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Nuclear symmetry energy and hadron-quark mixed phase in neutron stars
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We study the hadron-quark mixed phase, which may occur in the interior of neutron stars. The relativistic
mean-field model is employed to describe the hadronic phase, while the Nambu-Jona-Lasinio model is used
for the quark phase. We examine the effects of nuclear symmetry energy in the hadronic phase and repulsive
vector interaction in the quark phase. For the treatment of hadron-quark mixed phase, we describe and compare
four methods: (1) energy minimization method, (2) coexisting phases method, (3) Gibbs construction, and
(4) Maxwell construction. The finite-size effects like surface and Coulomb energies are taken into account in the
energy minimization and coexisting phases methods, which play a key role in determining the pasta configuration
during the hadron-quark phase transition. It is found that massive neutron stars may contain hadron-quark pasta
phases, but pure quark matter is unlikely to occur in the interior of neutron stars.
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I. INTRODUCTION

Neutron stars are ideal laboratories for the study of dense
matter. In the core of neutron stars, exotic phases like decon-
fined quarks may be present [1–3]. Over the past decades,
there have been numerous research works concerning the
hadron-quark phase transition in neutron stars [4–14]. In
most of the studies, Gibbs construction [4] and/or Maxwell
construction are commonly used for the description of hadron-
quark mixed phases. In the Maxwell construction, local charge
neutrality is imposed, and furthermore coexisting hadronic
and quark phases have equal pressures and baryon chemical
potentials but different electron chemical potentials. However,
in the Gibbs construction, only global charge neutrality is
required, so hadronic and quark phases are allowed to be
charged separately and have continuous chemical potentials.
It is well known that Gibbs and Maxwell constructions cor-
respond respectively to the two limits of zero and very large
surface tension at the hadron-quark interface, and therefore,
the mixed phase with the Gibbs construction has lower en-
ergy than the one with the Maxwell construction. It was
reported in Ref. [15] that there are significant differences
in the behavior of compact stars between the Gibbs and
Maxwell constructions. It is noticeable that both Gibbs and
Maxwell constructions involve only bulk contributions, where
the finite-size effects like surface and Coulomb energies are
neglected. When surface and Coulomb energies are consid-
ered, a hadron-quark mixed phase with pasta structures is
expected to occur [16–21]. The geometric configuration in
the mixed phase may change from droplet to rod, slab, tube,
and bubble with increasing baryon density [17–20]. It is
interesting to examine how the hadron-quark mixed phase can
be affected by different treatment methods.
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To describe hadron-quark pasta phases, we use the Wigner-
Seitz approximation, where the system is divided into pe-
riodically repeating charge-neutral cells. The hadronic and
quark phases inside the cell are assumed to be separated by
a sharp interface with a finite surface tension. It is known
that the surface tension plays a key role in determining the
structure of hadron-quark mixed phase [16–21], but its value
is poorly known so far. The calculation in the MIT bag model
by using the multiple reflection expansion (MRE) method
predicted a value of the surface tension σ ≈ 10 MeV/fm2

[22], while recent calculations within the MRE framework
show that the surface tension falls in the range of 2 to
20 MeV/fm2 for baryon densities between 2 to 10 times
the nuclear saturation density [23,24]. A similar calculation
in the Nambu-Jona-Lasinio (NJL) model including color
superconductivity yielded σ ≈ 145–165 MeV/fm2 [25]. The
surface tension calculated from a geometric approach fell in
the range σ ≈ 7–30 MeV/fm2 [26]. Due to the uncertainty
of σ , we treat the surface tension as a free parameter in
the present work. We employ the three-flavor NJL model
to describe quark matter, while the relativistic mean-field
(RMF) models are adopted for hadronic matter. The NJL
model has been widely used as an effective theory of QCD
for the description of quark matter [9,27–31], since it can
successfully describe dynamical chiral symmetry breaking
and generation of constituent quark masses. In this work, we
use the NJL model including repulsive vector interactions.
It has been reported in the literature that including repulsive
vector interactions could significantly affect the QCD phase
diagram [32–34] and stiffen the equation of state (EOS) of
quark matter [19,20,35–41].

For the description of hadronic matter, we employ two
successful RMF models, namely TM1 [42] and IUFSU
[43], which could provide good descriptions of finite nuclei
and acceptable maximum mass of neutron stars. The TM1
model has been successfully applied in constructing the EOS
for supernova simulations and neutron stars [44,45]. The
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IUFSU model, which was proposed to overcome a smaller
neutron-star mass predicted by the FSU model, has also
been used for the study of neutron-star structure [47–49].
Both of these models include nonlinear terms for σ and ω

mesons, while the IUFSU model includes an additional ω-ρ
coupling term that plays a crucial role in determining the
density dependence of symmetry energy and affecting the
neutron-star structure [43,46–50]. It is well known that nu-
clear symmetry energy Esym and its slope L play an important
role in understanding many phenomena in nuclear physics
and astrophysics [51–57]. Especially, neutron-star radii and
crust structures are closely related to the symmetry energy
slope L [47–50]. Recently, many efforts have been devoted
to constraining the values of Esym and L at saturation density
based on astrophysical observations and terrestrial nuclear
experiments [58–65]. In Refs. [57,58], a sufficient number
of constraints on the symmetry energy parameters have been
summarized, and the most probable values for the symmetry
energy and its slope at saturation density were found to be
Esym = 31.7 ± 3.2 MeV and L = 58.7 ± 28.1 MeV, respec-
tively, with a much larger error for L than that for Esym. Al-
though the TM1 and IUFSU models give similar binding en-
ergies of finite nuclei, their symmetry energy slopes are very
different from each other (L = 47.2 MeV in IUFSU and L =
110.8 MeV in TM1). In order to examine the L dependence of
hadron-quark pasta phases, we employ two sets of generated
models based on the TM1 and IUFSU parametrizations as
described in Ref. [66]. The models in each set were obtained
by simultaneously adjusting gρ and �v so as to achieve a
given L at saturation density n0 while keeping Esym fixed at the
baryon density nb = 0.11 fm−3. The choice of fixing symme-
try energy at nb = 0.11 fm−3 aims to produce similar binding
energies of finite nuclei within one set of generated models,
which should be consistent with experimental data. It is
noticeable that all models in each set have the same isoscalar
saturation properties and fixed symmetry energy Esym at nb =
0.11 fm−3 but have different symmetry energy slope L. By
using a set of models with different values of L, it is possible
to study the effects of nuclear symmetry energy on the hadron-
quark phase transition and pasta structures in neutron stars.

The main purpose of this article is to investigate the prop-
erties of hadron-quark pasta phases, which could be affected
by nuclear symmetry energy and other parameters such as
the surface tension σ and vector coupling GV in the NJL
model. To describe the hadron-quark pasta phase, we use the
energy minimization (EM) method, where the equilibrium
state at a given baryon density is determined by minimizing
the total energy density. The EM method, which is referred
to as the compressible liquid-drop (CLD) model, has been
widely used in the study of nuclear liquid-gas phase transition
at subnuclear densities [66–69]. In the EM method, the equi-
librium conditions for coexisting phases are derived by min-
imization of the total energy including surface and Coulomb
contributions, which are different from the Gibbs conditions
without finite-size effects. Furthermore, a simple coexisting
phases (CP) method [48,70] is also used and compared for the
description of hadron-quark pasta phases. In the CP method,
two coexisting phases satisfy the Gibbs conditions for phase
equilibrium, which require equal pressures and chemical

potentials for two phases [4–12]. After the equilibrium state
is obtained by applying the Gibbs conditions, the surface
and Coulomb energies are perturbatively taken into account
in the CP method. Since the equilibrium conditions in the
EM method are derived by minimization of the total energy
including surface and Coulomb contributions, the finite-size
effects are treated relatively well in the EM method. By
comparing results from different treatments, we can examine
how the pasta structures could be influenced by the method
used in the calculations.

This article is organized as follows. In Sec. II, we briefly
describe the RMF models for hadronic matter and discuss the
choice of parameters. In Sec. III, the NJL model used for
quark matter is briefly introduced. In Sec. IV, we describe
and compare the four methods used for the study of hadron-
quark mixed phase, namely (1) EM method, (2) CP method,
(3) Gibbs construction, and (4) Maxwell construction. In
Sec. V, we show numerical results and discuss the properties
of hadron-quark mixed phase in neutron stars. The effects
of nuclear symmetry energy and model dependence are also
examined. Section VI is devoted to the conclusions.

II. HADRONIC MATTER PHASE

The hadronic matter is described by the RMF model, where
nucleons interact via the exchange of isoscalar-scalar meson
σ , isoscalar-vector meson ω, and isovector-vector meson ρ.
For hadronic matter consisting of nucleons (p and n) and
leptons (e and μ), the Lagrangian density is written as

LRMF =
∑
i=p,n

ψ̄i

{
iγμ∂μ − (M + gσ σ )

−γμ

[
gωωμ + gρ

2
τaρ

aμ
]}

ψi

+1

2
∂μσ∂μσ − 1

2
m2

σ σ 2 − 1

3
g2σ

3 − 1

4
g3σ

4

−1

4
WμνW μν + 1

2
m2

ωωμωμ + 1

4
c3(ωμωμ)2

−1

4
Ra

μνRaμν + 1

2
m2

ρρ
a
μρaμ

+�v
(
g2

ωωμωμ
)(

g2
ρρ

a
μρaμ

)
+

∑
l=e,μ

ψ̄l (iγμ∂μ − ml )ψl , (1)

where W μν and Raμν are the antisymmetric field tensors corre-
sponding to ωμ and ρaμ, respectively. In the RMF approach,
the meson fields are treated as classical fields and the field
operators are replaced by their expectation values. For a static
system, the nonvanishing expectation values are σ = 〈σ 〉,
ω = 〈ω0〉, and ρ = 〈ρ30〉.

In uniform hadronic matter, the equations of motion for
meson mean fields have the following form:

m2
σ σ + g2σ

2 + g3σ
3 = −gσ

(
ns

p + ns
n

)
, (2)

m2
ωω + c3ω

3 + 2�vg2
ωg2

ρρ
2ω = gω(np + nn), (3)

m2
ρρ + 2�vg2

ωg2
ρω

2ρ = gρ

2
(np − nn), (4)
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TABLE I. Parameter sets TM1 and IUFSU for the RMF Lagrangian. All masses are in MeV.

Model M mσ mω mρ gσ gω gρ g2 (fm−1) g3 c3 �v

TM1 938.0 511.198 783.0 770.0 10.0289 12.6139 9.2644 −7.2325 0.6183 71.3075 0.000
IUFSU 939.0 491.500 782.5 763.0 9.9713 13.0321 13.5900 −8.4929 0.4877 144.2195 0.046

where ns
i and ni denote the scalar and number densities of

species i, respectively. The energy density of hadronic matter
is given by

εHP =
∑
i=p,n
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and the pressure is written as

PHP =
∑
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, (6)

where M∗ = M + gσ σ denotes the effective nucleon mass.
For hadronic matter in β equilibrium, the chemical potentials
satisfy the relations μp = μn − μe and μμ = μe. At zero
temperature, the chemical potentials are given by

μi =
√

ki
F

2 + M∗2 + gωω + gρτ
i
3ρ, i = p, n, (7)

μl =
√

kl
F

2 + m2
l , l = e, μ. (8)

In order to investigate the impact of nuclear symmetry
energy on the hadron-quark phase transition, we adopt two
successful RMF models, TM1 [42], and IUFSU [43], to
describe nuclear interactions. For completeness, we present
the parameter sets and saturation properties of these two
models in Tables I and II, respectively. It is well known
that nuclear symmetry energy Esym and its slope L play a
crucial role in determining the properties of neutron stars. To
examine the L dependence of hadron-quark pasta phases, we
employ two sets of generated models based on the TM1 and
IUFSU parametrizations as described in Ref. [66]. We note
that all models in each set have the same isoscalar saturation
properties and fixed symmetry energy Esym at a density of
0.11 fm−3 but have different symmetry energy slope L. It has
been reported in Ref. [66] that the choice of fixing symmetry

energy at nb = 0.11 fm−3 could produce very similar binding
energies of finite nuclei within one set of generated mod-
els. The generated models were obtained by simultaneously
adjusting gρ and �v so as to achieve a given L at satura-
tion density n0 while keeping Esym fixed at nb = 0.11 fm−3.
The parameters, gρ and �v, generated from the TM1 and
IUFSU models for different L are given in Tables III and IV
for completeness. For the TM1 model, we consider that L
varies from 50 to 110.8 MeV (original TM1 value). For the
IUFSU model, the range of L is from 47.2 (original IUFSU
value) to 110 MeV. As one can see in Tables III and IV, there
is a positive correlation between the slope parameter L and the
symmetry energy at saturation density Esym(n0). In the case
of TM1, we obtain Esym(n0) = 32.39 MeV for L = 50 MeV,
while Esym(n0) = 36.89 MeV for L = 110.8 MeV.

III. QUARK MATTER PHASE

To describe quark matter, we adopt the NJL model with
three flavors. The Lagrangian density of the NJL model is
given by

LNJL = q̄(iγμ∂μ − m0)q

+ GS

8∑
a=0

[(q̄λaq)2 + (q̄iγ5λaq)2]

− K{det[q̄(1 + γ5)q] + det[q̄(1 − γ5)q]}

− GV

8∑
a=0

[(q̄γ μλaq)2 + (q̄γ μγ5λaq)2], (9)

where q denotes the quark field with three flavors (Nf = 3)
and three colors (Nc = 3). The current quark mass matrix
is given by m0 = diag(m0

u, m0
d , m0

s ). We take into account
chirally symmetric four-quark interaction with coupling GS ,
Kobayashi–Maskawa–’t Hooft (KMT) six-quark interaction
with coupling K , and vector interaction with coupling GV .
It has been shown in Refs. [19,20,35–41] that vector interac-
tions in the NJL model play an important role in describing
massive stars. In the present work, we use the parameters

TABLE II. Saturation properties of symmetric nuclear matter for
the TM1 and IUFSU models. The quantities E0, K , Esym, and L
are, respectively, the energy per nucleon, incompressibility coeffi-
cient, symmetry energy, and symmetry energy slope at saturation
density n0.

Model n0 (fm−3) E0 (MeV) K (MeV) Esym (MeV) L (MeV)

TM1 0.145 −16.3 281 36.9 110.8
IUFSU 0.155 −16.4 231 31.3 47.2
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TABLE III. Parameters gρ and �v, generated from the TM1 model for different slope L at saturation density n0 with fixed symmetry energy
Esym = 28.05 MeV at a density of 0.11 fm−3. The last line shows the symmetry energy at saturation density n0. The original TM1 model has
L = 110.8 MeV.

L (MeV) 50.0 60.0 70.0 80.0 90.0 100.0 110.8

gρ 12.2413 11.2610 10.6142 10.1484 9.7933 9.5114 9.2644
�v 0.0327 0.0248 0.0182 0.0128 0.0080 0.0039 0.0000
Esym(n0) (MeV) 32.39 33.29 34.11 34.86 35.56 36.22 36.89

given in Ref. [71], m0
u = m0

d = 5.5 MeV, m0
s = 140.7 MeV,

� = 602.3 MeV, GS�
2 = 1.835, and K�5 = 12.36. The vec-

tor coupling GV is treated as a free parameter following
Refs. [19,20,41], since there is still no constraint on GV at
finite density. In Ref. [19], two values were used for the
ratio GV /GS = 0.1 and 0.2. Several values of GV /GS between
0 to 0.75 were adopted in Ref. [41]. In the present work
we find that, using the TM1 model for the hadronic phase,
a pure quark phase does not appear at densities below 20
times the nuclear saturation density for GV /GS > 0.45, which
implies that such a large GV is not suggested. Therefore, we
use GV /GS = 0 and 0.4 to investigate the effects of vector
couplings in the present calculations, where the TM1 model is
employed to describe the hadronic phase. Since GV can only
stiffen the EOS of quark matter, the effects of vector couplings
on the hadron-quark phase transition using the IUFSU model
would be qualitatively similar to the case of using the TM1
model. Furthermore, the onset density of the mixed phase
obtained in the IUFSU model is significantly higher than that
of the TM1 model (see Fig. 3 below), and therefore we use
only GV /GS = 0 in the calculations with the IUFSU model.

At the mean-field level, the quarks get constituent quark
masses by spontaneous chiral symmetry breaking. The con-
stituent quark mass in vacuum mi is much larger than the
current quark mass m0

i . The constituent quark masses m∗
i in

quark matter can be determined by the gap equations

m∗
i = m0

i − 4GS〈q̄iqi〉 + 2K〈q̄ jq j〉〈q̄kqk〉, (10)

with (i, j, k) being any permutation of (u, d, s). The energy
density of quark matter is given by

εNJL =
∑

i=u,d,s

[
− 3

π2

∫ �

ki
F

√
k2 + m∗2

i k2dk

]

+ 2GS
(
C2

u + C2
d + C2

s

) − 4KCuCdCs

+ 2GV
(
n2

u + n2
d + n2

s

) − ε0, (11)

where Ci = 〈q̄iqi〉 denotes the quark condensate of flavor i.
The constant ε0 is introduced to set εNJL = 0 in the physical
vacuum. In Refs. [29–31], an effective bag constant B∗ was
introduced since there remains uncertainty in the low-density
normalization of pressure in the NJL model. In the present
work, our choice of ε0 corresponds to a vanishing pressure in
the vacuum.

The chemical potentials of quarks and leptons in quark
matter satisfy the β equilibrium condition, μs = μd = μu +
μe and μμ = μe, where the chemical potential of quark flavor
i is given by

μi =
√

ki
F

2 + m∗
i

2 + 4GV ni. (12)

The total energy density and pressure in quark matter are
written as

εQP = εNJL +
∑

l=e,μ

1

π2

∫ kl
F

0

√
k2 + m2

l k2dk, (13)

PQP =
∑

i=u,d,s,e,μ

niμi − εQP. (14)

IV. HADRON-QUARK MIXED PHASE

In this section, we briefly introduce and compare sev-
eral methods for the description of hadron-quark mixed
phase, namely (1) energy minimization (EM) method, (2)
coexisting phases (CP) method, (3) Gibbs construction, and
(4) Maxwell construction. We emphasize that the main dif-
ference among these methods is the treatment of surface and
Coulomb contributions. Generally, the hadron-quark mixed
phase can be described by the Wigner-Seitz approxima-
tion, where the system is divided into periodically repeat-
ing charge-neutral cells. The coexisting hadronic and quark
phases inside the cell are separated by a sharp interface
where a surface tension often exists. The possible geometric
structure of the mixed phase may change from droplet to rod,
slab, tube, and bubble with increasing baryon density. In the

TABLE IV. Parameters gρ and �v, generated from the IUFSU model for different slope L at saturation density n0 with fixed symmetry
energy Esym = 26.78 MeV at a density of 0.11 fm−3. The last line shows the symmetry energy at saturation density n0. The original IUFSU
model has L = 47.2 MeV.

L (MeV) 47.2 50.0 60.0 70.0 80.0 90.0 100.0 110.0

gρ 13.5900 12.8202 11.1893 10.3150 9.7537 9.3559 9.0558 8.8192
�v 0.0460 0.0420 0.0305 0.0220 0.0153 0.0098 0.0051 0.0011
Esym(n0) (MeV) 31.30 31.68 32.89 33.94 34.88 35.74 36.53 37.27
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EM method, the equilibrium conditions between coexisting
hadronic and quark phases are determined by minimization of
the total energy including surface and Coulomb contributions,
so the finite-size effects due to surface and Coulomb contribu-
tions are treated relatively well compared with other methods.
In the CP method, the surface and Coulomb energies are per-
turbatively included, while the Gibbs equilibrium conditions
are used for the two coexisting phases. We note that both the
Gibbs and Maxwell constructions do not include the finite-
size effects. In the Gibbs construction, the surface tension
at the hadron-quark interface is assumed to be negligible,
hence the surface and Coulomb energies are not taken into
account and only global charge neutrality is required. On the
other hand, the surface tension in the Maxwell construction is
assumed to be extremely large, so that local charge neutrality
has to be maintained. The surface tension plays a key role in
determining the structure of hadron-quark mixed phase, but
its value is poorly known so far. In the present work, we treat
the surface tension σ as a free parameter.

In the following subsections, we describe how to determine
the equilibrium state of hadron-quark mixed phase at a given
baryon density within different methods.

A. Energy minimization method

The Wigner-Seitz approximation is used to describe the
hadron-quark mixed phase, where two coexisting phases in-
side a charge-neutral cell are separated by a sharp interface
with a finite surface tension. The leptons (electrons and
muons) are assumed to be uniformly distributed throughout
the cell. The total energy density of the mixed phase is
given by

εMP = uεQP + (1 − u)εHP + εsurf + εCoul, (15)

where u = VQP/(VQP + VHP) is the volume fraction of the
quark phase. The energy densities, εHP and εQP, are given
by Eqs. (5) and (13), respectively. The surface and Coulomb
energy densities are expressed as

εsurf = Dσuin

rD
, (16)

εCoul = e2

2
(δnc)2r2

Duin�(uin ), (17)

with

�(uin ) =

⎧⎪⎪⎨
⎪⎪⎩

1

D + 2

(
2 − Du1−2/D

in

D − 2
+ uin

)
, D = 1, 3,

uin − 1 − ln uin

D + 2
, D = 2.

(18)

Here, σ denotes the surface tension at the hadron-quark
interface, while D = 1, 2, 3 is the geometric dimension of the
cell with rD being the size of the inner part. uin represents the
volume fraction of the inner part, i.e., uin = u for droplet, rod,
and slab configurations, and uin = 1 − u for tube and bubble
configurations. e = √

4π/137 is the electromagnetic coupling
constant. δnc = nHP

c − nQP
c is the charge-density difference

between hadronic and quark phases. In Eq. (15), the first
two terms represent the bulk contributions, while the last two

terms come from the finite-size effects that depend on the
size rD. At a given baryon density, rD can be determined by
minimizing εsurf + εCoul, which leads to the relation εsurf =
2εCoul. The size of the inner phase and that of the Wigner-Seitz
cell are respectively given by

rD =
[

σD

e2(δnc)2�

]1/3

, (19)

rC = u−1/DrD. (20)

In the EM method, the equilibrium conditions for coexist-
ing hadronic and quark phases in the Wigner-Seitz cell are
derived by minimization of the total energy density (15). At a
given baryon density nb, the energy density of the mixed phase
εMP is considered as a function of eight variables: np, nn, nu,
nd , ns, ne, nμ, and u. The minimization should be performed
under the constraints of globe charge neutrality and baryon
number conservation, which are expressed as

0 = ne + nμ − u

3
(2nu − nd − ns) − (1 − u)np, (21)

nb = u

3
(nu + nd + ns) + (1 − u)(np + nn). (22)

We introduce the Lagrange multipliers, μe and μn, for the
constraints, and then construct a function as

w = εMP − μe

[
ne + nμ − u

3
(2nu − nd − ns) − (1 − u)np

]
−μn

[u

3
(nu + nd + ns) + (1 − u)(np + nn)

]
. (23)

By minimizing w with respect to the particle densities, we
obtain the following equilibrium conditions for chemical
potentials:

μu − 4εCoul

3u δnc
= 1

3
μn − 2

3
μe, (24)

μd + 2εCoul

3u δnc
= 1

3
μn + 1

3
μe, (25)

μs + 2εCoul

3u δnc
= 1

3
μn + 1

3
μe, (26)

μp + 2εCoul

(1 − u) δnc
= μn − μe, (27)

μμ = μe. (28)

The equilibrium condition for the pressure at the interface is
achieved by minimizing w with respect to the volume fraction
u, which can be written as

PHP = PQP − 2εCoul

δnc

[
1

3u
(2nu − nd − ns) + 1

1 − u
np

]

∓ εCoul

uin

(
3 + uin

�
′

�

)
, (29)

where the sign of the last term is − for droplet, rod, and
slab configurations, while it is + for tube and bubble con-
figurations. The equilibrium equations (24)–(29) are clearly
different from the Gibbs equilibrium conditions, which is due
to the inclusion of surface and Coulomb energies in the mini-
mization procedure. We define the pressure of the mixed phase
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by the thermodynamic relation PMP = n2
b

∂ (εMP/nb)
∂nb

, which is
somewhat different from PHP and PQP. This is similar to
the case of nuclear liquid-gas phase transition at subnuclear
densities [66–69].

By solving the above equilibrium equations at a given
baryon density nb, we calculate and compare the energy
density of the mixed phase with different pasta configurations,
and then determine the most stable shape that has the lowest
energy density. All thermodynamic quantities of the mixed
phase can be computed after the equilibrium state is achieved.

B. Coexisting phases method

In the CP method, the Gibbs equilibrium conditions are
used for coexisting hadronic and quark phases. Meanwhile,
the surface and Coulomb energies are included perturbatively.
This means that the Gibbs equilibrium conditions are derived
without the inclusion of surface and Coulomb contributions,
but they are taken into account in the total energy density of
the mixed phase given by Eq. (15). In fact, we can derive
the Gibbs equilibrium conditions by minimizing the total
energy density without surface and Coulomb terms. By setting
εsurf = εCoul = 0 in Eq. (15), we minimize the energy density
following the procedure described in the EM method. The
resulting equilibrium conditions are given by

PHP = PQP, (30)

μu + μe = μd = μs = 1
3μn + 1

3μe, (31)

μp = μn − μe, (32)

μμ = μe, (33)

which are equivalent to the Gibbs conditions for phase equi-
librium in Ref. [11]. After the equilibrium state is achieved by
solving Eqs. (30)–(33) at a given baryon density nb, the energy
density of the mixed phase can be calculated from Eq. (15),
where the surface and Coulomb energies are taken into ac-
count. Compared with the EM method, the CP method can be
viewed as a perturbative approximation, in which the surface
and Coulomb contributions are regarded as perturbations and
their influences on the equilibrium conditions are neglected.
Therefore, the EM method is more complete than the CP
method, because the surface and Coulomb contributions are
included not only in the total energy density of the mixed
phase but also in the equilibrium conditions for coexisting
phases in the EM method. We emphasize that the shape
and size of the mixed phase are determined by competition
between surface and Coulomb energies, which are unrelated
to the Gibbs conditions. In the CP method, the pressure of the
mixed phase satisfies the relation PMP = PHP = PQP. This is
because the pressure difference between hadronic and quark
phases due to the surface tension is neglected in the CP
method.

C. Gibbs construction

In the Gibbs construction, the finite-size effects due to
surface and Coulomb contributions are neglected completely,
so the mixed phase does not include any pasta structures. In
this case, the surface tension at the hadron-quark interface

is assumed to be negligible, and global charge neutrality
is required. Both hadronic matter and quark matter are al-
lowed to be charged separately. Since only bulk contributions
are considered, the energy density of the mixed phase is
reduced to

εMP = uεQP + (1 − u)εHP, (34)

where the surface and Coulomb terms vanish compared with
Eq. (15). The equilibrium conditions can be derived from
the minimization of Eq. (34), which have been given by
Eqs. (30)–(33). The pressure equilibrium between hadronic
and quark phases is shown in Eq. (30), while Eq. (31) repre-
sents the chemical potential equilibrium between two phases.
At a given baryon density nb, there are two independent
chemical potentials, μn and μe, which can be determined by
the constraints of global charge neutrality and baryon number
conservation given in Eqs. (21) and (22). The Gibbs equilib-
rium conditions of Eqs. (30) and (31) imply that coexisting
hadronic and quark phases have equal pressures and chemical
potentials. After the equilibrium state is determined by Gibbs
conditions, all properties of the mixed phase can be calculated.

D. Maxwell construction

In the Maxwell construction, the system satisfies the local
charge neutrality condition, namely, both hadronic and quark
phases are charge neutral. This is related to an extremely
large surface tension at the hadron-quark interface, which
disfavors the formation of charged cluster of quark matter
immersed in hadronic matter. The energy density of the
mixed phase includes only bulk contributions as described in
Eq. (34). Due to the local charge neutrality condition, there
are three constraints instead of Eqs. (21) and (22), which are
expressed as

0 = nHP
c = nHP

e + nHP
μ − np, (35)

0 = nQP
c = nQP

e + nQP
μ − 1

3 (2nu − nd − ns), (36)

nb = u

3
(nu + nd + ns) + (1 − u)(np + nn). (37)

In the Maxwell construction, the electron density is usually
discontinuous across the interface due to local charge neutral-
ity. We introduce the Lagrange multipliers, μHP

e , μQP
e , and μn,

for these three constraints and construct a function as

w = εMP − μn

[u

3
(nu + nd + ns) + (1 − u)(np + nn)

]

−μQP
e u

[
nQP

e + nQP
μ − 1

3
(2nu − nd − ns)

]

−μHP
e (1 − u)

[
nHP

e + nHP
μ − np

]
. (38)

By minimizing w with respect to the volume fraction u and
particle densities, we obtain the Maxwell conditions for phase
equilibrium:

PHP = PQP, (39)

μn = μu + 2μd . (40)
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Meanwhile, the β equilibrium conditions in hadronic and
quark matter are respectively expressed as

μp + μHP
e = μn, (41)

μu + μQP
e = μd = μs. (42)

The Maxwell equilibrium conditions mean that coexisting
hadronic and quark phases have the same pressure and baryon
chemical potential but different electron chemical potential.
During the phase transition, the pressure of the mixed phase
in the Maxwell construction remains constant. This behavior
is different from that in the Gibbs construction, where the
pressure of the mixed phase increases with increasing density.

V. RESULTS AND DISCUSSION

In this section, we investigate and compare the pasta
structures of hadron-quark mixed phase using the methods
described in the previous section. In order to check the model
dependence of the results, we use two different RMF models
(TM1 and IUFSU) for the description of hadronic matter.
Meanwhile, the effects of repulsive vector interactions in
the NJL model are also examined. By employing a set of
models with different symmetry energy slope L, we discuss
the effects of nuclear symmetry energy on the hadron-quark
phase transition. The properties of neutron stars are calculated
by using the EOS including quark degrees of freedom.

A. Pasta structures in hadron-quark mixed phase

During the hadron-quark phase transition, several pasta
configurations may appear in the order of droplet, rod, slab,
tube, and bubble with increasing density. It is interesting to
check whether all these geometric shapes would occur in the
mixed phase and how the pasta phases are affected by the
model parameters. To study the pasta structures in hadron-
quark mixed phase, we employ the EM and CP methods
described in Sec. IV. It is known that the geometric shape and
size of the mixed phase are mainly determined by competition
between surface and Coulomb energies. Therefore, only the
EM and CP methods can be used, whereas the Gibbs and
Maxwell constructions cannot describe pasta structures due
to the absence of surface and Coulomb contributions. In the
EM method, the equilibrium conditions between two coex-
isting phases are determined by minimizing the total energy
including surface and Coulomb contributions. However, in the
CP method, the Gibbs equilibrium conditions are adopted that
correspond to the balance without finite-size effects, while the
surface and Coulomb energies are perturbatively incorporated
after the equilibrium state is achieved.

Generally, the energy density difference between two suc-
cessive configurations is very small compared with the total
energy density. In Fig. 1, we compare the energy densities of
various pasta phases for σ = 10 MeV/fm2 obtained using the
EM method relative to those of the Gibbs construction (σ =
0). The results are calculated with the TM1 parametrization
given in Table I, while the vector coupling GV = 0 is adopted
in the NJL model. For comparison, the energy densities of
pure hadronic and pure quark phases are plotted by black dot-

FIG. 1. Comparison of energy densities for various pasta phases
obtained using the EM method with σ = 10 MeV/fm2 and GV = 0
relative to those of the Gibbs construction (σ = 0). The filled circles
indicate the transition points between different configurations.

dashed and solid lines, respectively. At a given baryon density
nb, the equilibrium state is the one with the lowest energy
density. When the energy density of a droplet becomes lower
than that of pure hadronic matter, quark droplets are formed in
hadronic matter and the hadron-quark phase transition starts.
As the density increases, other pasta configurations, such as
rod, slab, etc., may appear when each has the lowest energy
density among all configurations. The phase transition ends at
the point where pure quark matter has lower energy density
than pasta phases. It is seen in Fig. 1 that the energy density
difference between two successive shapes is rather small, and
it is almost invisible between the droplet (bubble) and rod
(tube) phases.

To evaluate the difference between the EM and CP meth-
ods, we compare in Fig. 2 the energy densities of pasta phases
obtained from the two methods with the surface tension σ =
10 MeV/fm2, where the transition points between different
configurations are indicated by filled circles. In the calcula-
tions, the TM1 model is used for hadronic phase, while the
NJL model with GV = 0 and GV = 0.4 GS are adopted for
quark phase in the left and right panels, respectively. It is
shown that the energy densities of the EM method are slightly
lower than those of the CP method. This is because there
are relatively large configuration space in the EM method,
and therefore lower energies could be achieved in the mini-
mization procedure. By comparing the two panels of Fig. 2,
one can see that the energy densities for GV = 0.4 GS are
significantly larger than those for GV = 0, and the density
range of the mixed phase for GV = 0.4 GS is shifted to larger
values. This is because repulsive vector interactions in the NJL
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FIG. 2. Comparison of energy densities obtained using the EM and CP methods with σ = 10 MeV/fm2, relative to those of the Gibbs
construction (σ = 0). The filled circles (squares) indicate the transition points between different configurations for EM (CP) method.

model can effectively stiffen the EOS of quark matter, which
results in a delay of the phase transition.

In order to study how the surface tension σ affects the prop-
erties of pasta phases, we present in Fig. 3 the energy densities
of the mixed phase obtained using the EM method for several
values of σ relative to those of the Gibbs construction (σ =
0). The filled circles indicate the transition points between
different configurations. For comparison, the results obtained
in the Maxwell construction are shown by green dotted lines.
In the left panel of Fig. 3, the results are obtained by using
the TM1 model for hadronic phase and the NJL model with
GV = 0 for quark phase. One can see that a larger value of
σ leads to a smaller density range and less pasta structures in
the mixed phase. With σ = 55 MeV/fm2, only droplet, rod,
and slab configurations can occur before the system turns to
pure quark matter. When the surface tension is larger than the
critical value of ≈75 MeV/fm2, the pasta phase is energeti-
cally unfavorable because its energy density is higher than that
of the Maxwell construction. This means that the Maxwell
construction is preferred for such high surface tension. It is

noticeable that no mixed phase would occur inside neutron
stars for σ > 75 MeV/fm2 because the energetically favored
Maxwell construction corresponds to constant pressure. By
comparing the left panel (GV = 0) with the middle panel
(GV = 0.4 GS) in Fig. 3, we see that the repulsive vector
interactions in the NJL model can significantly shift the mixed
phase toward higher densities with a wider range. This is be-
cause the inclusion of repulsive vector interactions increases
the energy density of quark matter considerably. Meanwhile,
the critical surface tension increases from ≈75 MeV/fm2

for GV = 0 to ≈200 MeV/fm2 for GV = 0.4 GS in the TM1
model. The results of the right panel in Fig. 3 correspond
to the case where the IUFSU model is used for hadronic
phase and the NJL model with GV = 0 for quark phase. It
is found that the mixed phase in the IUFSU model (right
panel) is shifted to higher densities with a wider range than
that in the TM1 model (left panel), and meanwhile the critical
surface tension required by the Maxwell construction rises to
≈130 MeV/fm2 in the IUFSU model from ≈75 MeV/fm2

in the TM1 model. This is mainly because the symmetry

FIG. 3. Energy densities of the mixed phase obtained using the EM method for several values of σ relative to those of the Gibbs construction
(σ = 0). The filled circles indicate the transition points between different configurations. The results of the Maxwell construction are shown
by the green dotted lines.
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FIG. 4. Density ranges of various pasta shapes as a function of the surface tension σ . The results obtained using the EM and CP methods
are displayed in the upper and lower panels, respectively.

energy slope L in the IUFSU model is much smaller than
the one in the TM1 model. The effects of the symmetry
energy slope L on the pasta phase properties will be discussed
in Sec. V B.

In Fig. 4, we show the density ranges of various pasta
shapes as a function of the surface tension σ . The results
obtained from the EM and CP methods are displayed in the
upper and lower panels, respectively. We can see that the
onsets of all pasta shapes in the CP method are independent
of σ . This is because the equilibrium state in the CP method
is determined by the Gibbs conditions, which are unrelated to
the surface tension σ . At a given baryon density nb, the fa-
vorable pasta shape is determined by the sum of εsurf + εCoul,
which is proportional to σ 2/3 derived from Eqs. (16)–(20).
The transition between two pasta shapes occurs at the density
where their energy difference changes sign. Therefore, the
transition density in the CP method cannot be influenced by
the surface tension σ due to the simple dependence εsurf +

εCoul ∝ σ 2/3. However, the dependence of εsurf + εCoul on
the surface tension σ is much more complicated in the EM
method, since the finite-size effects have been included in
the equilibrium conditions. Therefore, the transition density
obtained in the EM method is clearly dependent on σ as
shown in the upper panels of Fig. 4. As σ increases, the den-
sity range of hadron-quark mixed phase significantly shrinks
and the number of pasta configurations is reduced. As shown
in the upper-left panel of Fig. 4, the pasta phases can be
formed even if the surface tension is larger than the critical
value of ≈75 MeV/fm2 required by the Maxwell construc-
tion. However, the mixed phase for σ > 75 MeV/fm2 would
not occur in neutron stars, because the energetically favored
Maxwell construction corresponds to constant pressure. It is
found that the qualitative behaviors of pasta structures are very
similar in all panels of Fig. 4, although there are quantitative
differences. In the present work, we focus on the study of
pasta structures in hadron-quark mixed phase, so a relatively

FIG. 5. Size of the Wigner-Seitz cell (rC) and that of the inner part (rD) as a function of nb obtained using the EM method with σ =
10 MeV/fm2.
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FIG. 6. Transition densities as a function of the symmetry energy slope L. The right panels show results obtained using the EM method
with σ = 10 MeV/fm2, where onset densities are in the order of nI

b (droplet), nII
b (rod), nIII

b (slab), nIV
b (tube), nV

b (bubble), and nVI
b (pure quark

matter). The left panels present starting densities (n1
b) and ending densities (n2

b) of the mixed phase obtained with the Gibbs and Maxwell
constructions.

small surface tension (σ = 10 MeV/fm2) will be used in the
following calculations.

In Fig. 5, the size of the Wigner-Seitz cell (rC) and that of
the inner part (rD) obtained using the EM method in the TM1
model are displayed as a function of the baryon density nb.
The results with GV = 0 and GV = 0.4 GS are presented in
the left and right panels, respectively. It is found that there are
obvious discontinuities in rD and rC at the transition points be-
tween different shapes. One can see that rC decreases rapidly
at lower densities, while it increases significantly in the bubble
phase before turning to pure quark matter. This behavior is
related to a monotonic increase of the volume fraction of
quark phase, u, during the phase transition. The tendency for
GV = 0.4 GS (right panel) is similar to that for GV = 0 (left
panel), but the density range is shifted to larger values.

B. Symmetry energy effects

To study the effects of nuclear symmetry energy on the
hadron-quark phase transition, we use two sets of generated
RMF models based on the TM1 and IUFSU parametrizations

as described in Ref. [66]. We emphasize that all models in
each set have the same isoscalar saturation properties and
fixed symmetry energy Esym at a density of 0.11 fm−3 but
have different symmetry energy slope L. Therefore, these
models could predict very similar properties of finite nuclei
but different density dependence of nuclear symmetry energy,
which plays an important role in understanding the structure
of neutron stars. In Fig. 6, we present the transition densities
as a function of the symmetry energy slope L in the TM1
(upper panels) and IUFSU (lower panels) sets. The results
are obtained with GV = 0 and σ = 10 MeV/fm2. In the right
panels, we display the onset densities of droplet (nI

b), rod (nII
b ),

slab (nIII
b ), tube (nIV

b ), bubble (nV
b ), and pure quark matter

(nVI
b ) obtained using the EM method. In the left panels, we

show starting densities (n1
b) and ending densities (n2

b) of the
mixed phase obtained with the Gibbs and Maxwell construc-
tions. Detailed results are also presented in Table V. One can
see that as L increases, all transition densities decrease and the
L dependence becomes weaker at the end of the mixed phase.
This is because the fraction of hadronic matter monotoni-
cally decreases during the hadron-quark phase transition, and
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TABLE V. Onset densities of various phases obtained in the TM1 and IUFSU sets. In the EM method, the surface tension σ = 10 MeV/fm2

is used and onset densities are in the order of nI
b (droplet), nII

b (rod), nIII
b (slab), nIV

b (tube), nV
b (bubble), and nVI

b (pure quark matter). In the Gibbs
and Maxwell constructions, n1

b and n2
b denote the starting and ending densities of the mixed phase, respectively. All densities are in fm−3.

Model Gibbs Maxwell EM

L (MeV) n1
b n2

b n1
b n2

b nI
b nII

b nIII
b nIV

b nV
b nVI

b

TM1 50 0.4957 1.3832 0.64774 0.97204 0.5438 0.7407 0.8708 1.0934 1.1720 1.2529
GV = 0 60 0.4842 1.3828 0.64244 0.95529 0.5358 0.7333 0.8659 1.0915 1.1706 1.2516

70 0.4683 1.3825 0.63520 0.93349 0.5254 0.7236 0.8595 1.0891 1.1688 1.2500
80 0.4473 1.3820 0.62537 0.90600 0.5122 0.7109 0.8511 1.0861 1.1666 1.2479
90 0.4150 1.3813 0.61029 0.86855 0.4931 0.6918 0.8386 1.0816 1.1634 1.2451
100 0.3751 1.3803 0.58716 0.82095 0.4655 0.6626 0.8198 1.0751 1.1588 1.2410
110.8 0.3351 1.3786 0.54633 0.75782 0.4246 0.5924 0.7844 1.0632 1.1505 1.2340

lTM1 110.8 0.5791 2.4156 0.93703 1.28827 0.6392 0.8577 1.0586 1.5825 1.8428 2.1879
GV = 0.4 GS

IUFSU 47.2 0.5914 1.8842 0.87046 1.32709 0.6499 0.9241 1.1218 1.4741 1.6025 1.7472
GV = 0 50 0.5880 1.8842 0.86836 1.32319 0.6468 0.9212 1.1199 1.4735 1.6022 1.7471

60 0.5745 1.8841 0.85985 1.30751 0.6345 0.9097 1.1121 1.4712 1.6010 1.7466
70 0.5579 1.8840 0.84920 1.28817 0.6199 0.8958 1.1025 1.4684 1.5995 1.7460
80 0.5351 1.8838 0.83518 1.26304 0.6020 0.8781 1.0902 1.4649 1.5976 1.7452
90 0.4972 1.8836 0.81574 1.22869 0.5795 0.8547 1.0738 1.4601 1.5952 1.7442
100 0.4835 1.8833 0.78682 1.17803 0.5502 0.8221 1.0500 1.4532 1.5916 1.7428
110 0.4733 1.8829 0.74264 1.09978 0.5111 0.7763 1.0144 1.4425 1.5916 1.7407

therefore the influence of nuclear symmetry energy gets
weaker and weaker. It is shown that the onset densities of pure
quark matter, nVI

b (right panels) and n2
b of Gibbs (left panels),

are almost independent of L.
In order to understand the L dependence of the transition

densities, we show in Fig. 7 the pressure P as a function of
the neutron chemical potential μn for different values of L in
the TM1 (left panel) and IUFSU (right panel) sets. According
to the Maxwell equilibrium conditions given by Eqs. (39)
and (40), the phase transition occurs at the crossing of the
hadronic EOS with the quark EOS, where two phases have the

same pressure and neutron chemical potential. In the hadronic
phase, a smaller L corresponds to a larger P, which leads to
a larger value of μn in the mixed phase with the Maxwell
constructions. Therefore, the transition densities for a small
L would be higher than those for a large L.

It is interesting to look at the behavior of the electron
chemical potential μe and its L dependence. Generally, μe

is considered as a signal of the imbalance between protons
and neutrons in hadronic matter under β equilibrium due to
the relation μe = μn − μp, which is closely related to nuclear
symmetry energy Esym. Therefore, a larger μe implies that the

FIG. 7. Pressure P as a function of the neutron chemical potential μn for different values of L.
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FIG. 8. Electron chemical potential μe as a function of the neutron chemical potential μn obtained with the Gibbs and Maxwell
constructions.

system is more asymmetric. In Fig. 8, we show the electron
chemical potential μe as a function of the neutron chemical
potential μn obtained with the Gibbs and Maxwell construc-
tions. The results of the original TM1 (L = 110.8 MeV) and
IUFSU (L = 47.2 MeV) models are presented in the left
and right panels, respectively. GV = 0 is adopted in the NJL
model. It is seen that μe at the transition point with the

Maxwell construction is discontinuous, where μe of hadronic
phase is much larger than that of quark phase. By comparing
the two panels of Fig. 8, we can see that μe of TM1 in pure
hadronic matter is steeper than that of IUFSU. This is because
the symmetry energy slope L of TM1 is much larger than
that of IUFSU. As a result, the TM1 model predicts larger μe

and smaller μn for the hadron-quark phase transition with the

FIG. 9. Pressures as a function of the baryon density for hadronic, mixed, and quark phases. The results of pasta phases obtained using the
EM method with σ = 10 MeV/fm2 are compared to those of the Gibbs and Maxwell constructions.
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FIG. 10. Mass-radius relations of neutron stars for different EOS. The surface tension σ = 10 MeV/fm2 is used in the EM method. For
comparison, results obtained using pure hadronic EOS are shown by thin solid lines. The filled squares and circles indicate the onset of the
star containing a hadron-quark mixed phase within the EM method and Gibbs construction, respectively. The lighter and darker shaded regions
correspond to the observational constraints of PSR J0348–0432 (M = 2.01 ± 0.04 M
) [74] and PSR J1614–2230 (M = 1.928 ± 0.017 M
)
[72,73], respectively.

Maxwell construction. We note that the pressure and chemical
potentials remain constant during the phase transition with the
Maxwell construction. However, for the Gibbs construction,
μe and μn in the mixed phase can extend over a finite range,
and there is no abrupt jump in μe between coexisting hadronic
and quark phases. The behaviors of μe and μn obtained using
the CP method should be the same as those of the Gibbs
construction, since the Gibbs conditions are used to determine
the equilibrium state in the CP method.

C. Properties of neutron stars

In Fig. 9, we show the pressures as a function of the
baryon density for hadronic, mixed, and quark phases. The
results with L = 50 MeV and L = 110.8 MeV in the TM1
set are displayed in the upper panels, while those with L =
47.2 MeV and L = 110 MeV in the IUFSU set are shown in
the lower panels. In the calculations, the parameters GV = 0
and σ = 10 MeV/fm2 are used. The pressures of pasta phases
are obtained using the EM method, while those with the Gibbs
and Maxwell constructions are shown for comparison. It is
clearly seen that the pressures of pasta phases are very close
to those of the Gibbs construction, while the pressures of the
Maxwell construction are constant shown by the green dotted
lines. The effects of symmetry energy slope L on the EOS
can be observed by comparing the left and right panels. It is
shown that a smaller L results in relatively larger pressures
and higher onset densities of the mixed phase. We find that
qualitative behaviors of the EOS are very similar between the
TM1 and IUFSU sets, although quantitative differences exist.

The properties of neutron stars can be obtained by solv-
ing the Tolman-Oppenheimer-Volkoff (TOV) equation us-
ing the EOS described above, which is matched to the
low-density EOS constructed from the Thomas-Fermi ap-

proximation within the TM1 model for the description of
neutron-star crusts [44]. In Fig. 10, we display the mass-
radius relations obtained in the TM1 set with L = 50 MeV
and L = 110.8 MeV, where the observational constraints of
PSR J1614–2230 (M = 1.928 ± 0.017 M
) [72,73] and PSR
J0348 + 0432 (M = 2.01 ± 0.04 M
) [74] are shown by the
darker and lighter shaded regions, respectively. The results
with GV = 0 and GV = 0.4 GS are presented in the left and
right panels, respectively. For comparison, results obtained
using pure hadronic EOS are shown by thin solid lines. It is
observed that including quark degrees of freedom can soften
the EOS and reduce the maximum mass of neutron stars.
The star masses obtained using the EM method are slightly
larger than those of the Gibbs construction due to finite-size
effects. The influence of symmetry energy slope L is obvious,
especially on the radius of neutron stars. By comparing the
left and right panels, we find that repulsive vector interactions
in the NJL model can significantly increase the maximum
mass of neutron stars. To analyze neutron-star properties in
more detail, we present in Table VI the structural properties
of neutron stars with the maximum mass in several cases.
It is seen that, in most cases, deconfined quarks can exist
in the core of massive stars either in mixed phase or in
pure quark phase. We emphasize that the mixed phase with
the Maxwell construction is not allowed to occur in neutron
stars due to its constant pressure, but it is still possible to
form small size of pure quark matter in special cases (see
Table VI) when the surface tension is as high as required by
the Maxwell construction. On the other hand, the mixed phase
with the Gibbs construction is likely present in the interior
of neutron stars, whose size depends on the vector coupling
GV . The results obtained using the EM method indicate that
hadron-quark pasta phases may occur in the core of massive
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TABLE VI. Properties of neutron stars with the maximum mass Mmax. The central baryon number density is denoted by nc, while RQP,
RMP, and R correspond to radii of pure quark phase, mixed phase, and whole star, respectively. The surface tension σ = 10 MeV/fm2 is used
in the EM method.

Model Method Mmax nc RQP RMP R
L (MeV) (M
) (fm−3) (km) (km) (km)

TM1 L = 50 Gibbs 1.96 0.80 5.10 12.41
GV = 0 EM 1.98 0.80 4.08 12.44

Maxwell 2.04 0.65 0.25 12.46
L = 110.8 Gibbs 1.91 0.76 7.80 13.09

EM 1.94 0.70 5.60 13.30
Maxwell 2.04 0.77 0.82 13.40

TM1 L = 50 Gibbs 2.12 0.87 2.31 11.97
GV = 0.4 GS EM 2.12 0.92 1.71 11.84

L = 110.8 Gibbs 2.13 0.80 4.50 12.77
EM 2.15 0.79 3.41 12.77

IUFSU L = 47.2 Gibbs 1.84 0.91 4.71 11.64
GV = 0 EM 1.86 0.91 3.91 11.67

L = 110 Gibbs 1.80 0.89 6.00 12.30
EM 1.83 0.82 5.11 12.48

stars, which yield relatively larger Mmax and smaller RMP than
those of the Gibbs construction due to finite-size effects. It
is unlikely to form pure quark matter in neutron stars both
with the Gibbs construction and in the EM method, since the
central density nc in these cases is lower than the onset of
pure quark matter. By comparing results with different values
of L, we can see that neutron-star structures are significantly
dependent on the symmetry energy slope L.

VI. CONCLUSIONS

In this work, we studied the properties of hadron-quark
mixed phase, which may occur in the interior of massive
neutron stars. The RMF model was used to describe the
hadronic phase, while the NJL model was adopted for the
quark phase. We employed the Wigner-Seitz approximation
to describe the hadron-quark mixed phase, where coexisting
hadronic and quark phases are separated by a sharp interface.
We performed the calculations for pasta phases within the EM
method, where the equilibrium state at a given baryon density
could be determined by minimization of the total energy in-
cluding surface and Coulomb contributions. The equilibrium
conditions derived in the EM method are somewhat different
from the Gibbs conditions due to finite-size effects. A simple
CP method was also used and compared for the description
of hadron-quark pasta phases, where two coexisting phases
satisfy Gibbs conditions for phase equilibrium, while the
surface and Coulomb energies are perturbatively included
after the equilibrium state is achieved. It was found that pasta
structures depend on the surface tension σ , and a smaller
value of σ could lead to more pasta configurations during
the hadron-quark phase transition. Comparing with the results
by the EM method, fewer pasta configurations would be
present and the transition density between different shapes
is independent of σ in the CP method. We have compared
the properties of hadron-quark mixed phase obtained from the
EM and CP methods with those from the Gibbs and Maxwell

constructions, which include only bulk contributions without
finite-size effects. Since the Gibbs and Maxwell constructions
correspond respectively to the two limits of zero and very
large surface tension, results of the EM and CP methods with
finite σ were found to lie between those of the Gibbs and
Maxwell constructions.

To investigate the effects of nuclear symmetry energy on
the hadron-quark phase transition, we employed two success-
ful RMF models (TM1 and IUFSU), which could provide
good descriptions of finite nuclei and acceptable maximum
mass of neutron stars. It was found that the IUFSU model
predicted higher onset and wider range of the mixed phase
compared with the TM1 model. The qualitative behaviors are
similar between these two models. In order to examine the
influence of symmetry energy slope L, we adopted two sets of
generated models based on the TM1 and IUFSU parametriza-
tions. All models in each set have the same isoscalar saturation
properties and fixed symmetry energy at the density nb =
0.11 fm−3 but have different symmetry energy slope L. It
has been shown that as L increases, the transition densities
between different pasta configurations decrease slightly, and
this tendency becomes weaker at the end of the mixed phase.
This means that the starting density of the mixed phase is
more sensitive to the value of L, compared with the ending
density. The influences of repulsive vector interactions in
the NJL model have been evaluated by comparing results of
GV = 0 and GV = 0.4 GS . The inclusion of repulsive vector
interactions could significantly increase the quark matter en-
ergy density and stiffen the EOS of quark matter. This trend
becomes more apparent with increasing density. As a result,
the mixed phase with GV = 0.4 GS would be shifted toward
higher densities with a wider range, compared to the case
of GV = 0. Meanwhile, the critical densities of various pasta
phases are also dependent on the vector coupling GV .

We calculated properties of neutron stars by using the EOS
with quark degrees of freedom. The inclusion of hadron-quark
mixed phase could considerably soften the EOS and reduce
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the maximum mass of neutron stars. The star masses obtained
using the EM method are slightly larger than those of the
Gibbs construction due to finite-size effects, but lower than
those of the Maxwell construction and pure hadronic matter.
The neutron-star radius is closely related to the symmetry
energy slope L. The repulsive vector interactions in the NJL
model could significantly increase the maximum mass of
neutron stars. Generally, there is a critical surface tension
above which the energy density of the mixed phase in the EM
method is higher than the one in the Maxwell construction,
and, as a result, no mixed phase would occur inside neutron
stars because the energetically favored Maxwell construction
corresponds to constant pressure. It was found that the crit-
ical surface tension obtained using the TM1 model is about
75 MeV/fm2 for GV = 0 adopted in the NJL model, while it

increases to ≈200 MeV/fm2 for GV = 0.4 GS . When a small
surface tension like σ = 10 MeV/fm2 was used, we found
that in most cases hadron-quark pasta phases could occur
in the core of massive stars, but it is unlikely to form pure
quark matter. The resulting maximum masses of neutron stars
are almost compatible with the observations of PSR J1614–
2230 and PSR J0348 + 0432. We emphasize that both nuclear
symmetry energy and repulsive vector interactions in the NJL
model can affect structural properties of neutron stars.
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