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Expressions are given for the electromagnetic final-state interaction contribution to D, the triple-product
correlation coefficient, in the nuclear g-decay transitions § — %, § — %, 3+ — §% $* - 3+ and 1t — 0F

to all orders of Za/v. in the Coulomb interaction.

1. INTRODUCTION

T has been wondered for some time whether the

semileptonic components of the weak interaction
Hamiltonian possess time-reversal-violating (TRYV)
parts. Although time-reversal-noninvariant terms have
definitely been established! in the nonleptonic com-
ponents through experiments on the K°-meson system,
all experiments done to this time are consistent
with time-reversal invariance of the semileptonic
components.

In nuclear 8 decay the unintegrated spectrum, in the
allowed V-4 picture, summed on final spins has the
form?
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where the final nucleus has charge Z, the initial nucleus
has polarization (J)/J, the electron has momentum p,
and energy £E., the neutrino has momentum p,,
F(F2Z, E;) is the Fermi function, the total energy
release is W, and where, in general, there may be terms
higher order in (p.-$,) and (J)/J which need not con-
cern us. £ a, 4, B, and D may, of course, be dependent
on E.. If final-state interactions can be neglected, then
a nonvanishing measurement of D, the triple-product
correlation coefficient, would mean a definite breakdown
of time-reversal invariance in the decay. Experi-
ments done on neutron B decay® and on the decay*
1wNeg!® — ¢Fol%+et+», are consistent with D=0.
These experiments involve mirror transitions, and
recently Kim and Primakoff® have shown that mirror
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Commission.
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decays may not be the place to look for 7-invariance
violations. The reason is that certain reality conditions
must hold for the form factors involved in the decay
amplitude. They envision a maximal violation in a
possible second-class® part of the axial AS=0 hadron
weak current, and find for the decay 15P17%% — 16516
+e+. a DTRY of order 1071 The size of D is helped
along by the large f¢ value of the decay (logioft=7.9)
which is essential to their result. The idea, then, is to
look at allowed nonmirror transitions having AJ=1, no
parity change (M r, the Fermi matrix element, vanishes),
and a relatively small value of M gr, the Gamow-Teller
matrix element. Of course, any determination of a
possible TRV must include the contribution to D from
final-state electromagnetic (EM) interactions. Calcula-
tions of DEM have been done to first order in Za/v, by
Callan and Treiman® for mirror # — % transitions and
by Chen? for mirror 4 — £ transitions. The purpose of
this paper is to give expressions for D®M, essentially
valid to all orders of Za/v,, for the transitions 3 — 3,
853 3+ 1% S 3% and 1+ — 0t It is among
the last three that there are some possibilities for testing
the hypothesis of Kim and Primakoff and for measur-
ing DEM,

II. METHOD

Our method differs from that of Callan and Treiman
and that of Chen in that we do not explicitly calculate
any Feynman graphs. We use the standard weak
interaction amplitude up to an over-all constant,
M =J*L,,® where J*is the matrix element of the hadron
vector and axial-vector currents and L* is the usual
leptonic current involved in the transition N;y— Ng
+e¢+ 7, in the allowed approximation;

Je=(Np,mp| V¥0)|Nr,mr)—(N pmp| A4(0)| N1,mz),
Lr= 1/7/9’)/"(1 '—’75)7),7 .

The EM final-state interaction is put in by hand in the
following way. The amplitude 9 which involves
the emission of an electron with helicity® X may be

6 C. G. Callan and S. B. Treiman, Phys. Rev. 162, 1494 (1967).

7H. H. Chen, Phys. Rev., 185, 2003 (1969).

8 Qur metric and relativistic notation is that of J. D. Bjorken
and S. D. Drell, Relativistic Quantum Mechanics (McGraw-Hill
Book Co., New York, 1964). Units #=c¢=1; a=1/137. Four-
vector a* denoted by (ao; @1,a2,as).

9 We use the helicity formalism of M. Jacob and G. C. Wick,
Ann. Phys. (N. Y.) 7, 404 (1959).
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1 FINAL-STATE INTERACTIONS AND TIME REVERSAL

denoted by
M= (pe\; Py; N pmr| 3w (0) | N1,mr) .

We next find the amplitudes for the emission of an
electron in state | 7m)\) in the following way:

M jmr={pejm\; ps; N pymp|3Cw(0) | N1,mr)
[+ 1)/4x T / Do (BT (B)AL(B.).

Since the EM interaction conserves parity (=), we
calculate the amplitudes 7jn. for the emission of an
electron in state | jmr) using

T jmae=[M jmy=E (= )M jm—y ].
The electromagnetically corrected amplitudes are
Epme= €19y | (2)

where the 5’s are the relativistic Coulomb phase shifts
first calculated by Mott.!® Equation (2) follows from
the Fermi-Watson theorem. Using the nuclear matrix
elements given below, we find four possible states for the
electron: S1/2, ;191/2, d3/2, a.nd P3/z. Wlth Y= 1/(1—7&2)1/2,
o(B¥)=FZa/v,, 6=a/v, and p;=[12—(Za)?]/? we have

g O

(prti0)T (pr+1—10)

[—(@+1)+45]T (pr1+1+4i0)
(pr1+i0)T(prp1+1—io)

Let n1=n(s1/2), n2=1n(p1/2), ns=n(ds/2), and na=n(ps2).
For later comparison with the work of others, we
expand to first order in ¢ and find for 8~ decay

et (p1—1) R

g—im(pt+—l)

j=l+3: 2=

ZaE, Zom, ZoaE, Zam,
m=(e—3) , m3=(e—=5/4) - ,
De e e 4Pe
3)
ZaE, Zam, B ZaE, Zom,
ne=(e—3%) - , m=(e—5/4) + ’
Pe € e 4?3

where ¢ is Euler’s constant,

N1
e=lim<z - ——1nN>=O.5772157... .

N-owo\ ,—1 ”

Having put in the Coulomb interaction with the ap-
proximation that the final as well as the initial nucleus
can be regarded at rest in the lab,!* we find the electro-

1 N. F. Mott and H. S. W. Massey, The Theory of Atomic
Collisions (Oxford University Press, London, 1965), p. 234;
H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and
Two-Electron Atoms (Academic Press Inc., New York, 1957), p. 71.

11 The Mott phase-shift expressions were derived assuming a
fixed scattering center. In looking at the problem of electro-
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magnetically corrected amplitudes @;m for the emission
of an electron in state | jm\) using @;mi=3(Ejm++ Ejm-)
and Q@jm—1=2%(—)"}(Ejmy—Ejm-). Finally, we return to
the helicity amplitudes 4 using

2j+1

1/2 .
A)\(ﬁe) = Z( ) Do (j)*(ﬁe) @]'m)\ .

™

The quantity (] 4|2+ ]A4_|?%), summed on final spins,
yields us the transition probability given by Eq. (1)—
allowing us to find D¢ and & It is sufficient in the
calculation to consider the initial nucleus polarized
with |m;| =J where we have (J)/J=2.12

In addition to the nuclear-recoil approximation noted
above (see Ref. 11), we will make the following
approximations:

(a) We neglect the final-state magnetic scattering of
the electron off the final nuclear magnetic moment®7;
i.e., we neglect hyperfine structure effects. (See Ref. 13.)
This approximation is better for large-Z nuclei.

(b) In applying the Fermi-Watson theorem, we
neglect any effect of radiative corrections, such as
bremsstrahlung, on the 7’s. Presumably these would
occur at or below the Za? level.

III. SPECIFIC TRANSITIONS

Case 3 — 1 : Examples of interest in this case include
neutron beta decay and the decay of Ne!’. Following
Kim and Primakoff!*1% and Callan and Treiman,® we
treat our nuclei as elementary particles. We shall
always consider the decay “n” — “p”’4-¢=+7,.. For this
case we use the nuclear matrix element

Ju=a(pr)[y*(1—gys)+ (ifu/2M y)o*g, Ju(p1) ,

where ¢¢= (pr—pr)*=—(p+p)* M, is the proton
mass, g= (—GA/Gv)MGT/\/gMF, (*GA/Gv) = 12, and
we assume all form factors are constant functions of ¢2

magnetic pion-electron scattering we found that to first order in
Za /v, the Mott phase-shift expressions differ from those found by
calculating the one-photon-exchange diagram by replacing E- by
m-. Since in our problem Ep=MF for all practical purposes, we
see that our approximation is well justified.

12Tt should be noted that for J>% the electromagnetic in-
teraction also contributes to the coefficients of terms like
(peXPr-8)(Pe-2), (DX Py 2)(Ds-2), and (PeXpy-2) (Pe- pv) to essen-
tially the same order as it does to D, the coefficient of (p¢Xp»-2).
(For the cases & — % and % — § the term (p.Xpy-2)(Pep») may
be neglected.) The term (p.Xp,-£)? is also present. Experiments
should be done in such a way as to minimize the detection of these
coefficients if they are designed to measure D.

18 The D of Callan and Treiman and of Chen is (E./p.) times
ours. They actually find an additional set of terms, proportional to
(ur/Z)(17Fg), due to the scattering of the electron off the final
nuclear magnetic moment. See Refs. 6 and 7. These terms are
usually small compared to those of weak magnetism because of
the 1/Z and because g is usually of order 1. We do not get these
magnetic scattering terms because we have effectively considered
the final nucleus to have spin 0 in analyzing the weak interaction
amplitude into partial waves and in using the Mott phase shifts
derived for electron scattering from a fixed spin-0 scattering
center.

14 C, W. Kim and H. Primakoff, Phys. Rev. 139B, 1447 (1965).

15 C, W. Kim and H. Primakoff, Phys. Rev. 140B, 566 (1965).
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and use their values at ¢?=0. Taking the case of a
mirror transition (# p=1), conserved vector current
(CVC) tells us that far=[u(+)—u(~)]—1/4, where
u(==) is the total magnetic moment of the nuclear state
with the largest value of (=4=73), and 4 is the nuclear
mass number. The greatest contribution to D®M comes
from far (weak magnetism) which may in favorable
cases be of order 10. However, even if f3,(0) vanished,
DEM would still receive contributions from the bottom
components of the nuclear spinors. Defining

JBF)= faut(1Fg)/A=[u(+)—u(—)IF¢/4

and keeping terms to first order in (p./2M,) and
(ps/2M ), we find

JB7)pe
2L143g|*]EM

D=(g") =

1+3g
X {%me Sin(”l_ 7]2) +(_§_'>(Ee+me)

E:—D;m)? Sin(ﬂz—ﬂs)]} 4)

F2p. Im[¢]
(1+3]g|DE,

where the == signs follow from a theorem of Weinberg.!¢
Using Eq. (3), we find, to first order in Za/v.,

X[Sin(m——m)—f-(
and

DTRV 3:) —

)

sin(p1—n2)=Zam,/pe.
and

LEAmeI{sin(ni—na)+[po/ (Ect-m.) ] sin(nz—ns)}
= (ZaEeZ/ZPe)[s“"' (me/Ee) 2] )

reproducing the result of Callan and Treiman!®:

+Zaf(87)E,

4(1+3(¢g|DM,
X[(A==3g)+(me/Ee)*(3£g)]. (6)

If we take Z=55, $,=1.00 MeV/¢, E,.=W=1.123
MeV, v,=0.89, and g(8¥)==1.00, and insert Eq. (3)
into Eq. (4), we have, to first order in Za/v,,
DEM(3F)=+(1.42X 107 f(87). Using Eq. (4) alone,
we have DEM(B-)=(1.69X107%f(3~) and DFM¥(8*)
=—(1.12X10™% f(B*). For the decay of Ne!® with
g(BY)=—0.99,46 E,=W(Ne®)=2.75 MeV, p.=2.70
MeV/ec, v.=0.982, Z=9, and f(B+)= —4.57,% we have,
using Eq. (3) and Eq. (4), to first order in Za/v.,
DEM(Ne!%)=2.28X10~4 Using Eq. (4) alone, we have
DEM(Nel®)=2.22X10~% If this had been a §~ decay
with g(87)=0.99 and f(8~)=4.57, Eq. (4) would give
a DEM of 2.38X107% Hence, we find for the actual

D(g7)~

16 5, Weinberg, Phys. Rev. 112, 1375 (1958).
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decay of Ne'?
DEM(Nel®)~ (2.2X 1074 (E,/W),
where the approximate energy dependence can be seen
from Eq. (6).
Case $ — $: An example of interest in this case is the
decay 18Ari?® — 17Clis®+-et+v,, where W (Ar®®)=5.46
MeV. For this case, we use the nuclear matrix element

ifar

Te=a*(pr)| v*(1—gvs)+
a w)[v( Fro+

UWQ”]”“(PI) )
4
where g=(—Ga/Gv)Mc1/(5/3)1*M ¥, %% is a Rarita-
Schwinger spinor,’” and we have only kept terms to
first order in ¢. Using ft(Ar3%) = 5680, we find g=0.256;

the sign has been determined to be positive.” To first
order in (p./2M ,) and (p,/2M ,), we find

7B7)pe

D () =
2L1+5/3) gl JEM,

) 1+g
X {4m sin(n1—n2)+ T (EcAm.)

Ei m) Sin(nr‘ns):H M

F2p, Im[¢]
[1+(5/3) 8| IE.
Using Eq. (3) we find, to first order in Za/v.,

+£Zaf(BT)E.
A[1+(5/3) gl *IM

x[(lig>+(—’;—:>2(si%g>], ©)

reproducing the result of Chen.”"* Unfortunately, in
this example we have f(8t)=—0.184, a rather small
value, due to like signs for u(4) and u(—).”7 This makes
the magnetic scattering rather significant (about 43%)
instead of being unimportant. Using Egs. (3) and (7),
we have, to first order in Za/v,, for E,=W, DE¥(Ar35)
=2.3X1075. Using Eq. (7) alone, we find DE¥(Ar®)
=2.2X1075, If this had been a 8~ decay with opposite
signs for g and f(8~), we would find a D¥M of 2.5X 10%.
If we include the magnetic scattering according to the
results of Ref. 7, we then find DEM(Ar3%)=4.0X1075
Hence, the best value for the actual decay of Ar® is

DEM(Ar35) ~ (3.9X 1075) (E/ W),

X[Sin(m— 7)4) +<

and

DT (g ®)

D (g+)

17 See, e.g., R. E. Behrends and C. Fronsdal, Phys. Rev. 106,

345 (1957).

18 . J. Konopinski, Tke Theory of Beta Radioactivity (Clarendon
Press, Oxford, England, 1966), p. 151; C. S. Wu and S. A,
Moszkowski, Beta Decay (Wiley-Interscience, Inc., New York,
1966), p. 66.



1 FINAL-STATE INTERACTIONS AND TIME REVERSAL

where the approximate energy dependence can be seen
from Eq. (9).

Case 3= — 3%: An example of interest in this case is
the decay 33As44"7 — 345€43""+- €45, with W(As")=1.2
MeV. For this case we use the nuclear matrix element!

Je=a4(pr)vsy v (A —gys)+ (@ fa/2M p)o* g, Jua(pr) ,

where g=(—G4/Gv)M gr//4 (Mr=0) and where J*
differs from the most general expression in keeping

2
s=<4|g|2>—Re<ng*>(M - >(E,,Ey—pe2)+

| far? peEys
pit+E2— )} :
My E.

2

E.+m.
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terms in ¢ to first order only. Using logieft(As)=5.76,20
we find |g|=0.0522, where we have used Eq. (10)
(below) dropping all terms in fi. Since this case
corresponds mostly to large-4 nuclei we neglect the
bottom spinor components; however, since we are
interested in cases where g is often small (we are
particularly interested in examples where g is small
compared to fa) we keep terms to second order in
(pe/2M,) and (p,/2M,). We then find (dropping a
factor of Gy?)

(10)

2 2 M 2 e

x lmeEﬂ[Sin(m—nz)]-—%Pezfsin(m—m)-i'sin(nz—r/s)]

+%E»[Ee+me]|:5in(m— 14) +<

+Re(gfa*)pe
DEM(Bw)E= * p<Ee+me)|:sin(m—m)+<
DTRY(ge)e +2p W Im[gfu*] .
M,E,

Ei m) Sin(m—-ns)]}, (11)

(12)

As we shall later illustrate, DM and DT®V may easily be separated if their momentum dependence is determined.
Using Eq. (3), dropping terms in | fir]? in DEM¢ and terms in far from £, we have to first order in Za/v, (no ==

sign needed)

Re(gfa*)ZaE, ma>]  ZaufEd me\?
DEMB3F) = — — 3 _— = - .
&) 24| g|)M, [ +<E>] SgM, [3+<E>:|

Using as the coefficient the maximum value of DEM
from Egs. (10) and (11), we find

DEM(As™) =~ (2.75X1073) (fuEe/W).

The coefficient to first order in Zo/v, is 2.4X 1073,
Case $= — 3*: Examples of interest for this case are
the decays?
s2Lers1 — 53174124 ¢ 7, with logifi=5.66,
W=1.2 MeV, and |g| =0.071;
23Ni3765 — 29CL13665+ e with logmft: 6.56 ,
W=2.61 MeV, and |g| =0.0335;
30Zn35%° — 29Cuse%54-et4-v, with logioft=7.34,
W=0.84 MeV, and |g|=0.0010.

For this case we use the nuclear matrix element

ifu

Jr=qe ﬂl: b1 — +
a*(pr)vsy?| v*(1—gvs) o

”""%]”aﬁ(?f) ’

»

19 These terms arise in a natural way as can be seen by examin-
ing B decay in the impulse approximation. See, for example,
Egs. (2), (8)-(10) of Ref. 14. It is likely that |far| is of order

Kp—Kn

a|.
20 E. J. Konopinski, Ref. 18, p. 157.

(13)

which is the most general expression to first order in g¢.
We find exactly the same results given in Egs. (10)-(12)
for the previous case. Using these we find approximately

DEM(Tel®) ~ (3.6 X 10-3)(far Eo/ W),
DEM(Ni%) =~ (7.5X10-3) (fsr B/ W) ,
DPM(Zn%) ~ (7.0X 1072) (farEe/ W) .

Case 1+ — 0*: An example of interest for this case is
the deca.y 15P1732—>1GS1332+8—+179 with W(P32)=2.22
MeV. Following Kim and Primakoff, we take the
nuclear matrix elements of the vector and axial-vector
currents to be

Fu(g?)
N ¢ VE(0)| V1) =ie*790,Ssq, ,
(Np|V30)|N1)=1 QBq4AM,,2
(Nr|A%0)|N1)=S°F 4(¢?)
Fr(g?) Fp(g*)
3(S+ ) +g(S- A
+Q%( Q)ZAM,F +¢(S-q) ot

We use

J3=(N p,mp=0|V°(0) | N1,mz)
— (N r,mp=0|A%0)|Nr,mz),
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M= (Gv/V2)J°Ls, Q= (pr+p1)’,

¢=(pr—p1)’=—(p+ )8,

and S®=V2p%(m;), where p’(mr) is the polarization
vector of the initial state [o®(mr)(p1)s=0]. Let
K=pe+p, and AM=M;—M p. It follows that

¢'=—(EctE; Ky~ (M r—M1; —K)=(W; —K),

Q= (M p+Mr; —K)=~(24M ,; —K)
~ @ (2AM 4 AM ; 0) = g*++24M ,(1; O).

We see that we may use Q%= (24M ,; 0) in the above
if we replace [Fp(¢?)/m.%] in all expressions with
[Fr(g®)/m-2+Fr(q?)/(24M ,?) J—a negligible recoil cor-
rection which we shall ignore. We note that there is no
magnetic scattering correction to this transition. We
also note that the factors of ¢® bring in the electron
mass via the leptic factor and the Dirac equation; hence,
these terms will probably make negligible contributions.
First we assume all form factors (we again use their
¢®=0 values) are approximately equal: |Fy|~|F4],
|Fp|SF4|, and |Fp|S|Fa|. We then find that
£=2|F4|% This gives us |F4|=6.25X10"3 using the
value of logioft=7.9.18 Since Fp always occurs with the
factor (m.K/m.?)~5X107% at maximum, we ignore all
terms involving Fp. We then find

JOHN C. BRODINE

1
Re[FaQQFpF1)* 5.
Dri(ge = e[FaQFr£F)*]p (Bot-m.)
22|F4|)E.M,
pe \?
Xl:sin(‘r]1—774)+<Ea+me) Sin('fl2_773):|)
) (14)
D™t = — | ) Im(F Py (E,—E,
@ (2IFA12>EeMp[ A B )

+Im(F4F*) (Ee'f‘Ev):l . (15)

Using Eq. (3) we have, to first order in Za/7.,

+ZakE,
DEM(ﬂ*): .
4Q2|F4|M, ,
Me
XRe[:FA(ZFT:i:FM)*][3+<‘E> ] (16)
giving e

IDEM(B:F) I max ~ (15X 10—2) , ZFT:!:FMI

OF | DPM(BF) | max~ 104 if |2 p—Fyf| ~ | Fa].

As we shall show later, it is likely that | Fy| =50| F4].
In this case we find (now neglecting terms in Fr and
Fp, continuing to assume |Fr| S [Fa| and [Fp| S| Fal,
and dropping a factor of Gy?)

EeEv _pe2>

£= (2| Fa|)—2 Re(FAFM*>(
2EM,

IFMI2 plL,
e (2]
E,

4N 2

17

| Fa|*pe

e\’
) Sin(m—m)]“
“+m. 3E.M ,?

X {meE»[sin(m—nz)]—% 2sin(na—ne)+-sinCra—ns)]

+;_1—E,[Ee+me][sin(m—n4) +(

:i:Re(FAFM*)pe
Do) = S o) sinC =+
M p E
DTRV(B:)£= :EIm(FAFM*)PgW ]
EM,

Figures 1 and 2 show plots based on Eqgs. (17)-(19) of
DEM and DTRY as functions of the electron momentum.
It is seen that they are most easily separated when
multiplied by the factor (E./p.). We have used | Fy]
=50|F.|, |Fa| =6X10~%, and Im[F,]=(1/72)|Fa].
We assumed |Fr| < |Fa| and |Fp| S |F4). Using Eq.
(3), we have, to first order in Za/v, (no == needed),

DEM ) Re(FAFM*)ZaE.,I:s_i_(me 2
(B7)e= aM, E> :I

Za

SEM 2

| Far|[E(E2+3m2) —2E.p2].  (20)

Ei m) Sin(nz—ns):l}, (1)

(19)

Using the same approximations involved in getting

Eq. (13) we have
|F | ZaE me\?
8]FA[M—;|:3+<E9> } @)

Hence, for the decay of P?? we have the results

| DEM(P32) | = (5.7X1073)(E,/W), if |Far|=50|F4|

| DEM(g) | ~

| DEM(P32)| =~ (1.2X1072)(E,/W), if |Far|=100|F4|

| DPM(P32) | ~ (1.9X 1072 (E./ W),
if |Fy|=1(170[F4|),
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where the coefficients are the maximum values of DEM
given by Eqgs. (17) and (18).

If we include an additional term H (p.Xp»/|peXDy|)
X (Pe+P») in the sum in square brackets of Eq. (1), we
find an EM contribution to A of

24 2
HEME= IFM!_P«; £

[sin(n1—ns)+sin(ne—n4)], (22)
4M 2E,

which vanishes at the top of the spectrum. An identical
equation (with Fy — far/VZ) holds for HEM¢ for the
previous cases § — % and § — 3. The same approxima-
tions used for Eq. (21) give us, to first order in Za/v.,

3 l FMI 2Z01P6E,,

HEM = .
16| F4|2M 2
Using |Fu|=50|F4| and E.=E,=3W, we have
HEM=~T7.5X1075.
Averaging over initial spins and neglecting terms in
| Far|? we have

Ev_Pe2)
EM
e(FAFM*) me2

—(zlmm[w i (mmww=25)]
PRI AL 2E,

—otma i o]

=(2|F4|?)— P RC(FAFM*)<

T T T T T T

T T 1
Q.50 i.00 1.50 A.00

'\De_ (Y’\e\/ { C}
F1c. 1. Plot of DTRY and DM versus p, for case 1T — 0% with

;M’I 501FA|, |Fal=6X10"3, and Im[Fi]=(/1)|Fal.
P ~|Fr|.

our choice of |Fy|
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T T ¥ T T T T T

T
0,50 1.00 1450 QOO
T (MeV/<)
F1c. 2. Plot of DTRVX(E./p.) and DEMX(E./pe) versus p,

for case 1*— 0+ with IFM| S0|F4l, |Fa|=6X107% and
Im[Fa]= (/%) |Fal.|Fr|=|Fa|=~|Fr|.

where a is the spectrum correction factor defined” by
Gell-Mann in his original paper on weak magnetism.2!
Comparing our Hamiltonian

Souem C \IFD 1[ iR )" ](1
eff—vz wuel| eti(KXe Iy —Y5)0

A<z

with that found in Ref. 21 [Eq. (19)], we find
a=Fy/2M ,F 4; conservation of vector current (CVC)
tells us that

Fu(g®)=nu(@® N#* — Nrp)=uo=u(0; N¢* — Nrt7),

the transition magnetic moment involved in the decay
of the excited state of the final nucleus which is the
I3=0 partner of Ny with I;=1.

The spectrum correction factor ¢ for the decay of
P32 has been measured by several groups.??2 While the
data are still not good enough to decide on a final value,
we choose (8/3)a= —0.055/MeV (ten times that found
by Wu for the case B2 N2 — C2) and use the Coulomb
correction given in Ref. 15:

8 8 Fy 16 Za
—a=- —5.74— —,
3 32M,Fa 9 M,

This yields |Fy/F4]=236. Including the experimental
errors, we find |Fy/F4| in the interval (15,75), hence,
=50|F 4| above.

21 M, Gell-Mann, Phys. Rev. 111, 362 (1958).
2 H. Daniel, Rev. Mod. Phys. 40, 659 (1968).
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IV. EFFECT OF FINITE NUCLEAR SIZE

We have investigated the effect of the finite nuclear
size on the Coulomb phase shifts. We use the continuum
wave functions and phase shifts gotten by solving the
Schrodinger equation—the spinless approximation. For
a point charge, the Coulomb wave functions and phase
shifts for momentum k and angular momentum / are?

, [T(+14140) |
Fkl0(7> — (Zkr) lezkrg—(‘rr'IZ))\____.______.
Qi+1)!
XE(+ 140N 2042| —2ikr),
ol =arg[ DI+ 144N ],

where A=FZa/v, for 8+ decay and the F( | | )’s are
the confluent hypergeometric functions (sometimes
denoted 1Fy).

T'() = T'(a+n)z"

Flelbla)= I'(a) =0 T'(b+n)n!

The F;”s are normalized so that
roso 1
Fud(r) 273 —sin(br—\ In2kr —Lri+a0).
r

In perturbation theory, we have for As;=0;—07°

RN

| Aot| = 2m.pey / |Fud(r) 2| AV () | r2dr

0
where for 3~ decay,
Zar?  3Za Za
AVO)= = —
2RN2 ZRN ¥

with Ry the nuclear radius (Ry=5.74Y13/M,, 1

28 See, e.g., A. Messiah, Quantum Mechanics (Wiley-Inter-
science, Inc., New York, 1961), Vol. L.
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fm~1/197 MeV). For 4=125, Z=55, and p,=1.00
MeV/c, we find

c0®=0.227,  |Aco| =2.5%10~4,

771=0.290, ng= —0.285 3
o1=—0.196, ’Aall =6.6X1079,
o0=—0.418, |Acy|9.5X 10714,

72=0.088, ni=—0.183.

Since the relativistic phase shifts (3’s) are the same
order of magnitude as the ¢;”’s and the relativistic wave
functions do not differ too much from the Fy,’s* (the
relativistic singularity at the origin is more than made
up by the 72 in the integrand), we find the effect of the
finite nuclear size on DFM to be negligible.

V. CONCLUDING REMARKS

For the cases of experimental interest given above
(AJ=1), we find near the top of the spectrum, where
PezEng,

DEM(=) /DTRY(67) =~ +§ Za /1, (23)
where ¢ is the measure of time-reversal violation in
the decay
t=Im(F 4F ™) /Re(F 4F 3/*) for the transition 1+— 0+

=Im(gfu*)/Re(gfo*)
for the transitions § — £ and § — 3.

Thus, the two D’s are equal whenever {=2Za. They, of
course, will interfere but the sign of ¢ is unpredictable.
They are distinguishable by their momentum depen-
dence as shown in Figs. 1 and 2.
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