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Expressions are given for the electromagnetic 6nal-state interaction contribution to D, the triple-product
correlation coeKcient, in the nuclear P-decay transitions —,

' —+-,', —,
' —+-,', $+ —+-,'+, —,'+ ~ $+, and 1+—& 0+

to all orders of Zn/e, in the Coulomb interaction.

I. INTRODUCTION

"T has been wondered for some time whether the
~ - semileptonic components of the weak interaction
Hamiltonian possess time-reversal-violating (TRV)
parts. Although time-reversal-noninvariant terms have
dehnitely been established' in the nonleptonic com-
ponents through experiments on the E'-meson system,
all experiments done to this time are consistent
with time-reversal invariance of the semileptonic
components.

In nuclear P decay the unintegrated spectrum, in the
allowed V-3 picture, summed on final spins has the
form

F(WZ, E.)
dF(P ) = p,E,(W E,)'dE, dQ„d—o„(

(2s.)'

(J) — p.xp. —

X 1+a(p, p.)+ Ap, +Bp„+D
(P.&&A, I-

where the fina/ nucleus has charge Z, the initial nucleus
has polarization (J)/J, the electron has momentum y,
and energy E„ the neutrino has momentum y„,
F(WZ, E,) is the Fermi function, the total energy
release is 8", and where, in general, there may be terms
higher order in (p, p„) and (J)/J which need not con-
cern us. P, a, A, J3, and D may, of course, be dependent
on E,. If Qnal-state interactions can be neglected, then
a nonvanishing measurement of D, the triple-product
correlation coeScient, would mean a definite breakdown
of time-reversal invariance in the decay. Experi-
ments done on neutron P decay' and on the decay'
roNes" ~ sFis"+e++v, are consistent with D= O.

These experiments involve mirror transitions, and
recently Kim and Primakoff' have shown that mirror

*Research supported in part by the U. S. Atomic Energy
Commission.' R. C. Casella, Phys. Rev. Letters 21, 1128 (1968); 22, 554
(1969).' J. D. Jackson, S. B. Treiman, and H. W. Wyld, Jr., Nucl.
Phys. 4, 206 (1957); Phys. Rev. 106, 517 (1957).

'M. T. Burgy et al. , Phys. Rev. 120, 1829 (1960); B. G.
ErosoIimskii ei a/ , Yadern. Phys. 8, .176 (1968) LEnglish transl. :
Soviet J. Nucl. Phys. 8, 98 (1969)g. The latter finds D(a)
=0.008&0.013.

4I. P. Calaprice et al. , Phys. Rev. Letters 18, 918 (1967).
D(Ne) =0.002&0.014.' C. W. Kim and H. Primako6', Phys. Rev. 180, 1502 (1969).
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decays may not be the place to look for T-invariance
violations. The reason is that certain reality conditions
must hold for the form factors involved in the decay
amplitude. They envision a maximal violation in a
possible second-class' part of the axial 65=0 hadron
weak current, and find for the decay»P»" —+ &6S&6"

+e +p, a DTav of order 10 '. The size of D is helped
along by the large ft value of the decay (logreft= 7.9)
which is essential to their result. The idea, then, is to
look at allowed nonmirror transitions having 6J= 1, no
parity change (cVF, the Fermi matrix element, vanishes),
and a relatively small value of MGT, the Gamow-Teller
matrix element. Of course, any determination of a
possible TRV must include the contribution to D from
final-state electromagnetic (EM) interactions. Calcula, -

tions of D~ have been done to first order in Zo/v. by
Callan and Treiman' for mirror —,

' —+ —,
' transitions and

by Chen for mirror ~ ~-,' transitions. The purpose of
this paper is to give expressions for DHM, essentially
valid to all orders of Zo/v„ for the transitions —,

' —+-'„
—,
' —+ —,', —,'+ —+-,'+, —,

'~ —+-,'+, and 1+—+0+. It is among
the last three that there are some possibilities for testing
the hypothesis of Kim and Primakoff and for measur-
ing DEM

II. METHOD

Our method differs from that of Callan and Treiman
and that of Chen in that we do not explicitly calculate
any Feynman graphs, We use the standard weak
interaction amplitude up to an over-all constant,
5K =J&J„,8 where J& is the matrix element of the hadron
vector and axial-vector currents and I.I" is the usual
leptonic current involved in the transition lVq~lVp
+e +v, in the allowed approximation;

g =(x„m, (v (o)(x„~,)—p~,~, (A (o)(iv„~i),
L»= u,ys(1 —ys)r;.

The EM anal-state interaction is put in by hand in the
following way. The amplitude 3R which involves
the emission of an electron with helicity' A. may be

6 C. G. Callan and S. B.Treiman, Phys. Rev. 162, 1494 (1967).
7 H. H. Chen, Phys. Rev. , 185, 2003 (1969).

Our metric and relativistic notation is that of J. D. Bjorken
and S. D. Drell, Relativistic Quantum 3fechanics (McGraw-Hill
Book Co. , New York, 1964). Units A=a=1; a=i/137. Four-
vector a& denoted by (ao,' a1,a&,a3).

~ We use the helicity formalism of M. Jacob and G. C. Wick,
Ann. Phys. (N. Y.) 7, 404 (1959).
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denoted by

m& ——(p.);p„;X„m,~X~(O) ~Xz,~z)

%e next find the amplitudes for the emission of an
electron in state

~
jttsX) in the following way:

M;„7,= (p,jtzt); p„; /~/s, 7/t p j Xs (0)
~

Y&'z, trtz)

magnetically corrected amplitudes 8, ), for the emissiom.

of an electron in state
~
jttt) ) using 8, 1=—,'(E/~+8; )

and 8; f=-,'(—) '*(8; +.—E2 ). Finally, we return to
the helicity amplitudes A~ using

2j+]) 2/s

A (p.) =Z
I

&. "'*(P.)(f - .
7'm 47r

Since the EM interaction conserves parity (7r), we
calculate the amplitudes T, for the emission of an
electron in state

~
jttt7r) using

The electromagnetically corrected amplitudes are

(2)

ZnE,
»=(e-s) +

pe

ZQm ZnE, Znm,
, r/s

——(e—5/4)
2pg 4ppe

(3)

Z(YEg ZAm q

&s =(e—s)
2pe

ZeE, Znm,
, 2/4=(e —5/4) +

pe

where e is Euler's constant,

= 7iml r. ——7nN)=I7. 5772757. . . .~""~ =27t

Having put in the Coulomb interaction with the ap-
proximation that the final as well as the initial nucleus
can be regarded at rest in the lab, "we find the electro-

"N. F. Mott and H. S. W. Massey, The Theory of Atomic
Collisions (Oxford University Press, London, 1965), p. 234;
H. A. Bethe and E. E. Salpeter, QNantlm Mechmucs of One- und
Two-Electron Atoms (Academic Press Inc. , New York, 1957),p. 71.

"The Mott phase-shift expressions were derived assuming a
axed scattering center. In looking at the problem of electro-

where the g's are the relativistic Coulomb phase shifts
first calculated by Mott. ' Equation (2) follows from
the Fermi-Watson theorem. Using the nuclear matrix
elements given below, we Gnd four possible states for the
electron: si/9 Pi/s /Js/s and Ps/s. With y= 1/(1 —t7,') '/',

tr(P )= WZrr/t7„h = tr/y, and pi = 0'—(Zcr) 'j'/s we have

(l+i6) I'(p i+1+io.)1. ~2g'g g
—im (p)—l)2'

(pi+io.)I'(pi+1 —io-)

L
—(l+1)+i8ji'( +1+i )

g —i+i . eSi77
2 &

—im (p~+1—l)

(p i+i+io) I'(p i+2+ 1—io)

Let 7/r= 7/(Sr/s), 7/s= r/(Pi/2), 7/s= 7/(ds/s), and r/4= 7/(Ps/s)
For later comparison with the work of others, we
expand to first order in o. and find for P decay

The quantity (~A+~'+ ~A ~'), summed on final spins,
yields us the transition probability given by Eq. (1)—
allowing us to find DP and P. It is sufficient in the
calculation to consider the initial nucleus polarized
with

~
tttz~ = t where we have (J)/J= 8."

In addition to the nuclear-recoil approximation noted
above (see Ref. 11), we will make the following

approximations:
(a) We neglect the final-state magnetic scattering of

the electron off the final nuclear magnetic moment'~;
i.e., we neglect hyperfine structure effects. (See Ref. 13.)
This approximation is better for large-Z nuclei.

(b) In applying the Fermi-Watson theorem, we
neglect any effect of radiative corrections, such as
bremsstrahlung, on the g's. Presumably these would
occur at or below the Zo, ' level.

III. SPECIFIC TRANSITIONS

Case -', —+ —,':Examples of interest in this case includ. e
neutron beta decay and the decay of Ne". Following
Rim and Primakoff" '5 and Callan and Treiman ' we
treat our nuclei as elementary particles. Ke shall

always consider the decay "n"—& "p"+e +p, . For this
case we use the nuclear matrix element

N(p F)5"(1 -gvs)+(if~/2—~.)~""V 3~(pz),

where q&= (po —pz)&= —(p,+p„)&, M„ is the proton
mass, g= (—G~/Gi)Nor/&32M'F, (—Gz/Gr ) =1.2, and
we assume all form factors are constant functions of q'

magnetic pion-electron scattering we found that to first order in
Za/v. the Mott phase-shift expressions differ from those found by
calculating the one-photon-exchange diagram by replacing E by
m . Since in our problem Ep =Kg for all practical purposes, we
see that our approximation is well justified."It should be noted that for J)-', the electromagnetic in-
teraction also contributes to the coefficients of terms like
(p,Xp„g)(p..s), (p,Xp„s) (p, .g), and (f2,Xp„.g)(p. p„} to essen-
tially the same order as it does to D, the coeScient of (p&Xp& 8).
(For the cases —', —+ —', and -', —+ —', the term (P,Xf7, .g)(P, P„) may
be neglected. ) The term (P,XP,. i)' is also present. Experiments
should be done in such a way as to minimize the detection of these
coefficients if they are designed to measure D.

"The D of Callan and Treiman and of Chen is (E./p. ) times
ours. They actually find an additional set of terms, proportional to
(/2s/Z)(1&g), due to the scattering of the electron otf the 6nal
nuclear magnetic moment. See Refs. 6 and 7. These terms are
usually small compared to those of weak magnetism because of
the 1/Z and because g is usually of order 1. We do not get these
magnetic scattering terms because we have effectively considered
the final. nucleus to have spin 0 in analyzing the weak interaction
amplitude into partial waves and in using the Mott phase shifts
derived for electron scattering from a fixed spin-0 scattering
center.

'4 C. W. Kim and H. Primako6, Phys. Rev. 139B, 1447 (1965).
'c C. W. Kim and H. Primakoff, Phys. Rev. 140$, 566 (1965).



102 JOHN C. B ROD INK

and use their values at q'=0. Taking the case of a
mirror transition (tVr ——1), conserved vector current
(CVC) tells us that for= Ltt(+) —tt( —)g —1/A, where

tt(&) is the total magnetic moment of the nuclear state
with the largest value of (&Is), and 3 is the nuclear
mass number. The greatest contribution to D~M comes
from fir (weak magnetism) which may in favorable
cases be of order 10. However, even if fir(0) vanished,
D~M would still receive contributions from the bottom
components of the nuclear spinors. Dining

f(P~) = fM+ (i~a)/~ = Et (+)—t (—)3~a/~

and keeping terms to first order in (p,/2JtIo) and

(p„/2aM„), we find

f(p-)p.
DEM(p~)—

sm, sin(rti —its)+ l(E,+m, )
3

decay of Ne"

DEM(Ne") = (2.2X10 4)(E,/W),

where the approximate energy dependence can be seen
from Eq. (6).

Case ~ + ~: An example of interest in this case is the
decay isArir ' ~ rrClis"+e++v„where 8'(Ar") =5.46
MeV. For this case, we use the nuclear matrix element

where g= (—G~/Gv)3IIoT/(5/3)'t'ME, u is a Rarita-
Schwinger spinor, '~ and we have only kept terms to
first order in q. Using ft(Ar") = 5680,"we find g= 0.256;
the sign has been determined to be positive. ~ To erst
order in (p,/23'„) and (p,/2M'o), we find

f(p-)p.
DE M(p~)

2L.1+(5/3) lglqE~,

sin(rti —rt4)+ I
sin(rts —rts)

E,+m, i
(4)

�

1~6
-', m, sin(rti —rts)+ l(E,+m, )

~2P ImM
DTEV(p~)

(I+3l~l )E.
(5)

where the & signs follow from a theorem of Weinberg. "
Using Eq. (3), we find, to first order in Zn/v„

and

f P
sin(rti —rt4)+I

I
sin(its —its)

&E,+m.r

W2p, ImLgf
DTRV(p~)

I:I+(5!3)I g I'jE

(7)

(8)

aIld

sin(rt i—rts) =Znm, /p,

LE,+m, j{sin(i)i—rt4)+I p,/(E, +m, ))'sin(rts —rts)}
= (ZrrE, '/2p, )L3+ (m,/E, ) 'j,

reproducing the result of Callan and Treiman":

&Zcrf(P )E,
DEM(p~)—

4(1+3lgl )m„

XI (1+3f)+( ./E )'(3~a)1 (6)

If we take Z=SS, p, =1.00 MeV/c, E,=%=1.123
MeV, v, =0.89, and g(P~) =+1.00, and insert Eq. (3)
into Eq. (4), we have, to first order in Zcr/v„
DEM(P&)=&(1.42X10 4)f(P ). Using Eq. (4) alone,
we have D M(P-) = (1.69X10 4)f(P ) and DEM(P+)
= —(1.12X10 ')f(p+). For the decay of Ne" with
g(p+)= —0.99' ' E =W(Ne")=2 75 MeV, . p, =2.70
MeV/c, v, =0.982, Z=9, and f(p+) = —4.57, ' we have,
using Eq. (3) and Eq. (4), to first order in Zn/v„
DEM(Ne") =2.28X10 '. Using Eq (4) alone. , we have
DEM(Ne")=2. 22X10 4. If this had been a P decay
with g(p )=0.99 and f(p )=4.S7, Eq. (4) would give
a D~M of 2.38)(10 '. Hence, we 6nd for the actual

'6 S. Weinberg, Phys. Rev. 112, 1375 (1958).

Usin. g Eq. (3) we find, to first order in Zn/v„

~Z f(p-)E.
DEM (p~)—

4I 1+(5/3) I g I
']M „

tm. '
X (1~g)+I —(3~sg), (9)

kE,

reproducing the result of Chen. ~" Unfortunately, in
this example we have f(P+) = —0.184, a rather small

value, due to like signs for tt(+) and tt( —).r This makes
the magnetic scattering rather significant (about 43%)
instead of being unimportant. Using Eqs. (3) and (7),
we have, to first order in Zn/v„ for E,= W, DEM(Ar")
=2.3X10 '. Using Eq. (7) alone, we find DEM(Ar")
=2.2X10 '. If this had been a P decay with opposite
signs for g and f(P ), we would find a DEM of 2.5X 10 s.

If we include the magnetic scattering according to the
results of Ref. 7, we then find DE (Ar") =4.0X10 '.
Hence, the best value for the actual decay of Ar'5 is

DEM(Ar") = (3.9X 10 ')(E,/W),
"See, e.g., R. E. Behrends and C. Fronsdal, Phys. Rev. 106/

345 (&9SP).
's E.J.Konopinski, The Theory of Beta Rroboactsvity (Clarendon

Press, Oxford, England, 1966), p. 151; C. S. Wu and S. A.
Moszkowski, Beta Decay (Wiley-Interscience, Inc. , New York,
1966), p. 66.
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where the approximate energy dependence can be seen
from Eq. (9).

Case ~+ ~ 2+: An example of interest in this case is
the decay»As4477 —+ 44Se4477+e +v, with W(Aszz) = 1.2
MeV. For this case we use the nuclear matrix element"

J~= 74(pz) q,~.(q~(1 g~,)—+ (7'fsz/235, )~~"q,j74.(Pi),

where g=(—G~/Gv)MoT/v'4 (3Ii =0) and where J&
differs from the most general expression in keeping

terms in q to first order only. Using log»fi(As) =5.76, M

we find igi =0.0522, where we have used Eq. (10)
(below) dropping all terms in fbi. Since this case
corresponds mostly to large-A nuclei we neglect the
bottom spinor components; however, since we are
interested in cases where g is often small (we are
particularly interested in examples where g is smaB.
compared to fear) we keep terms to second order in
(p,/2M„) and (p„/2M~). We then find (dropping a
factor of Gv')

I fM I' (P'E
I(E~ p)+-P +E

MsE,) 2M~' k E,
(10)

DEM(P~) P

aRe(gfsf*) p. ( p,
(E,+m.) sin(zli —&4)+I i

»n(7}s—7)s)
m„E.

' '
kE.+m,)

2lfMI'P

3M„'E,

X m,E„I sin(zii —zis)) —sp, 'Lsin(7}i—7)4)+sin(7}s—7}s))

~2P,W ImLg f4r*g
DTav(P~) P

( p
+4E„PE,+m,) sin(7}i—7)4)+I I

sin(7}s—7}s), (11)
&E,pm. )

(12)

Re(gfsr*)ZnE, (m, ' ZajzfE. /m, q'D"(}3-)=, 3+I — = 3+I —I
.

2(4igi')u„&E, ~ gcV„&E,) (13)

As we shall later illustrate, D and DT ~ may easily be separated if their momentum dependence is determined.
Using Eq. (3), dropping terms in

I

fbi�'

in D~M( and terms in fM from $, we have to first order in Zu/s, (no &
sign needed)

Using as the coefficient the maximum value of D M

from Eqs. (10) and (11), we find

DEM(Aszz} = (2.75X10 ') (fszE./W) .
The coefficient to first order in Z4r/s, is 2.4X 10 '.

Case —,
'+ —+ ~+: Examples of interest for this case are

the decays"

ssTe75 + 54174 +e +v, with logtpff=5. 66,
W= 1.2 MeV, and

I gi =0.071;

ssNlsz ~ sgCuss +8 +vg with logipff =6.56,
W = 2.61 MeV, and

I g I

=0.0335'

3QZnss" ~ s,Cuss"+e +v, with logiof&= 7.34,
W=0.84 MeV, and igi =0.0010.

For this case we use the nuclear matrix element

Z MI"=74 (p~)vsv' v"(1—gvs)+ ~""q. N-s(pr),
2M„

'9 These terms arise in a natu. ral way as can be seen by examin-
ing P decay in the impulse appro-imation. See, for example,
Eqs. (2), (8)-(10) of Ref. 14. It is likely that ( f44( is of order
ls~ —~-II i'4rI

20 E. J. K,onopinski, Ref. 18, p. 157.

which is the most general expression to erst order in q.
We find exactly the same results given in Eqs. (10)—(12)
for the previous case. Using these we 6nd approximately

D M(Te" ) =(3.6X10 ')(fsrE, /W)
DE (Ni") =(7.5X10 ')(fME, /W),
DEM(Zn") = (7.0X10 ') (fsrE,/W) .

Case 1+—+ 0+: An example of interest for this case is
the decay tsPizss ~ isSis"+e +v, with W(P")=2.22
MeV. Following Kim and Primako6, we take the
nuclear matrix elements of the vector and axial-vector
currents to be

M(q )
(N, i

vs(0) IN, )=4:s"().s,q,
4A.3I„'

(N, I
A4(o)

I
N,) =s4E'~(qs)

ET(q'), ~~(q')
+q'(s q) -+q'(s q)

2A JtI/I„' m~~

%e use

&'= (Ns, m» = Oi &'(0)
I Nr, mz)

-(N , smoziA'(0) INz, mz},
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at= (Gv/~&)&'~~, P= (P~+Pr)',
q'= (p~ pr—)'= —(p.+p )'~

and S~=V2p~(mr), where p~(mr) is the polarization
vector of the initial state ( p'( m)r(pr) s =0)
X=@,+y„and &M=Mr —Mr. It follows that

q~ = —(E,+E„;K) = (M ~ Mr—, —K) = (W; —K),
P=(M~+Mr , —K') =(2AM ' —K)

=q&y (2AM +ZM; 0)=q&+ 2AM„(1; 0).

We see that we may use Q'= (2AM~; 0) in the above
jf we replace Lpi(q')/m '] in all expressions with

( pz(q2)/m 2+pz, (q')/(2AM„')) —a negligible recoil cor-
rection which we shall ignore. We note that there is no
magnetic scattering correction to this transition. We
also note that the factors of q' bring in the electron
mass via the leptic factor and the Dirac equation; hence,
these terms will probably make negligible contributions.
First we assume all form factors (we again use their
q'=0 values) are approxiinately equal: (F~(=(pz(,
[Fr(&pg(, and (FT(& F~ . We then find that
)=2(p~['. This gives us F~ ——6.25X10 ' using the
value of log»f/= 7.9."Since Fr always occurs with the
factor (m,E/m ') =5X10 ' at maximum, we ignore all
terms involving FJ. We then Qnd

ReLP, (2P,~P )']P,
DEM(p~) (E,+m, )

2(2(P, [ )E.M„

(
sin(gi —g4)+I

I
sin(g2 —~13)

&E,+m,)
(14)

DTRv(p ) = 21m(pgpr*)(E, —E.)(2(P. [ )E,M„

aim(p~p~*)(E, +E,) . (15)

&»ng Eq. (3) we have, to first order in Zcx/v„

D'M(p. )=
4(2 [F~ [')M„

Pm,q'-
xRe«~(2FT~F~)*»+I —I, (16)

&E,i
giving

(D'"(P~)( .„=(1.5X1O-2) [2F,~F [

or ID' (P~)(,=10 'if
As we shall show later, it is likely that [F~( =50 [F

In this case we find (now neglecting terms in FT and
Fr, continuing to assume (FT [

C
( p~

(
and

( p~ [
(

( p„(
and dropping a factor of Gi ')

p= (2(p~ (') —2 «(F~p~*)I I+ p '+E ' —
I

k 2E,M„P 4M„' ( E,
(17)

DEN(Pw) $—
~Re(F,F~*)p. — ( p '

. [F~l'p
(E.+m.) sin(gi —q4)+I sin(q, —g,)2E.M„(E,+m, 3E,M„'

X m,E„Lsin(pi —p2)) —~P,'( sin(gi —p4)+sin(gQ 7)3)]

DTRv(P~) P—
W1m(pgpia*) p.W

E,M„

+~E„PE,+m,] sin(gi —g4)+I I
sin(gq —ga), (18)

&E.ym. )

D'"(P )5=
Re(p~ pgg*)ZnE, fm, '——3+I-

4M„

Figures 1 and 2 show plots based on Eqs. (17)—(19) of
DEM and D ~ as functions of the electron momentum.
It is seen that they are most easily separated when
multiplied by the factor (E,/p, ). We have used Fir(

6X10-', and ImLF )=(1/V2) Pa(.
We assumed I pr(5 I p~l and

I
pr

I I p~l U»ng Eq.
(3), we have, to first order in Zu/n, (no & needed),

[F~(ZnE, —
(m,)'—[D' (p-) I

= — —3+I —
I

8[P~[M„
(21)

Hence, for the decay of P" we have the results

(DE (P")(=(5.7X10 ')(E,/W), If [F~[=50(p@[

[
DEM(F32)

(
= (1.2 X 10—') (E /W), if

( Fv
(

= 100 [ Fg [

Using the same approximations involved in getting
Eq. (13) we have

[p~(2LE (E &+3m &) —2E p,2). (20) ID' (F")
I
=(1 X1~')(E /W)

8E~r,' if [F (=1(17O(p (),



where th coefficients
given by Eqs (1') d

~imum values of DEM

If we include an a dit
~qm«e &"acke'g of Fq (1)

contribution to H of
, we

IF"i p'~
(gi —gp)+sin(g2 —"4)j., (22)[sin(gi—

F I NAL STATE »TERAC»o» AND ME REVERSAL

which vanishes at thewh
'

e top of the s ectruP

previous cases —'-+ —'
~-+ ~ V2) holds f EM

~ ~ ~ an ~ ~ 2. The
t'o d fo E (2liq. z~ give us, to first order in Zn v'Vg'

3
i
F~ i'Zap, E„

16iF'i'cV '

Using iF"i=50iF" and E= .= —,', e ave

veraging over initial spins and ne

IF I', h

8
6=(2iF. i') ——«(F~F~*)i

4 2Z.Sr

I

&oOQ 50 R.oz
%,(v.uj')

FzG. 2. Plot of D ~ X( ./P-) X
with )F ~=50(F l

I

where a is the s ion factor defin d"'be spectrum correcti
'n is original paper on we

e y

v2F~)u, i a+i(K&&n)
2M+g,

with that found in Ref. 21 E . 1

(1—vp)v.

F~q'=p(q', 1Vp*-+Np)= = 0;1V * pF~ q — ' *
p =pp=p 0;1V~*-+Np+

the transition ma neti
of th itd t t of th

magnetic moment invol
t cleus which is thee o t e 6nal nu

as been measured b sevy s ve a groups. "W i
i not good enough to decide

we choose (Sj3)a= —0055
b

MeV ten
7

e z2 —+ C" an
correction given in Ref 15

n use the Coulomb

8 8 F~
3 3 2'~F~

16 Zo'—5.7A '~'—
9 3f~

I

$ ~O 16O
Va (NeU(c)

FzG. 1. P]ot of D and DE versust =50it
i

F i=6X10' C 3=(v'-:)I

This yields IF"jF'I =36. Includin
6 d iF jF interval (15,75) hein the i

en a

~ =50iF. j above.

ann, Phys. Rev. 111' M. Gell-Mann
D.-;.l R..M d Phv. o . Phys. 40, 659 (I968).
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XV. EFFECT OF FINITE NUCLEAR SIZE

Ke have investigated the effect of the 6nite nuclear
size on the Coulomb phase shifts. We use the continuum
wave functions and phase shifts gotten by solving the
Schrodinger equation —the spinless approximation. For
a point charge, the Coulomb wave functions and phase
shifts for momentum k and angular momentum 1 are"

~
F(l+I+s&) (

Fit (r) =(2kr)'e's'e &~

(2l+1) I

yF(l+ I ye,
~

2l+2
~

—2tkr},

g ts = argLF (l+ 1+i' )],
where &=~pu/n, for pW decay and the F(

~ I
)'s are

the con6uent hypergeometric functions (sometimes
denoted iFi).

F (b) F. (a+rt)s"
F(a i

b I z) =
F(a) =s F(b+rt)n!

The FI,~"s are normalized so that

brnoFHe(r): —sin('kr —X ln2kr —arrl+a ts) .
kr

In perturbation theory, we have for 50.&=0&—0-&'

fm=l/197 MeV). For 2=125, Z=55, and p, = I.O()

MeV/c, we find

O.po ——0.227,

O.y= —0.196,
O.g' = —0.4I8,

tz,
~

=2.5&&IO-,

gj = 0.290, g3= —0.285,
(a~,

~

=6.6&&IO-s,

~
~as

t
9.5X 1O-i4

g2 = 0.088, g4= —0.183.

Since the relativistic phase shifts (rt's) are the same
order of magnitude as the ~~ 's and the relativistic wave
functions do not differ too much from the F~t"ss4 (the
relativistic singularity at the origin is more than made
up by the r' in the integrand), we find the effect of the
Qnite nuclear size on D to be negligible.

V. CONCLUDING REMARKS

For the cases of experimental interest given above
(hJ =1), we find near the top of the spectrum, where
p.=F,=I'V,

DEM(Pm)/DTRv(Pm) + sP&/t (23)

where t is the measure of time-reversal violation in
the decay

t=Im(F~Fsr*)/Re(F~Fsr*) for the transition 1+—+ 0+
=1 (gf *)/R (gf *)

for the transitions ~ ~—,
' and 2 ~ ~.

IA«I=2~ p~

where for P decay,

ts(r) I'I AV(r) Ir'dr,
Thus, the two D's are equal whenever t= ~3'. They, of
course, will interfere but the sign of t is unpredictable.
They are distinguishable by their Inomentum depen-
dence as shown in Figs. 1 and 2.
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