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Neutron-proton pairing in nuclear matter
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The self-energy effect on the neutron-proton (np) pairing gap is investigated up to the third order within
the framework of the extend Brueckner–Hartree–Fock (BHF) approach combined with the BCS theory. The
self-energy up to the second-order contribution turns out to reduce strongly the effective energy gap, while the
renormalization term enhances it significantly. In addition, the effect of the three-body force on the np pairing
gap is shown to be negligible. To connect the present results with the np pairing in finite nuclei, an effective
density-dependent zero-range pairing force is established with the parameters calibrated to the microscopically
calculated energy gap.

DOI: 10.1103/PhysRevC.99.065804

I. INTRODUCTION

About 60 years ago, the importance of pairing correlation
in nuclear systems was realized [1]. Since then, a large num-
ber of experimental data have been accumulated, supporting
the isovector (T = 1) pairing between like nucleons [2,3].
However, no clear evidence supports the isoscalar (T = 0)
pairing [4], despite of the fact that the T = 0 interaction
is much stronger than the T = 1 interaction [5]. The main
suppression of the T = 0 pairing might result from the strong
spin-orbit splitting [6,7]. And the recent calculations on the
Gamow–Teller transition also suggest that the T = 0 pairing
interaction plays a decisive role for the concentration of
Gamow–Teller strength when the spin-orbit splitting becomes
small [8].

On the other hand, the microscopic calculation of the
T = 0 neutron-proton (np) pairing with bare nucleon-nucleon
interactions in nuclear matter predicts a sizable energy gap
with the magnitude of 12 MeV [9–12], which seems too large
to reconcile with the empirical information available from
finite nuclei [13]. However, the microscopic predictions can
be significantly changed via a refinement of the theoretical
framework, such as considering the energy dependence of
the self-energy [14,15], including the relativistic effect [16],
embodying the polarization effect [17] and so on. In particular
the polarization effect [18–22] in nuclear medium has been
shown to enhance or quench the T = 1 neutron-neutron (nn)
pairing gap depending on the nuclear environment. As for
the T = 0 np pairing, the recent paper [23] indicates that the
polarization effect exhibits a much less significant effect for
symmetric nuclear matter at densities above the half of the
saturation density. At low densities, it remains difficult and an
open problem. Another significant rescaling of the pairing gap
in symmetric nuclear matter may come from the dressing of
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nucleons in an interacting system, which modifies the density
of state and the effective energy gap [24,25]. These modifica-
tions result from the energy dependence of the single-particle
(s.p.) self-energy �(k, ω). The reduction of the gap due to
the appearance of a quasiparticle strength Z factor is up to
about fifty percent for T = 1 nn pairing in pure neutron matter
[24,25], while it may become as large as about seventy percent
for T = 0 np pairing in symmetric nuclear matter [14,15].

In Ref. [14], within the framework of the Brueckner theory,
the effect of the energy-dependent self-energy �(k, ω) has
been studied. However, the self-energy is calculated only to
the lowest-order approximation M1(k, ω). As is known that
the imaginary part of M1(k, ω) goes to zero below the Fermi
energy and the imaginary part of the rearrangement term
M2(k, ω) presents the contrary behavior (ImM2 goes to zero
above the Fermi energy) [26–28]. The imaginary part of the
self-energy also plays an important role in predicting the
energy gap [14]. Therefore a more complete investigation
by including the effect of the rearrangement contribution
M2(k, ω) is necessary in the study of the T = 0 np pairing
within the extended BHF approach. In addition, the three-
body force (3BF) is expected to enhance the 3PF 2 nn pairing
at high densities [29], but its effect on the T = 0 np pairing
has not been reported yet. A more accurate estimate of the np
pairing gap should include the 3BF effect.

In this work, we concentrate on the modification of the
gap equation including the energy dependence of the single-
particle self-energy �(k, ω) up to the third-order approxima-
tion within the extended BHF approach. Moreover, the effect
of 3BF on the 3SD1 np pairing is also considered. The paper
is organized as follows: In Sec. II, we briefly review the self-
energy within the extended BHF (EBHF) approach and the
formalism of the off-shell BCS gap equation. The numerical
results and discussion are shown in Sec. III, where an effective
density-dependent zero-range pairing force is provided with
the parameters fit to the calculated energy gap. And finally a
summary is given in Sec. IV.
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FIG. 1. Hole-line expansion of the self-energy.

II. SELF-ENERGY WITHIN THE EXTENDED
BRUECKNER–HARTREE–FOCK APPROACH AND

THE OFF-SHELL GAP EQUATION

The present calculation of the self-energy �(k, ω) for
symmetric nuclear matter is based on the extended BHF
approach, for which one can refer to Ref. [27] for more
details. The microscopic 3BF supplement to the extended
BHF scheme can be found in Refs. [30,31]. After several
self-consistent iterations, the effective interaction matrix G
in the Brueckner–Bethe–Goldstone (BBG) theory is obtained.
Using the G-matrix, the self-energy �(k, ω) can be calculated.

A. Self-energy up to third order

Within the framework of the BBG theory, the self-energy
�(k, ω) can be expanded in a perturbation series according
to the number of hole lines [32]. The expansion up to the
third-order contribution is shown diagrammatically in Fig. 1.
To the lowest-order approximation in the hole-line expansion,
i.e., the BHF approximation, the self-energy is written as

M1(k, ω) =
∑

k′
n(k′)〈kk′|G[ω + ε(k′)]|kk′〉A, (1)

where ε(k) is the s.p. energy spectrum in the BHF approxima-
tion and ω is the starting energy. n(k) is the Fermi distribution
function, which reduces to step function θ (k − kF ) at zero
temperature. The subscript A denotes antisymmetrization of
the matrix elements.

The next order in the hole-line expansion of the self-energy,
which is called rearrangement term, is given by [26]

M2(k, ω) = 1

2

∑
k′k1k2

[1 − n(k′)]n(k1)n(k2)

× |〈kk′|G[ε(k1) + ε(k2)]|k1k2〉A|2
ω + ε(k′) − ε(k1) − ε(k2) − i0

. (2)

The corresponding diagrammatic sketch is shown in Fig. 1(b).
It is related to the particle-hole excitations in nuclear matter.

The third-order contribution in the expansion, as displayed
in Fig. 1(c), accounts for the fact that hole state h′ below the
Fermi surface is partially unoccupied due to nucleon-nucleon
short-range correlations. Therefore, this contribution to the
s.p. spectrum is called the renormalization contribution and
is given by [26,33]

M3(k, ω) =
∑

h′
κ2(h′)〈kh′|G[ω + ε(k′)]|kh′〉A, (3)

with the lowest order of the depletion of the Fermi sea being

κ2(h′) = −
[

∂

∂ω
M1

(
h′, ω

)]∣∣∣∣
ω=ε(h′ )

, (4)

where h′ refers to the hole state and satisfies the condition
|−→h′ | � kF . κ2(h′) is the probability that a hole state is empty.
An estimate of κ2(h′) consists in using the average value of
the depletion, which is κ = κ2(h′ = 0.75kF ) [27,33]. Then
the renormalization contribution M3(k, ω) can be estimated
by M3(k, ω) ≈ κM1(k, ω). Reference [33] also shows that
κ ∼ 0.25 for symmetric nuclear matter in the density range
ρ ∈ (0.4ρ0, 2.3ρ0), where ρ0 = 0.17 fm−3 is the empirical
saturation density, indicating the non-negligible effect of M3.

B. The off-shell gap equation and approximation

Generally, the four-dimensional gap equation including the
self-energy �(k, E ) can be written as [34–37]

	(k, E )=
∫

d3k′

(2π )3

∫
dE ′

2π i
V (k, E ; k′, E ′)�(k′, E ′)D(k′, E ′),

(5)

where the energy E is defined as the energy relative to the
chemical potential μ, i.e., E = ω − μ. And the kernel � is
defined as

�(k, E ) = G(k,−E )Gs(k, E )

= [G−1(k, E )G−1(k,−E ) + 	2(k, E )]−1, (6)

with

G(k, E ) =
[

E − k2

2m
− �(k, μ + E ) + μ + i0 signE

]−1

,

(7)

Gs(k, E ) = 1

G−1(k, E ) + 	2(k, E )G(k,−E )
. (8)

The functions G(k, E ) and Gs(k, E ) are the nucleon propaga-
tors in the normal state and in the superfluid state for sym-
metric nuclear matter, respectively. We stress that the neutron
propagator differs only slightly from the proton propagator
due to the charge-dependent interaction and we ignore this
difference in this paper. The symmetry of E in the kernel � is
attributed to the time-reversal invariance of the Cooper pairs.

In principle, the pairing interaction V (k, E ; k′, E ′) should
include the polarization corrections. In this paper, the energy-
independent interaction kernel is given merely by the bare
two-body potential or by the bare two-body interaction plus a
microscopic 3BF. Accordingly, the energy gap 	 is energy in-
dependent as well. To be more precise, the angle-averaged gap
[10,12,38,39] equation in the 3SD1 channel, which actually
has a coupled-channel structure involving a two-component
gap equation [40], can be expressed as(

	0

	2

)
(k) = 1

π

∫ ∞

0
k′2dk′

(
1

π

∫ ∞

0
dE Im�(k′, E )

)

×
(

V 00 V 02

V 20 V 22

)
(k, k′)

(
	0

	2

)
(k

′
), (9)
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where VLL′ (k, k′) are the matrix elements of the bare interac-
tion in the relevant coupled channels (L, L′ = 0, 2) and the
total gap corresponds to 	2(k) = 	2

0(k) + 	2
0(k).

Resolving this gap equation exactly requires knowledge of
the real and imaginary parts of the self-energy at arbitrary
energy E and momentum k. A strong simplification may be
reached by assuming a small imaginary part of �, Im� ≈ 0,
which leads to a quasiparticle approximation [25,41,42]. In
this approximation the kernel �(k, E ) is an even function of
energy: there exist two symmetric poles ±�k , corresponding
to the quasiparticle spectra in the superfluid state, on the real
axis of the complex E plane. The integral over the energy
range in Eq. (9) can be performed as follows:

1

π

∫ ∞

0
dE Im�(k, E ) = − Z2

k

2�k
, (10)

where the residue Z2
k of the kernel at the pole �k corresponds

to the quasiparticle strength which is given by

Z−2
k =

(
∂G−1(k, E )

∂E

)∣∣∣∣
E=Ek

(
∂G−1(k,−E )

∂E

)∣∣∣∣
E=−Ek

=
[

1 − ∂�(k, μ + E )

∂E

]2∣∣∣∣
E=Ek

. (11)

The spectra of the single particle in the normal state and the
quasiparticle in the BCS state are expressed as

Ek = k2

2m
+ �(k, μ + Ek ) − μ,

�k =
√

E2
k + Z2

k 	2(k). (12)

Then the gap equation can be approximated by(
	0

	2

)
(k) = − 1

π

∫ ∞

0
k′2dk′

(
V 00 V 02

V 20 V 22

)
(k, k′)

× Z2
k′

2
√

E2
k′ + Z2

k′	2(k′)

(
	0

	2

)
(k

′
). (13)

Note that the effective energy gap is Zk	(k) instead of 	(k)
due to the dispersive self-energy [41] which is also true for the
exact gap of equation (9). The presence of the quasiparticle
strength, which is less than unitary in a small region around
the Fermi surface where the Cooper pairs are mainly formed,
reduces the pairing gap.

The gap equation should be solved self-consistently with
the density constraint since the pairing could modify the
chemical potential when the density is fixed in symmetric
nuclear matter. In the superfluid state, the density can be
expressed as

ρ = 4
∑

k

∫ 0

−∞

dE

π
ImGs(k, E ), (14)

where a factor of four comes from the spin and isospin degrees
of freedom. In this paper the numerical investigation is based
on a self-consistent solution of the two coupled gap equations;
Eqs. (9) and (14). The self-energy is considered up to the third
order in the hole-line expansion.

FIG. 2. The real and imaginary parts (upper panel) of the self-
energy � and the rearrangement and renormalization terms (lower
panel) of the self-energy � for k = 0.85 fm−1 at kF = 1.14 fm−1.
The short-dashed vertical line indicates the position of the Fermi
energy.

III. RESULTS AND DISCUSSIONS

The numerical calculation here focuses on the 3SD1 np
paring gap with inclusion of the self-energy effect and the
3BF effect. The realistic Argonne V 18 two-body interaction
is adopted as the pairing interaction which is consistent with
the self-energy calculated within the framework of the ex-
tended BHF approach using the same interaction. And the
microscopic 3BF adopted here is constructed by using the
meson-exchange current approach as in Refs. [30,31].

As an illustrative example, the real and imaginary parts
of the off-shell self-energy �(k, ω) at a density of 0.1 fm−3

(kF = 1.14 fm−1) and a fixed momentum value of k =
0.85 fm−1 ≈ 0.75kF is exhibited in the upper panel of Fig. 2.
As mentioned in the Introduction, the imaginary part of
�(k, ω) goes to zero at the Fermi energy. This is true for the
momentum k = kF as well, which implies the quasiparticle
strength approximation is reliable near kF . However, Im�

becomes sizable compared with the real part of the self-energy
at the s.p. energy when k apart from kF , and the imaginary part
should be handled seriously. The lower panel of Fig. 2 shows
the real parts of M2 and M3. The magnitude of ReM3 is even
larger than that of ReM2. Consequently, a reliable prediction
of the self-energy effect requires us to account for the third-
order contribution M3 and the second-order contribution M2

at the same footing.
The knowledge of �(k, ω) allows us to solve the gap

equations (9) and (14) exactly. Figure 3 displays the effective
energy gaps ZF 	F [	F = 	(kF )] at the Fermi momentum
kF . In the calculated result denoted by M1 + M2 with 3BF,
the 3BF contributions are embodied in both the self-energy
and the pairing interaction. It is shown that the 3BF effect on
the 3SD1np pairing is insignificant which is consistent with
the weak effect of 3BF on the equation of state of nuclear
matter at low density. The calculated results in the two cases
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FIG. 3. Neutron-proton effective energy gap in symmetric nu-
clear matter vs the Fermi momentum kF . The black solid, red
short-dashed, and blue dashed lines correspond to M1 + M2 with
2BF, M1 + M2 with 3BF, and M1 + M2 + M3 with 2BF, respectively.
The inset compares the predictions of Bożek, 2003 [15] with the
calculated result denoted by M1 + M2 + M3.

with and without M3 by adopting the two-body force only (the
3BF effect is negligible) are also compared in Fig. 3. The
locations of the maximum ZF 	F with and without M3 are
almost the same and around the density 0.055 fm−3 (kF =
0.93 fm−1). The behavior of ZF 	F with and without M3

as functions of density is nearly identical as well. However,
the magnitude of the effective energy gap with M3 is about
twice that without M3. The self-energy up to the second-order
approximation leads to a very strong reduction of the 3SD1np
pairing gap and makes the pairing gap even smaller than
the nn pairing gap in pure neutron matter [42]. Nevertheless,
the renormalization term of � modifies both the quasiparticle
strength and the density of states, which finally enhances the
paring gap significantly.

In addition, a comparison between the present calculated
results within the extended BHF approach and the predictions
within the self-consistent in-medium T -matrix approximation
[15] is shown in the inset. The present obtained effective gap
in the extended BHF approach turns out to be slightly larger
than that in the T -matrix approximation in the density region
of ρ > 0.045 fm−3, while it becomes a bit smaller than that
in the T -matrix approximation when ρ < 0.045 fm−3. In the
extended BHF approach, the maximal effective gap is located
at 0.055 fm−3 with a value of 2.8 MeV, and the effective
gap ZF 	F ≈ 0.75 MeV at the saturation density. However,
in the T -matrix approximation, the maximal effective gap
is located at 0.05 fm−3 with a value of 2.6 MeV, and the
effective gap ZF 	F ≈ 0.45 MeV at the saturation density.
Both calculations reveal a strong reduction of the effective
pairing gap at saturation density due to the effect of the self-
energy. The relativistic effect has been considered in Ref. [16]
and it may also lead to a strong suppression of the pairing gap
at saturation density.

To make contact with the pairing correlations in finite
nuclei, we propose an effective density-dependent zero-range

FIG. 4. The np pairing gap using the effective density-dependent
zero-range pairing force and the calculated effective energy-gap data
within the EBHF approach.

pairing force which includes the reduction effect from the
self-energy. The parameters of the effective pairing force
are determined to reproduce the calculated gap values. We
propose an effective pairing force as follows:

Vpairing(r1, r2) = v0

[
1 − α1

(
ρ
( r1+r2

2

)
ρ0

)γ1
]

×
[

1 − α2

(
ρ
( r1+r2

2

)
ρ0

)γ2
]
δ(r1 − r2), (15)

where ρ0 = 0.17 fm−3 is the saturation density of symmetric
nuclear matter and v0, α1, γ1, α2, and γ2 are parameters which
are adjusted to reproduce the present predicted gap in symmet-
ric nuclear matter. Being different from the proposed effective
density-dependent zero-range pairing force in Ref. [43], we
add an additional density-dependent factor,[

1 − α1

(
ρ
( r1+r2

2

)
ρ0

)γ1
]
,

which is expected to take into account the effect of � on the
pairing gap. The exact physical picture of this additional term
is not clear, and it can improve the fitting which is exhibited
in Fig. 4 where the values of the obtained parameters are also
given. As is well known, the zero-range pairing force must
supplement a cutoff εc. But in principle, the two parameters v0

and εc are not independent and their values should be chosen
in such a way that the deuteron binding energy is reproduced
at the zero-density limit. Under this constraint, the two pa-
rameters are determined to ensure the gap equations with a
solution of μ → −1.12 MeV and a finite gap value when
ρ → 0. With this constraint, the values of the parameter v0 =
−502.77 MeV and v0 = −440.73 MeV correspond to εc =
80 MeV and εc = 100 MeV, respectively. The two groups of
parameters corresponding to the two different cutoffs produce
nearly the same gap values. It is worth noticing the shape of
the pairing gap as a function of kF (related to the density)
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in Fig. 4 looks similar to the behavior of the pairing gaps
for the 1S0 channel. In fact, except for the different dominant
density regions and magnitudes of the pairing gaps, the shapes
of the pairing gaps in 1S0 and 3SD1 channels behave quite
similar. As is known, the pairing correlation stems mainly
from the attraction of nuclear interaction at Fermi momentum
kF . The attractions of both 1S0 and 3SD1 interactions at kF

depends essential on density. And the density behavior of both
attractions are quite similar, i.e., first increases up to a certain
density and then decreases with the density.

IV. SUMMARY AND OUTLOOK

In conclusion, we have investigated the self-energy effect
on the 3SD1 np pairing gap within the extended BHF approach
plus BCS theory. The rearrangement and renormalization
terms of self-energy are considered. The self-energy up to the
second-order approximation presents a strong reduction of the
effective energy gap, while the renormalization term enhances
the pairing gap significantly. The maximum effective energy
gap is located at the density ρ = 0.055 fm−3 with a value of
2.8 MeV. The 3BF effect on the np pairing gap is studied as
well, and it is found to be ignorable. Furthermore, an effective

density-dependent zero-range pairing force is proposed with
the parameters fit to the calculated energy gap.

In this paper, we have concentrated on the self-energy ef-
fect, and the polarization corrections to the pairing interaction
are not considered. Since an exact treatment of the polariza-
tion effect is notoriously difficult due to its complexity, dif-
ferent approximations are adopted to discuss the polarization
effects [21,44]. It has been shown that the polarization effect
is negative to the pairing gap at low densities in the one-bubble
approximation, whereas it is slightly positive in the full RPA
limit. Moreover, as mentioned in the introduction, in Ref. [23]
it is indicated that the polarization corrections appear to be
negligible for moderate densities, yet it is still unclear and an
open problem at low density. An improvement of the present
calculation is to include the polarization effect in the future.
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