the Lagrangian coordinates &'. Here g;, and N; are
considered to be three-dimensional tensors and their
indices are raised and lowered by the metric g;;. The
symbol (~ ~) will mean a covariant derivative in this
three-space using the metric g;, . The Einstein field
equations can then be written as the dynamic equations

Denoting the scalar vrrv~ by v', Eq. (53) can be written
as »l l' 2NK'j— (64)

ai=&i, o
—2&,' ~

2

Next consider the time derivative
tensor y;j'

V'j, o = (y, 'y, j),o

(55) . Kij,o=NRij+NKKij 2NKiiK j i1
I lij+K&j I

liN

of the metric +K"N llj+Kj'N ll'

and the initial-value equations
(56)

(K",—iorj",K)llj, =gjrGT~, =8jrGn„T", , (66)
'2 X, Rosen, Phys. Rev. 71, 54 (1947); G. Salzman and A. Taub,

ibid 95, 1659 (1954).. R+K' K'jK",=16jrGTjji,=—16jrGn„n„T'". (67)
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The n„ is the unit vector normal to the t =const surfaces.
The E,; is a curvature quantity called the second
fundamental form of the i=const surfaces. All notation
refers to three-dimensional quantities unless otherwise
indicated. Ke also need the equations of motion,

which we leave in ordinary four-dimensional notation.

Flat SPace-Metric

the intrinsic coordinates, we get

ds' = (1 2p—)y;,d$'d $'+2v, dg'dt (1—+2@—v') dt' (75)

where only the t coordinate still satisfies the harmonic
condition ]'&.„=0. In studying the Newtonian limit of
the Einstein equations, we will keep terms only up to
order v'. The potential g is of order v' and Gp is also of
order v' since it is given by spatial derivatives of g. The
terms of the stress-energy tensor are of the order

Too p, &o'-p~, ~ij p~' (76)
The four-dimensional Hat-space metric of special

relativity is given by

(69)gg~ =gy~gy~ —g]2

Transforming these Cartesian space coordinates to the
intrinsic space coordinates, this becomes

ds'=y;, dPdP+2v, d('dt (1 v')dt—' — (70)

The y;; and e, are the same quantities defined earlier,
but now they are both regarded as components of a
four-dimensional metric g„„.Next we look at the rela-
tivistic equations (64)—(68) for this metric. It is clear
that E;,=0 since the three-dimensional subspace is Rat.
Also, E,;=0 since the t=const surfaces are Rat hyper-
surfaces imbedded in Rat four-space. The result is that
Eq. (64) becomes

(77)'Y'j, o =v'I i+vs I ~

(where the subscript "~ "continues to mean a covariant
derivat'ive using the metric y,j).The R,, is also of order
v', so Eq. (65) becomes

(78)R,, A'I;,+4v GTy;—, =0.

Equation (66) has all terms of order v' and so has no
Newtonian limit. Equation (67) becomes simply

'Y'j, o =v'I j+v~ I'

which is identical to Eq. (61). The metric of Eq. (69)
corresponds to the condition that G=O. Thus Eq. (65)
becomes

(79)E= 16~GTpp.

For two metrics related conformally by
(72)N))g=0,

(80)Il~=e C~
which is true since E=1. For Eqs. (66) a—nd (67), we get
the simple results that both sides are identically zero.
Vpon expanding Eq. (68), we get as the lowest-order
terms

Eisenhart" gives the following relationship between
their curvatures:

R~j =RV +I~j++I~+Ii kj(+ I&++I&+

R =e—2~[R 4v 1iI,

(81)

(82)
(73)p&', o=~p&, ' —~ qa,

which is identical to Eq. (62) when no gravitational
field is present. Thus by using the Rat-space metric plus
the general relativistic elastic theory, we have obtained
all the equations of classical elastic theory written in
tensor form.

where all the quantities on the right-hand side refer to
the metric g,, Letting g;i=y„, o.= —P, and linearizing
in tt, Eqs. (80)—(82) reduce, respectively, to

g' =(1—24)v'j, (»)
Rij+0'I ~j+7~A' (84)

R = (1+2@)B+QI'I, (85)

Thus using the fact that R =0 (since y,, is a flat metric)
and the approximation for Tpp given by the erst of
Eqs. (76), Eq. (79) becomes the potential equation for p:

Nemtoni an Metric

The weak-field (Newtonian limit) form of the metric
is given by"

ds' = (1 2P)dy~dy~ (1+—2P)dt', —(74)

where @ is the ordinary Newtonian gravitational poten-
tial. This metric is obtained by picking quasi-Cartesian
coordinates x& which satisfy the harmonic condition
and by neglecting all time derivatives. Transforming to

(86)4~Gj

Returning to Eq. (78) and using Eqs. (84), (86), and

For the diagonal form of the metric [Eq. (74)], the
second fundamental form is given by E~a=+&g~a, o

However, time derivatives introduce
another order of e, so that the Eg~ are of the order v'.
It follows that the transformed E,, are also of the
order v'. Using this result plus the fact that
g,,=(1—2@)y,j differs from p;, only by an order v', we
find that for the metric of Eq. (75), Eq. (64) again
reduces to

"L. Landau and E. Lifshitz, The Classica/ Theory of Fields L. P. Kisenhart, Riewaeniae Geo&rIetry (Princeton University
(Addison-Wesley Publishing Co., Inc. , Reading, Mass. , 1951), Press, Princeton, N. J., 1926). See especially p. 90, where the R
Sec. 11-11. and R;, are defined with a sign opposite to that of ours.
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the approximate relationship T= —p, we see that it
becomes simply

4i'~ —&iv=o (87)

which is satisfied by our metric (75), in which %=1+&
within our approximations. Expanding Eq. (68) again
and keeping only lowest-order terms, we get

P&,o =P2 (")' ,
r—vI '"i ~ P—4' , (88)

Thus the metric of Eq. (75) has given us all the equa-
tions of classical elasticity theory plus Newtonian
gravity written in tensor form. Finally, using the
equation

we see that for the metric of Eq. (74) this is of order n'

and so we verify that the t used does obey the harmonic
condition. We also note that another coordinate condi-
tion which requires that the t =const surfaces be
minimal surfaces and is expressed by E=O is also
satisfied here since E;; is of order z'.

V. DISCUSSION

In this paper we have developed a relativistic
elasticity theory in which the concept of strain is de-
6ned in exactly the same manner as in classical elas-
ticity theory. Opposing this viewpoint, the works of

Synge and Bennoun are based on the idea that the
classical concept of strain cannot be carried over into
general relativity, the reasoning being that it is neces-
sary to know what the unstrained or "natural" state of
the elastic body is and that it is hard to see how a
"natural" state can exist since gravity is always
operative. This reasoning is in error. It is true that
gravity cannot be turned off for the whole elastic body.
However, strain is actually a microscopic quantity in

elasticity theory. As such, gravity can essentially be
be turned for each microscopic portion of the body if we

simply imagine removing that small portion of the body
to a distant point where it is free from all stresses. There
we can see what the "natural" state, i.e., shape, of this

infinitesimal piece of elastic material is. Thus we agree
there is no natural state for the body, but there is for
the material of the body. The theories of Synge and
Bennoun resort to the concept of "rate of strain" in
order to circumvent the apparent difhculty. Thus their
ideas are of some use in discussing dynamicat problems,
but have nothing to say about static problems. As an
example, if we were to use a given elastic material to
build a large, static body in space, their equations could
not describe the 6nal state of the constructed body or
its gravitational field, though they may be able to say
something about how it might vibrate.

Rayner's work. does include a measure of the strain
which he accomplishes by introducing a tensor g „„
which refers to the "natural" state of the body. Thus
his g'„„ is somehow analogous to our four-dimensional
P„„but is not well defined and is somewhat arbitrary.
The tensor g „„ is claimed to describe a rigid-body
motion of the body in the Born sense. Our tensor P„„,or
more specifically P... does not describe the body at all,
but merely the basic undeformed material of which the
body is made.

If the weak-field or Newtonian limit is tak. en of any
of these other theories, they do not reduce to the
common classical elasticity theory, This is an unde-
sirable quality. Whereas we have seen that by expressing
both classical elasticity theory and the relativistic
theory presented here in (3+1) form, the weak-field
limit of the relativistic theory immediately yields the
classical theory.

We should also mention that these earlier theories
immediately specialize to the case where a Hooke's
type of law (Rayner) or a variation of it (Synge,
Bennoun) is assumed. In general, this is not a valid
assumption for most elastic materials except in the
approximations of small strains or small variations in
strain.
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