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Multipole decomposition of the rate of muon-to-electron (μ− −→ e−) conversion in 208Pb
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The (μ− −→ e−) conversion in 208Pb nucleus is studied. For the elementary process we consider the most
general effective Lagrangian responsible for the lepton-flavor violation. For the nuclear structure part, the
spectrum of 208Pb is calculated by performing a diagonalization of the δ-force interaction in the space of
particle-hole pairs for neutrons and protons. We calculate the coherent contribution by direct summation of
single-particle excitations. The noncoherent muon-to-electron conversion is calculated by summing over the
contributions for all possible intermediate states in 208Pb. We perform the multipole decomposition of the
transition amplitude and present the nuclear matrix elements of spin-dependent and spin-independent operators
appearing in the total rate of the muon to electron conversion process. The results are presented in a way to
facilitate their use in model building of the electroweak process.
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I. INTRODUCTION

The muon-to-electron conversion in the presence of atomic
nuclei is one of the lepton-flavor-violation (LFV) processes
that has attracted quite a lot of interest both theoretically and
experimentally (see, for example, Refs. [1,2] and references
therein). This process cannot be described in the framework
of the standard model (SM) of electroweak interactions and its
experimental detection would be an indication of new physics
beyond the SM.

For the sake of completeness we shall briefly review the
current status of the (μ− −→ e−) conversion. From the ex-
perimental point of view several upper limits to the decay rate
have been established by the SINDRUM-II experiment [3], at
the level of 10−13 for the branching ratios Rμe=�(μ− −→ e−
conversion)/�(muon capture). Future experiments aim at sen-
sitivities of the order of 10−17 or similar (Mu2e at Fermilab
[4] and COMET at J-PARC [5]).

From the theoretical point of view, the calculations of
the Rμe rates focused on the particle-physics aspects of the
problem [6–9], on the extensions of the SM to accommodate
for lepton-flavor violation [10,11], and, more recently, on the
nuclear structure aspects related to the calculations of n-order
matrix elements of operators in (μ− −→ e−) process [12–19].

Among the theoretical works, Ref. [20] presents a complete
analysis of the electroweak channels which become operative
if lepton-flavor violation is allowed. The effective Lagrangian
of Ref. [20] describes the (μ− −→ e−) at the quark level
and then, by introducing suitable form factors, the authors
of Ref. [20] have obtained an effective Lagrangian at the
nucleon level. Nuclear correlations, in the coherent channel
of (μ− −→ e−), are taken into account in Ref. [20] by
introducing nuclear matter and charge density distributions.
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Therefore this Lagrangian becomes a good starting point for
the calculation of currents in finite nuclei.

In this paper we study muon to electron conversion in
the presence of 208Pb. We are interested here in the com-
parative estimation of spin-dependent and spin-independent
contributions to the nuclear response [21–24]. We consider
a Lagrangian like the one proposed in Ref. [20] and for the
nuclear structure part we diagonalize a δ-force interaction
to calculate the spectrum of 208Pb, as done in Ref. [25] for
the calculation of the cross section for the neutrino-nucleus
scattering 208Pb(g.s.)(ν, ν ′)208Pb.

In order to facilitate new theoretical analysis of
(μ−−→e−) conversion we have, separately, presented the nu-
clear components of the decay rate, e.g., both by the tensorial
structure of the participant operators as well as for the proton
and neutron components of the nuclear wave functions.

As done recently in Ref. [19], different models where
(μ− −→ e−) can take place enter the calculation through
combinations of coefficients which stem from the properties
of the mediators, e.g., Z0 and W bosons, as well as super
symmetric (SUSY) particles [19], in models beyond the SM.
As shown in Ref. [20] there are more possibilities when
the Lagrangian is written at the very elementary level of
four fermion interactions. Therefore, these models may be-
come manageable provided the nuclear structure part is given
independently of the adopted particle-physics model. More
specifically, from the nuclear structure part of the problem, the
extent of the spin dependence of the calculated nuclear matrix
elements becomes relevant for experimental reasons [26].

The paper is organized as follows: The formalism is de-
scribed in Sec. II, where the details of the LFV Lagrangian
are given (Sec. II A), together with the nuclear structure part
of the formalism (Sec. II B). The results of the calculations are
presented and discussed in Sec. III. Finally, our conclusions
are drawn in Sec. IV.

2469-9985/2019/99(6)/065504(11) 065504-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.99.065504&domain=pdf&date_stamp=2019-06-28
https://doi.org/10.1103/PhysRevC.99.065504


O. CIVITARESE AND T. TARUTINA PHYSICAL REVIEW C 99, 065504 (2019)

II. FORMALISM

Anomalous muon-to-electron conversion is a process
where, in the presence of an atomic nucleus, a negative muon
transforms into an electron without emitting a neutrino [27]:

μ− + (A, Z ) −→ e− + (A, Z )∗. (1)

In such a process the lepton-flavor numbers Le and Lμ are
not conserved while the total lepton number is conserved.

The emitted electron has a momentum given by

|pe| = mμ − εb − (E f − Ei ), (2)

where mμ is the mass of muon, εb is the muon binding energy
in the 1s state of the muonic atom, and Ei(E f ) are the energies
of the initial (final) states of the nucleus.

Below we will consider the coherent and noncoherent
muon conversion processes. In the former, the final state of
the nucleus is its ground state, while in the latter the nucleus

is left in an excited state. The coherent process is characterized
by the largest value of the momentum of the emitted electron.

The probability of muon-to-electron conversion process in
nuclei is given Ref. [11], and it reads

�i→ f = 2π

h̄

∫
dp̂e

(
pe

mμ

)2

|〈 f |�|i, μ〉|2 �, (3)

where 〈 f |�|i, μ〉 is the matrix element of the operators in-
volved in the process between the initial (i) and final (f)
nuclear states, pe is the momentum of the emitted electron,
and � depends on the specific model adopted to describe the
elementary LFV process.

A. The effective Lagrangian

The most general effective LFV Lagrangian in the nonpho-
tonic sector and at the quark-lepton level can be written in the
form:

Lnp = − GF√
2

∑
q=u,d,s,..

{
[gLS (q)eLμR + gRS (q)eRμL]qq + [gLP(q)eLγ5μR + gRP(q)eRγ5μL]qγ5q

+ [gLV (q)eLγ μμR + gRV (q)eRγ μμL]qγμq + [gLA(q)eLγ μγ5μL + gRA(q)eRγ μγ5μR]qγμγ5q

+ 1
2 [gLT (q)eLσμνμR + gRT (q)eRσμνμL]qσμνq

}
=LS + LP + LV + LA + LT , (4)

where GF is the Fermi constant and gXK (q) are dimensionless coupling constants at the quark level (q) with X = {L, R} (left
or right) and K = {S, P,V, A, T } (for scalar, pseudo-scalar, vector, axial-vector, and tensor terms, respectively). eL(R) and μL(R)

are the electron and muon left (right) fields, defined by the action of the projectors PL = (1 − γ5)/2 and PR = (1 + γ5)/2,
σμν = (i/2)[γμ, γν], and γμ are Dirac’s matrices. The value of the four-fermion coupling constants can be calculated using
specific models of the LFV process. Some of these models are, for example, the W exchange [28], supersymmetric theories [28],
SUSY models with R-parity breaking [29], tree diagrams involving Z ′ [30], etc.

The Lagrangian of Eq. (4) can be rewritten using the isospin formalism at the nucleonic level and reads as follows:

Lnp = − GF√
2

(
eLμRψ

[
g(0)

LS + g(1)
LSτ3

]
ψ + eRμLψ

[
g(0)

RS + g(1)
RSτ3

]
ψ + eLγ 5μRψγ5

[
g(0)

LP + g(1)
LPτ3

]
ψ + eRγ 5μLψγ5

[
g(0)

RP + g(1)
RPτ3

]
ψ

+ eLγ μμLψγμ

[
g(0)

LV + g(1)
LV τ3

]
ψ + eRγ μμRψγμ

[
g(0)

RV + g(1)
RV τ3

]
ψ + eLγ μγ 5μLψγμγ5

[
g(0)

LA + g(1)
LAτ3

]
ψ

+ eRγ μγ 5μRψγμγ5
[
g(0)

RA + g(1)
RAτ3

]
ψ + 1

2

{
eLσμνμLψσμν

[
g(0)

LT + g(1)
LT τ3

]
ψ + eRσμνμRψσμν

[
g(0)

RT + g(1)
RT τ3

]
ψ

})
, (5)

where ψ = (p, n)T and g(0)
XK and g(1)

XK are isoscalar and isovector coupling constants. These constants are connected with coupling
constants at the quark level through:

g(0)
XK = 1

2

∑
q=u,d,s

[
gXK (q)G(q,p)

K + gXK (q)G(q,n)
K

]

g(1)
XK = 1

2

∑
q=u,d,s

[
gXK (q)G(q,p)

K − gXK (q)G(q,n)
K

]
, (6)

where G(q,p)
K are form factors (see Ref. [18] and references therein) obeying the relations

G(u,p)
K = G(d,n)

K , G(d,p)
K = G(u,n)

K , G(s,p)
K = G(s,n)

K , (7)

where u, d , and s are quark indices and p and n stand for
protons and neutrons, respectively. These form factors are
presented in Table I, and their values have been obtained
under the conditions of isospin invariance. Below we define
the coupling constants for neutron gXK (n) and proton gXK (p)

states which are related with the above g(0)
XK and g(1)

XK by:

gXK (n) = g(0)
XK − g(1)

XK

gXK (p) = g(0)
XK + g(1)

XK . (8)
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TABLE I. Values of the form factors from Eq. (6), as given in
Ref. [18].

G(u,p)
V = 2 G(d,p)

V = 1 G(s,p)
V = 0

G(u,p)
A = 0.78 G(d,p)

A = −0.47 G(s,p)
A = −0.19

G(u,p)
S = 5.1 G(d,p)

S = 4.3 G(s,p)
S = 2.5

G(u,p)
P = 103 G(d,p)

P = 100 G(s,p)
P = 3.3

B. Relevant operators and nuclear matrix elements

In order to use the Lagrangian in Eq. (5), in conjunction
with a nonrelativistic description of the nucleus, one needs to
reduce the operators in Eq. (5) to their nonrelativistic limit.
This is performed using Foldy-Wouthuysen transformation
[31] and various operators appear that are similar to those
of the standard β-decay theory as given, for example, in
Ref. [32].

To quantify the rate of (μ− −→ e−) conversion that leaves
the nucleus in some final state |Jf M f 〉 we calculate the expec-
tation values of the Lagrangian between the initial |i〉 and final
| f 〉 states 〈 f |L|i〉, where in the present case, taking 208Pb as
the host nucleus, they are written as follows:

|i〉 = |208Pb, gs〉 ⊗ |μ−, bound〉
| f 〉 = |208Pb, exc + gs〉 ⊗ |e−, outgoing〉, (9)

averaged over the spin of the initial state of the nucleus and of
the muon and summed over the final states of the nucleus and
of the outgoing electron.

The wave function, |JM, k〉 of the excited kth state in
208Pb is constructed as a superposition of neutron particle-hole
states |nn′−1; JM〉 and proton particle-hole states |pp′−1; JM〉
which we can write in a compact way suitable for later use,
namely:

|JM, k〉 =
∑

ρ≡(nn′−1 ),(pp′−1 )

C(k)(ρ)|ρ; JM〉. (10)

The quantities C(k)(ρ) with ρ ≡ {(nn′−1), (pp′−1)} are the
amplitudes obtained by a direct diagonalization of the residual
two-body interaction, which in this work is the δ-force inter-
action of Ref. [33].

To obtain the expression for MNucl the effective interaction
is expanded in powers of the inverse nucleon mass M−1

N and
in the limit of small momenta, pN/MN 
 1, where pN is the
momentum of the nucleon, one obtains:

M2
Nucl

(
Jπ

f

) = M2(〈1〉) + M2(〈σ 〉) + M2(�), (11)

where the quantities M2(〈1〉), M2(〈σ 〉), and M2(�) are the
spin-independent, spin-dependent, and tensor parts, respec-
tively, of the squared matrix element.

For the spin-independent part we write

M2(〈1〉) = mec1 + Eec2 − 1

2MN
p2

ec3, (12)

where me, pe, and Ee are the mass, momentum, and energy of
the emitted electron. The coefficients c1, c2, and c3 in Eq. (12)
are given by

c1 =
∑

qq′=(p,n)

{2gLS (q)gRS (q′) + 2gLS (q)gRV (q′) + 2gRV (q)gLV (q′) + gRS (q)gLV (q′) + gRS (q)gRV (q′)}M(qq′, l γ = 0 J )

c2 =
∑

qq′=(p,n)

{2gLS (q)gLV (q′) + 2gRS (q)gRV (q′) + 2gRV (q)gRV (q′) + gLS (q)gLS (q′) + gRS (q)gRS (q′)}M(qq′, l γ = 0 J )

c3 =
∑

qq′=(p,n)

{gLS (q)gLV (q′) + gRS (q)gRV (q′) − gLS (q)gLT (q′) − gRS (q)gRT (q′) + gRV (q)gRV (q′) + gLV (q)gLV (q′)

− gRV (q)gRT (q′) − gLV (q)gLV (q′)}M(qq′, l γ = 0 J ), (13)

where the summations are performed on neutron (q = n) and proton(q = p) states and the nuclear matrix elements are defined
by

M(qq′, l γ = 0 J ) =
∑

k,k′,ρ,ρ ′
C(k)(ρ)C(k′ )∗(ρ ′)〈ρ, k||T (l,0)J ||0+〉〈ρ ′, k′||T (l,0)J ||0+〉∗. (14)

The operator T (l,0)J is defined as follows:

T (l,0)JM = δlJ

√
4π il jl (per)g(r)YlM (r̂), (15)

where g(r) is the radial wave function of the muon in the 1s state of the muonic atom.
For the spin-dependent part we write

M2(〈σ 〉)) = mec′
1 + Eec′

2 − 1

2MN
p2

ec′
3, (16)
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where the coefficients c′
1, c′

2, and c′
3 are given by

c′
1 =

∑
qq′=(p,n)

{2gRA(q)gLA(q′) + 2gRA(q)gLT (q′) + 2gLA(q)gRT (q′) + 2gLT (q)gRT (q′)}M(qq′, l γ = 1 J )

c′
2 =

∑
qq′=(p,n)

{2gRA(q)gRT (q′) + 2gLA(q)gLT (q′) + gRA(q)gRA(q′) + gLA(q)gLA(q′) + gLT (q)gLT (q′)

+ gRT (q)gRT (q′)}M(qq′, l γ = 1 J )

c′
3 =

∑
qq′=(p,n)

{2[−gLP(q)gLA(q′) − gRP(q)gRA(q′) − gLP(q)gLT (q′) − gRP(q)gRT (q′) + gRA(q)gRA(q′) + gLA(q)gLA(q′)

− gRA(q)gRT (q′) − gLA(q)gLT (q′)]}M(qq′, l γ = 1 J ), (17)

and

M(qq′, l γ = 1 J ) =
∑

k,k′,ρ,ρ ′
C(k)(ρ)C(k′ )∗(ρ ′)〈ρ, k||T (l,1)J ||0+〉〈ρ ′, k′||T (l,1)J ||0+〉∗. (18)

The spin-dependent operator T (l,1)J is defined as follows:

T (l,1)JM =
√

4π il jl (per)g(r)[Yl (r̂) × σ ](JM ). (19)

Finally, the tensor part is written

M2(�) = − 1

2MN
p2

e

√
2

3
c′′

3, (20)

where the coefficient c′′
3 is given by

c′′
3 =

∑
qq′=(p,n)

{[−2gLP(q)gLA(q′) − 2gRP(q)gRA(q′) − 2gLP(q)gLT (q′) − 2gRP(q)gRT (q′) + gRA(q)gRA(q′) + gLA(q)gLA(q′)

− gLT (q)gLT (q′) − gRT (q)gRT (q′)]}M(qq′), (21)

and the nuclear matrix elements read

M(qq′) =
∑

kk′,ρ,ρ ′
C(k)(ρ)C(k′ )∗(ρ ′)

(
5

6

)2 4π

2Ji + 1

∑
l,l ′,K

(−1)l/2−l ′/2+K
√

(2l + 1)(2l ′ + 1)

(
l l ′ 2

0 0 0

){
1 1 2

l ′ l K

}

×〈ρ, k||il jl (per)g(r)[Yl (r̂) × σ ](K )||0+〉〈ρ ′, k′||il ′ j′l (per)g(r)[Yl ′ (r̂) × σ ](K )||0+〉∗. (22)

In the above equations, we have adopted the notation and
the phase convention given in Ref. [34], concerning the matrix
elements of tensor operators written in spherical coordinates
and spherical single-particle states. In Eqs. (15), (19), and
(22), the operators T (l,γ )JM are acting on single nucleon
coordinates, which have been omitted for simplicity.

C. Coherent and noncoherent transitions

The noncoherent part of the probability �i→ f of Eq. (3) is
then calculated by taken the matrix elements of the transition
operators between the ground state and excited states of
the nuclear spectrum. Using the square matrix elements of
Eq. (11) one obtains:

M2
gs−→exc =

∑
f

(
pe f

mμ

)2

M2
Nucl(J

π
f ), (23)

where “gs” denotes the ground state of the nucleus and the
subindex “f” stands for the final excited nuclear state.

The coherent part of the transition is calculated from the
expectation value of the spin-independent operator j0(per)
in the ground state of the nucleus. It is clear that, from the

effective Lagrangian given by Eq. (5), only the scalar and
vector terms will contribute to the squared matrix element
of the coherent process. Using the notation of Ref. [13] the
squared matrix element can be written:

M2
gs−→gs = (3gV fV )2

[(
1 + 1

3β
)
ZFZ + (

1 − 1
3β

)
NFN

]2
,

(24)

with the proton and neutron nuclear form factors FZ and FN

given by the expressions

FZ = 1

Z

∑
j

(2 j + 1)〈 j|| j0(|pe|r)|| j〉(V Z
j

)2

FN = 1

N

∑
j

(2 j + 1)〈 j|| j0(|pe|r)|| j〉(V N
j

)2
, (25)

where V Z
j and V N

j are the occupation factors for proton and
neutron single-particle states. In our model, V Z

j (V N
j ) = 1(0)

for occupied (empty) single-particle states since we are deal-
ing with a double-close shell nuclei. The quantities gV , fV ,
and β depend on the particular gauge model responsible for
the elementary muon to electron conversion. The advantage
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1+ 5.844

0+ 0.000

3− 2.617
3− 2.848
5− 2.904
1− 3.008
4+ 3.138
2+ 3.259
5− 3.282
4− 3.466
2− 3.587
7− 3.682
6+ 3.705
5− 3.720
3− 3.754
4− 3.796
6− 3.921
5− 4.050
4− 4.209
5− 4.235
6− 4.316
4− 4.602
5+ 4.847
0− 5.028
3+ 5.383
0+ 5.470
1+ 5.521

Experiment Theory

FIG. 1. Calculated and experimental energy levels of 208Pb. The
results have been obtained by diagonalizing the delta force inter-
action in the space of particle-hole configurations in a basis of
single-particle states up to three mayor shells around the neutron and
protons shell closures N = 126 and Z = 82. All values are given in
units of MeV. The parameters used in the calculations are given in
Refs. [25,35]. The experimental data are taken from Ref. [37].

of using the form factors FZ and FN is that they depend only
on the nuclear structure quantities and are independent of the
specific model of the LFV process.

III. RESULTS AND DISCUSSIONS

A. Nuclear structure of 208Pb

The single-particle neutron and proton states, which are in-
cluded in the single-particle basis, are the harmonic oscillator
states listed in Table I of Ref. [25]. The values of these single-
particle energies were taken from Refs. [35,36] and several of
them were adjusted to reproduce the observed single-particle
energies and spin sequences in the region of A = 208. To
obtain the wave functions of the excited states of 208Pb we
have diagonalized the δ-force interaction, with parameters
adjusted to reproduce the energy of the first excited Jπ = 3−
state in 208Pb. A detailed comparison between experimental
and calculated energy spectra and transition probabilities have
been presented in Ref. [25] and it will be omitted here for
brevity. For the sake of completeness we present in Fig. 1
the lowest portion of the calculated and experimental energy
levels of 208Pb.

B. Muon and electron states

For the leptonic part we have solved the Dirac equation
numerically using the parameters given in Ref. [38]. Both
the large and small radial components of the muon spinor
are shown in Fig. 2. The outgoing electron is taken as a
plane wave. Following the discussion advanced in Ref. [20],
concerning the sensitivity of the transition amplitude of the
moun to electron conversion on the muon wave function,
we have compared it with the normalized asymptotic form
sin(mμr)/mμ (see Fig. 2) and computed the average value
of the large component of the muon spinor weighted by the
proton and neutron densities [34], leading to the expressions

〈g(r)〉2
p =

∫ ∞

0
dr4πg(r)2ρp(r)

〈g(r)〉2
n =

∫ ∞

0
dr4πg(r)2ρn(r), (26)

for the average taken with proton (p) and neutron (n) densities.
The results are of the order of 〈g(r)〉2

p = 0.334 and 〈g(r)〉2
n =

0.496, respectively. From these results it is seen that the
calculated radial part of the muon spinor is roughly peaked
at the nuclear surface and it does not have nodes except at the
origin, at variance with the approximated form.

0 5 10 15
r [fm]

0.0

0.1

0.2

0.3

0.4

de
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s 
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e 
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ρ
n
(r)

ρ
p
(r)

f(r)

0 5 10 15
r [fm]

-0.4

-0.2

0

0.2

0.4
g(r)

sin(mμr)/mμ

FIG. 2. Radial muon wave function and nuclear densities of 208Pb. Left: Large [g(r)] and small [ f (r)] components of the muon wave
function, together with the proton and neutron densities of 208Pb as a function of the radius. Right: Large component of the muon wave
function g(r) compared to normalized sin (mμr)/mμ.
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TABLE II. Nuclear matrix elements, of the orbital, spin, and tensor operators [see Eqs. (14), (18), and (22)]. With q = p or n, we indicate
the structure of the particle-hole excitations, that is p means proton (particle)–proton (hole), and n means neutron (particle)–neutron (hole)
configurations. With pe f , mμ, Ee f , and MN we denote the momentum of the outgoing electron, the muon rest-mass, the outgoing electron
energy and the nucleon mass, respectively. In all of these matrix elements the μ-wave function is considered as indicated in Eqs. (15), (19),
and (22).

q, q′ = p, p′ q, q′ = n, n′ q, q′ = p, n′

∑
f (pe f /mμ)2meM〈1〉(qq′) 0.445×10−2 0.387×10−2 0.261×10−3∑
f (pe f /mμ)2Ee f M〈1〉(qq′) 0.716 0.660 0.615×10−1∑
f (pe f /mμ)2 p2

e f
/(2MN )M〈1〉(qq′) 0.315×10−1 0.308×10−1 0.360×10−2

∑
f (pe f /mμ)2meM〈σ 〉(qq′) 0.455×10−2 0.400×10−2 −0.381×10−4∑
f (pe f /mμ)2Ee f M〈σ 〉(qq′) 0.719 0.675 −0.116×10−1∑
f (pe f /mμ)2 p2

e f
/(2MN )M〈σ 〉(qq′) 0.311×10−1 0.310×10−1 −0.762×10−3

∑
f (pe f /mμ)2 p2

e f
/(2MN )M〈�〉(qq′) −0.924×10−4 0.362×10−4 −0.206×10−3

TABLE III. Idem as Table II, with the replacement of the radial dependence g(r) jl (per) in Eqs. (15), (19), and (22) by g(R) jl (per), with R
the nuclear radius R = 1.2A1/3 fm.

q, q′ = p, p′ q, q′ = n, n′ q, q′ = p, n′

∑
f (pe f /mμ)2meM〈1〉(qq′) 0.675×10−2 0.593×10−2 0.306×10−3∑
f (pe f /mμ)2Ee f M〈1〉(qq′) 1.085 1.016 0.727×10−1∑
f (pe f /mμ)2 p2

e f
/(2MN )M〈1〉(qq′) 0.475×10−1 0.473×10−1 0.426×10−2

∑
f (pe f /mμ)2meM〈σ 〉(qq′) 0.680×10−2 0.603×10−2 −0.588×10−4∑
f (pe f /mμ)2Ee f M〈σ 〉(qq′) 1.074 1.018 −0.163×10−1∑
f (pe f /mμ)2 p2

e f
/(2MN )M〈σ 〉(qq′) 0.462×10−1 0.468×10−1 −0.103×10−2

∑
f (pe f /mμ)2 p2

e f
/(2MN )M〈�〉(qq′) −0.124×10−3 0.176×10−4 −0.213×10−3
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are nuclear matrix elements square, regardless of the specific model for the (μ− −→ e−) conversion.
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TABLE IV. Contribution of different terms of the effective Lagrangian [Eq. (5)] to the total squared matrix element of the noncoherent
process (second column) and its spin-independent (third column) and spin-dependent (fourth column) parts. The fifth and sixth columns show
the percentages of spin-independent and spin-dependent terms to the total squared matrix element. All values are given in units of G2

F .

Model Total Spin-independent Spin-dependent Spin-independent/ Spin-dependent/
Eq. (12) Eqs. (16) and (20) total (%) total (%)

Scalar 2.217 2.217 0. 100 0.
Vector 2.013 2.013 0. 100 0.
Axial-vector 1.850 0. 1.850 0 100
Tensor 2.032 0.005 2.027 0.2 99.8

C. Nuclear matrix elements

In this section we consider the noncoherent part of the
squared matrix element of the muon conversion in lead. The
effective LFV electroweak interaction included scalar (S),
vector (V), axial-vector (A), pseudo-scalar (P), and tensor (T)
terms. Therefore, it is natural to begin our analysis by studying
the contribution of every term of the effective Lagrangian.
In this part of our work we will concentrate on the nuclear
structure part of the formalism, and discuss the values of the
nuclear matrix elements entering in Eqs. (23) and (24). In the
later part of our analysis we will consider two specific LFV
models as two possible scenarios of the process.

In this analysis we are particularly interested in determin-
ing the relative importance of the spin-dependent part of the
muon-conversion probability [26]. We present below the spin-
dependent and spin-independent part separately, which are
given by the M2(〈1〉) (spin-independent part) and M2(〈σ 〉) +
M2(�) (spin-dependent part) matrix elements square.

The wave functions and energies of the calculated spectrum
of 208Pb, up to excitation energies of the order of 30 MeV,
have been included in the calculation of the matrix element
M(q, q′, lγ J ) of Eqs. (14), (18), and (22). They contribute to
the noncoherent process and their values, which only depend
on the details of the nuclear structure model and are shown in
Table II.

In order to evaluate the effects on the matrix elements
due to the degree of accuracy in the description of the
muon wave functions we have calculated the matrix elements
M(q, q′, lγ J ) by replacing in the radial integral the muon
wave function g(r) by its value at the nuclear surface g(R),
with R the nuclear radius. The results are shown in Table III.

From the comparison of the results of Tables II and III we
may conclude that the proper treatment of the muon wave
function amounts to sizable changes in the values of the
participant nuclear matrix elements.

TABLE V. Coefficients CV (q) and CA(q) q = p, n for the two
models for muon conversion in nuclei.

Model CV (p) CV (n) CA(p) CA(n)

W exchange 1.917 1.083 −1.017 0.017
SUSY −0.230 3.230 −4.278 4.278

In Table IV we present the contributions of different terms
of the effective LFV Lagrangian to the total squared matrix
element of the noncoherent process (second column) and its
spin-independent (third column) and spin-dependent (fourth
column) parts. The fifth and sixth columns of the table show
the percentage of spin-independent and spin-dependent con-
tributions. In the analysis we have removed the contribution
of the spurious 1− state associated to the center of mass
excitation [39].

In Fig. 3 we present the contributions to the noncoherent
squared matrix elements M(q, q′, lγ J ) of the S-, V-, A-, and
T-type operators. It is seen that the scalar and vector terms
produce very similar contributions and the same is valid for
the axial-vector and tensor operators.

As a particular example of the use of the matrix elements
M(q, q′, lγ J ) and with the coefficients given in Table V,
we have calculated the contributions to the W exchange and
SUSY processes. The results are shown in Tables VI and VII
and in Fig. 4.

It is seen from the histograms shown in Fig. 4 that for the
case of W exchange, the spin-independent nuclear transitions
are larger than the spin-dependent ones, while for the SUSY
model, the contributions of the spin-dependent multipole ex-
citations are larger than the spin-independent one.

The multipole decompositions of the nuclear matrix ele-
ments M〈α〉(q, q′)(α = 1, σ,�) of Eqs. (12), (16), and (20)
are shown in Figs. 5, 6, and 7. These values are independent
of the LFV model. The larger contributions are those of the
spin-independent operators.

TABLE VI. Contribution of W -exchange [13] and SUSY [17]
models to the total squared matrix element of the noncoherent pro-
cess (second column), its spin-independent (third column) Eq. (12)
and spin-dependent (fourth column) Eqs. (16) and (20) parts. The
fifth and sixth columns show the percentages of spin-independent
and spin-dependent terms to the total squared matrix element.

Model Total Spin- Spin- Spin- Spin-
independent dependent independent/ dependent/

total (%) total(%)

W exchange 3.532 2.691 0.841 76.2 23.8
SUSY 34.331 5.024 29.307 14.6 85.4
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TABLE VII. Contributions of various multipoles (Jπ ) to the total squared matrix element of the noncoherent process (second column), its
spin-independent (third column) and spin-dependent (fourth column) contributions for the W -exchange model [13]. In columns 5, 6, and 7 we
show the results obtained by using the SUSY model [17].

Jπ W exchange SUSY

Total Spin independent Spin dependent Total Spin independent Spin dependent

0− 0.056 0.000 0.056 2.110 0.000 2.110
0+ 0.636 0.636 0.000 1.087 1.087 0.000
1− 1.217 1.074 0.143 7.134 2.218 4.916
1+ 0.253 0.000 0.253 8.238 0.000 8.238
2− 0.166 0.000 0.166 5.809 0.000 5.809
2+ 0.735 0.653 0.082 3.934 1.099 2.835
3− 0.298 0.279 0.019 1.270 0.504 0.766
3+ 0.090 0.000 0.090 3.364 0.000 3.364
4− 0.025 0.000 0.025 0.920 0.000 0.920
4+ 0.045 0.042 0.003 0.257 0.103 0.155
5− 0.005 0.005 2×10−4 0.027 0.013 0.014
5+ 0.004 0.000 0.004 0.181 0.000 0.181
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The form factors of Eqs. (25) are given in Table VIII. The
results of the present work, for A = 208, are compared with
the results obtained in other works, for A = 27, 48, and 208
Refs. [11,13] and [19]. Table IX shows the results for the
total matrix corresponding to the coherent and noncoherent
channels. The quantities given in Table VIII are obtained in
the context of the W exchange and SUSY models.

IV. CONCLUSIONS

In this paper we have revisited the case of the muon-
to-electron conversion in 208Pb. We have considered here a
most general form of the nonphotonic part of the effective
four-fermion Lagrangian. To describe the wave functions of
the states belonging to the nuclear spectrum we have adopted
a δ-force interaction and diagonalized it in the basis of proton
(neutron) particle-hole configurations. The nuclear response
was then decomposed in multipoles for each of the channels
participant accordingly to the structure of the associated op-
erators. This was done in order to facilitate the use of the
calculated nuclear matrix elements in modeling LFV pro-
cesses. The nuclear response was applied to two specific LFV
scenarios (W bosons and SUSY particles as mediators). We
have discussed the spin dependence of the operators entering
the calculated nuclear matrix elements and found that the
spin-independent modes yield larger contributions compared
to the spin-dependent ones. When using these matrix elements
in the W -exchange mechanism the spin-independent modes
dominates over the spin-dependent ones, but the situation
seems to be the opposite for other LFV modes, like SUSY

TABLE VIII. Proton and neutron nuclear form factors FZ and FN

calculated in this work using Eq. (25) and results taken from previous
works.

Model A Z FZ FN

Ref. [11] 27 13 0.66 0.62
Ref. [19] 27 13 0.667 0.662
Ref. [11] 48 22 0.55 0.52
Ref. [13] 48 22 0.55 0.52
Ref. [11] 208 82 0.25 0.22
This work 208 82 0.28 0.22

particle-mediated processes. As expected, and as was found
in all previous works, the coherent process is the domi-
nant one since it exhausts practically all of the transition
amplitude. However, in view of expected improvements in
the sensitivity of future experiments, the estimates of the
noncoherent part of the transition amplitude may become of
importance.

The theoretical approximations leading to the LFV tran-
sition amplitudes are dependent on the assumptions made
to approximate the subnucleonic and nucleonic parts of the
currents and ultimately on the form of the adopted inter-
actions to describe nuclear correlations, as well as on the
specific form of the Lagrangian. While the nuclear part of the
calculations may be tested by other means, for instance, by
using the same wave functions to calculated electromagnetic
transitions, decays, and particle transfer reactions on the nu-
cleus host of the LFV process, the particle-physics part of it
is still open to schemes which go beyond the standard model
of the electroweak transitions. Then the task to determine the
influence of the underlying LFV model in setting up limits
on the observability of the (μ− −→ e−) conversion may be
facilitated by the use of the multipole decomposition of the
nuclear response as we have done in this work.
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TABLE IX. Square matrix elements for coherent (second col-
umn) and noncoherent (third column) transitions for the W -exchange
and SUSY models.

Model M2
gs−→gs M2

gs−→exc

W exchange 1738.8 3.5
SUSY 2904.3 34.3
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