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Universal scaling of the σ field and net-protons from Langevin dynamics of model A
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In this paper, we investigate the Kibble-Zurek scaling of the σ field and net-protons within the framework
of Langevin dynamics of model A. After determining the characteristic scales τKZ, lKZ, and θKZ and properly
rescaling the traditional cumulants, we construct universal functions for the σ field and approximate universal
functions for net-protons in the critical regime, which are insensitive to the relaxation time and the chosen
evolving trajectory. Besides, the oscillating behavior for the higher order cumulants of net-protons near the
critical point is also drastically suppressed, which converge into approximate universal curves with these
constructed Kibble-Zurek functions.
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I. INTRODUCTION

The search for the critical point on the phase diagram of
quantum chromodynamics (QCD) has attracted considerable
attention in the heavy ion community for decades [1–6]. The
critical point is the endpoint of the first order phase transition
boundary that separates the quark-gluon plasma phase and the
hadronic phase [1,3,7–13]. The characteristic features of the
critical point are the divergence of various fluctuations, long
range correlations, and singularities of some thermodynamic
quantities [3]. For example, the variance σ , skewness S, and
kurtosis κ of the σ field are proportional to various orders
of the correlation length ξ , which diverge with ξ 2 [1,14],
ξ 4.5 and ξ 7, respectively [15]. It was also found that the
kurtosis κ of the σ field presents a nonmonotonic behavior
with the increase of the net-baryon chemical potential μB [16].
After coupling the σ field with various hadrons, such critical
fluctuations also influence the multiplicity distributions of
conserved charges [15], which can be systematically mea-
sured in experiment.

The Beam Energy Scan (BES) program at the BNL Rela-
tivistic Heavy-Ion Collider (RHIC) aims to search the QCD
critical point through evaluating the fluctuations of conserved
charges [17–21]. Recently, higher order cumulants of net-
protons, with the transverse momentum coverage extended
to 0.4 < pT < 2 GeV, have been systematically measured in
Au+Au collisions from 7.7 to 200 A GeV [21]. The kurtosis of
net-protons in the most central collisions presents a nonmono-
tonic behavior and largely deviates from the poisson baseline
below 39 GeV, which indicates the potential of discovering
the critical point.
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In the theoretical side, the equilibrium and nonequilibrium
critical fluctuations near the critical point have been investi-
gated by different groups [15,16,22–38]. Through coupling
the order parameter field to the emitted protons and antipro-
tons on the freeze-out surface, the equilibrium critical fluc-
tuations qualitatively explained the acceptance dependence
of the measured cumulants and the nonmonotonic behavior
of the kurtosis for net-protons [31,32]. However, the same
framework failed to describe the cumulants C2 and C3 of
net-protons due to the intrinsic positive contributions of the
equilibrium critical fluctuations [32]. Recently, it was realized
that the critical slowing down effects largely influence the
non-equilibrium critical fluctuations, which even reverse the
signs of skewness and kurtosis compared to the equilibrium
values [29,30]. Besides, it was also found that the nonequi-
librium evolution near the critical point also influences the
rapidity window dependence of the variance [34]. For a
qualitative and quantitative evaluation of the BES data and
for the search of the critical point, it is important to develop
dynamical models for the evolving bulk matter together with
nonequilibrium evolution of the critical mode (for recent
progresses, please also refer to the work of hydro+ [36]).

For a dynamical model near the critical point, the cal-
culated nonequilibrium fluctuations are sensitive to various
free inputs and parameters, such as the trajectory and re-
laxation time of the evolving system, the mapping between
the three-dimensional Ising model and the hot QCD system,
etc. Meanwhile, the critical slowing down effects drive the
system out of equilibrium, which leads to correlated regions
with characteristic length scales after the system becomes
“frozen”. It was realized that, within the framework of Kibble-
Zurek mechanism (KZM), one could construct some universal
variables near the critical point, that are independent on some
of these nonuniversal factors [33,39–42]. In cosmology, the
KZM was first introduced by Kibble [43] to study the defect
formation of the expanding Universe after the Big Bang,
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which is then extended by Zurek [44] to study the condensed
matter systems near the critical point. Recently, the KZM was
applied to relativistic heavy ion collision within the frame-
work of Fokker-Planck equation, which constructed universal
functions for the evolving σ field in the critical regime [33].

In this work, we will investigate the universal scaling of
both σ field and net-protons from the Langevin dynamics
of model A. Compared with the Fokker-Planck equation
approach which only considers the zero mode of the σ field,
our Langevin dynamics simulations evolve the whole σ field
in the position space event by event, which can be coupled
with final hadrons to further investigate the multiplicity fluc-
tuations and possible universal scaling of net-protons in the
critical regime. Note that this paper does not aim to construct
realistic universal experimental observables with this sim-
plified Langevin dynamics, but focuses on investigating the
Kibble-Zurek scaling of the σ field and net-protons with two
ideal cases: 1) the systems evolve along a chosen trajectory
with different relaxation times; 2) the systems evolve along
different chosen trajectories. We will demonstrate that one
could construct universal functions for the σ field in the
critical regime, which are insensitive to the relaxation time or
chosen evolution trajectory. With a linear expansion of the
distribution functions of protons and antiprotons, such univer-
sal behavior of the σ field could be translated into a similar
universal behavior of net-protons through the σNN coupling.
On the other hand, the numerical simulations with the full
distribution functions of protons and antiprotons show that
one could still construct an approximate universal functions
for net-protons, which drastically reduce the sensitivity to the
relaxation time and evolving trajectory.

The paper is organized as follows. Section II briefly in-
troduces Langevin dynamics of model A and the basic idea
to construct the universal functions according to the Kibble-
Zurek mechanism. Section III presents and discusses the
constructed universal functions of the σ field and approximate
universal functions of net-protons in the critical regime. Sec-
tion IV summarizes and concludes the paper.

II. MODEL AND SET UPS

A. Langevin dynamics of model A

It is generally believed that the hot QCD system belongs to
model H according to the classification of Ref. [45], which
focuses on the dynamics of order parameter field, baryon,
and energy density [24]. Recently, an alternative approach,
hydro+ [36], has been developed, which extended traditional
hydrodynamics to the critical regime with the additional evo-
lution of the slow mode. However the numerical implementa-
tion of model H and hydro+ are both complicated, which are
still under development.

In this paper, we focus on investigating the universal be-
havior of the σ field and net-protons near the critical point,
with a simplified Langevin dynamics, called model A, that
only evolves the nonconserved order parameter field of one
single component. The corresponding equation is written as

∂σ (x, τ )

∂τ
= − 1

m2
σ τeff

δU [σ (x)]

δσ (x)
+ ζ (x, τ ), (1)

where the noise ζ satisfies the fluctuation-dissipation theorem:

〈ζ (x, τ )〉 = 0,

〈ζ (x, τ )ζ (x′, τ ′)〉 = 2T

m2
σ τeff

δ3(x − x′)δ(τ − τ ′). (2)

Here, T is the temperature, mσ is the mass of the σ field,
τeff is the relaxation time, and U [σ (x)] is the effective
potential. According to the analyses of dynamical critical
behavior [45], the effective relaxation time τeff depends on
equilibrium correlation length ξeq as τeff = τrel(ξeq/ξmin)z,
where τrel is a free parameter in this work. For the dy-
namical critical exponent, we use the one from model H
with z = 3.

In the vicinity of the critical point, the effective potential
U [σ (x)] can be expanded in the powers of the order parameter
field σ (x):

U [σ (x)] =
∫

d3x

{
1

2
[∇σ (x)]2 + 1

2
m2

σ [σ (x) − σ0]2

+λ3

3
[σ (x) − σ0]3 + λ4

4
[σ (x) − σ0]4

}
, (3)

where λ3 and λ4 are the coupling coefficients of the cubic
and quadratic terms, σ0 is the equilibrium mean value of
σ (x), mσ is the mass of the σ field which is related to the
equilibrium correlation length with mσ = 1/ξeq. Following
Ref. [29], we construct the effective potential U [σ (x)] through
a mapping between the hot QCD system and the three-
dimensional (3d) Ising model [46,47]. In more details, one
first calculates the cumulants from the distribution function
P[σ ] ∼ exp[−U (σ )/T ] and from the parametrization of mag-
netization Meq of the 3d Ising model. A comparison of the
cumulants obtained from these two procedures gives the forms
of σ0(R, θ ), ξ (R, θ ), λ3(R, θ ), and λ4(R, θ ). Here, R and θ

are the distance and angle with respect to the location of the
critical point, which are related to the Ising model variables
r and h via r(R, θ ) = R(1 − θ2), h(R, θ ) = R5/3(3θ − 2θ3).
The Ising model variables (r, h) are related to the hot QCD
parameters (T, μ) through a linear mapping: (T − Tc)/�T =
h/�h, (μ − μc)/�μ = −r/�r. Note that such mapping is
nonuniversal, which depends on the position of the critical
point and the shape of the critical regime for the constructed
QCD phase diagram. The details can be found in the Appendix
of this paper.

To numerically solve Eq. (1), one needs to input the
local temperature T (x) and local chemical potential μ(x)
of the external heat bath. For simplicity, we assume that
the heat bath evolves along certain trajectory with uni-
form temperature and chemical potential in the position
space. Such trajectories can be expressed with the r and h
variables [33]:

r = rc − ahh2, (4)

where rc and ah are two free parameters to tune the shape
of the trajectories. In the following calculations, we select
two types of trajectories, called type A and type B. For type
A trajectory, we set ah = 0 and rc = 0.02 �r. This corre-
sponds to the system evolving with fixed chemical potential,
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FIG. 1. Trajectories of type A (magenta line) and type B (colored
curves) in the critical regime. The boundary of the critical regime
(black dashed curve) is defined by ξeq = 1 fm.

where the changing rate of the effective potential is mainly
captured by the variation of the correlation length ξeq. For
type B trajectories, we set rc as a constant, and tune ah

to ensure approximately equal correlation length near the
phase transition line. In this way, θ becomes the dominated
factor for the changing rate of the effective potential, which
simplifies the corresponding analysis of the universal behavior
for type B trajectories. In Fig. 1, we plot the trajectories of
type A and type B, which are denoted by the magenta line
and different colored curves, respectively. The black dashed
curve is the boundary of the critical regime defined by the
equilibrium correlation length ξmin = 1 fm. Note that, a more
realistic trajectory of the heat bath is the line with constant
baryon density over entropy n/s, which is complicate for
the following computation of quench time in Sec. II B. For
simplicity, we assume the system evolves along these chosen
trajectories (type A and type B) in this work.

As the heat bath evolving along one of these trajectories,
we assume that the temperature T drops down in a Hubble-
like way [33]:

T (τ )

TI
=

(
τ

τI

)−0.45

, (5)

where TI and τI are the initial temperature and initial time.
In numerical simulations, we first construct the initial pro-

files of the σ field through the probability function: P[σ (x)] ∼
exp {−U [σ (x)]/T } and then evolve the σ field event by event
according to Eq. (1). But the discretization of the noise term
leads to a grid size dependence for the calculated cumu-
lants [48]. To avoid this complexity, we only focus on the
long wavelength behavior of the evolving system and coarse-
grain the noise term over the spatial extension as proposed
in Ref. [49]. In other word, we numerically evolve Eq. (1) in
3 + 1 dimensions and the noise term is been coarse-grained
which is uniform in coordinate space but random in temporal
direction. In the limit of zero mode, one can prove [50] that
such Langevin equation is equivalent to the Fokker-Planck
equation implemented in Ref. [29]. For each time step, we
calculate the corresponding cumulants which are defined as

the following:

C1 = 〈σ 〉, C2 = 〈σ 2〉 − 〈σ 〉2,

C3 = 〈σ 3〉 − 3〈σ 2〉〈σ 〉 + 2〈σ 〉3,

C4 = 〈σ 4〉 − 4〈σ 3〉〈σ 〉 − 3〈σ 2〉2 + 12〈σ 2〉〈σ 〉2 − 6〈σ 〉4,

(6)

where σ denotes the spatial average of the sigma field σ (x)
and 〈· · · 〉 is the event average.

B. The Kibble-Zurek scaling

The above cumulants of the σ field Eq. (6) are influenced
by inputs and free parameters in the model calculations, such
as the relaxation time, the trajectory of the heat bath, and the
mapping between the 3d Ising model and the hot QCD system,
etc. Within the framework of the Kibble-Zurek mechanism,
Ref. [33] has constructed some universal functions for the
Fokker-Planck equation approach, which are independent on
some nonuniversal factors. In this paper, we will explore
such universal behavior within the framework of Langevin
dynamics.

For a system evolving near the critical point, there are two
competitive time scales, the relaxation time τeff that describes
the relaxation rate of the order parameter field and the quench
time τquench that describes the changing rate of the effective
potential. As explained in Sec. II A, the relaxation time takes
the form τeff = τrel(ξeq/ξmin)z with z = 3. The quench time
τquench = min(τ ξ

quench, τ
θ
quench) can be calculated as [33]

τ
ξ

quench =
∣∣∣∣ ξeq(τ )

∂τ ξeq(τ )

∣∣∣∣, τ θ
quench =

∣∣∣∣ θ (τ )

∂τ θ (τ )

∣∣∣∣. (7)

In general, the quench time decreases as the system cools
down, and the relaxation time rapidly increases as the system
approaches the critical point due to the critical slowing down
effects. This leads to a point τ ∗, where the relaxation time
equals to the quench time, after which the order parameter
field becomes hard to adjust itself to the changing effective
potential. In other words, the system becomes approximately
frozen after τ ∗. Correspondingly, one defines the characteris-
tic time scale τKZ, length scale lKZ, and magnetization angle
θKZ to characterize the typical scales of the correlated patches
for the evolving systems near the critical point:

τKZ = τeff(τ
∗) = τquench(τ ∗),

lKZ = ξeq(τ ∗), θKZ = θ (τ ∗). (8)

In Fig. 2, we plot the time evolution of the relaxation
time τeff and quench time τquench along trajectories of type
A (with τrel/τc = 0.02, 0.06, 0.10, 0.14) and type B (with
rc = 0.6, 0.7, 0.8, 0.9). As shown in Fig. 2, the increasing
relaxation time τeff and decreasing quench time τquench lead
to a proper time τ ∗, with which one could further obtain
the characteristic scales τKZ, lKZ, and θKZ from Eq. (8). Fol-
lowing [33], we construct the universal functions f̄n((τ −
τKZ)/τKZ, θKZ) (n = 1, . . . , 4) through rescaling the cumu-
lants Cn (n = 1, . . . , 4) and the proper time τ − τc with these
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FIG. 2. Time evolution of the relaxation time τeff and quench
time τquench along trajectory of type A with different τrel/τc (a) and
along trajectories of type B with different rc (b). The locations of the
proper time τ ∗ are obtained from τeff(τ ∗) = τquench(τ ∗).

characteristic scales, which is written as the following:

Cn(τ − τc) ∼ l
− 1

2 + 5
2 (n−1)

KZ f̄n[(τ − τc)/τKZ; θKZ],

n = 1, . . . , 4, (9)

where τc is the time when the QCD system evolves to the
crossover line. The exponent of lKZ comes from the fact that
the n-order equilibrium critical cumulants are proportional
to [−1 + 5(n − 1)]/2 powers of the correlation length ξeq

[33].

III. RESULTS AND DISCUSSIONS

In the following calculations, we first simulate the evo-
lution of the σ field using Eq. (1), and then investigate the
possible universal behavior of the σ field and net-protons.
Below are detailed calculations and results.

A. Kibble-Zurek scaling of the σ field

Figure 3(a) shows the time evolution of the cumulants for
the σ field, which evolves along a fixed trajectory of type A
with different relaxation times, τrel/τc = 0.02, 0.06, 0.1, 0.14.
Due to the critical slowing down effects, these dynamical

cumulants largely deviate from the equilibrium values, which
are also sensitive to the relaxation time inputs. Figure 3(b)
focuses on demonstrating the related universal behavior of
the σ field. As explained in Sec. II, the changing rate of
the effective potential along type A trajectory is mainly
controlled by the variance of the correlation length ξeq, and
the corresponding quench time is τ

ξ

quench = |ξeq(τ )/∂τ ξeq(τ )|.
As shown in Fig. 2(a), the proper time τ ∗ can be obtained
from comparing the relaxation time τeff and the quench
time τ

ξ

quench with which the Kibble-Zurek scales τKZ and
lKZ can be calculated from Eq. (8). With lKZ and τKZ,
we rescale Cn and τ − τc and construct the universal func-
tions f̄n according to Eq. (9). Figure 3(b) plots the uni-
versal functions f̄n for the evolving systems with different
relaxation times, which converge into one universal curve
near the critical point. In contrast, the original cumulants,
Cn(n = 1, . . . , 4), before the rescaling procedure are sepa-
rated from each other and are sensitive to the relaxation
times.

In Fig. 4, we explore the universal behavior of the σ field
with the heat bath evolving along different trajectories. For
simplicity, we construct specific trajectories (type B) with
approximately equal equilibrium correlation length ξeq near
the crossover line, which ensures the changing rate of ξeq is
much smaller than the one of θ . Correspondingly, the quench
time can be calculated as τ θ

quench = |θ (τ )/∂τ θ (τ )|. Similar to
the above case, the proper time τ ∗ can be obtained from
Fig. 2(b) and the Kibble-Zurek scales τKZ and lKZ are calcu-
lated from Eq. (8) with which the universal functions f̄n can
be constructed from Eq. (9). In general, θKZ is a nonuniversal
factor which strongly depends on the evolving trajectories.
Here, we specifically tune the free parameter τrel/τc to ensure
θKZ is a constant (θKZ = 0.1) for these different trajectories of
type B. In this case, we focus on investigating the universal
scaling for such specific type of trajectories. Figure 4(a) show
that various cumulants of the σ field are very sensitive to
the evolving trajectory. Figure 4(b) show that, after rescaling
Cn and τ − τc with l [−1+5(n−1)]/2

KZ and τKZ, the constructed
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FIG. 3. (a) The cumulants Cn(n = 1, . . . , 4) of the σ field as a function of τ − τc, evolving along type A trajectory with τrel/τc =
0.02, 0.06, 0.1, 0.14. The dashed curves represent the equilibrium cumulants along the trajectory. (b) The corresponding universal functions
f̄n((τ − τc )/τKZ, θKZ) (n = 1, . . . , 4) as a function of (τ − τc )/τKZ.
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FIG. 4. Similar to Fig. 3, but evolving along type B trajectories with rc = 0.6, 0.7, 0.8, 0.9.

universal functions f̄n are independent on these chosen tra-
jectories near the critical point.

B. Approximate Kibble-Zurek scaling of net-protons

In last subsection, we have constructed the universal func-
tions of the σ field that evolve with different relaxation times
or with different trajectories. In this subsection, we further
explore the possible universal behavior of net-protons.

In Refs. [16,31,32], the multiplicity fluctuations of net-
protons near the critical point are calculated with the modified
distribution functions fp/p̄(x, p) through coupling the protons
and antiprotons with the external order parameter field. For
simplicity, we take the Boltzmann distribution

fp/p̄(x, p) = e−(E±μB )/T , (10)

where μB is the baryon chemical potential, the lower/upper
signs are for protons/antiprotons, and E is the energy of the
particle E =

√
m2 + p2. For these particles existed near the

critical point, one generally implements a variable effective
mass, m = m0 + δm, to introduce critical fluctuations to the
distribution function, where m0 is the physical mass of the par-
ticle and δm = gσ (x) comes from the interactions between the
σ field and the particles with the σNN coupling [16,31,32].
In this work, we use g = 3.3, m0 = 938.27 MeV, and set
μB and T approximatively to critical values μc = 395MeV,
Tc = 160MeV as predicted in Ref. [51].

The total number of net-protons at a certain temperature T
and chemical potential μB can be calculated through integrat-
ing fp/p̄(x, p) over the whole phase-space:

Np−p̄ ≡ Np − Np̄ = d
∫

d3 pd3x
(2π )3

[ fp(x, p) − f p̄(x, p)], (11)

where the degeneracy factor d = 2 for protons and antipro-
tons. With Eq. (11), we can calculate the cumulants of net-
protons and investigate the possible Kibble-Zurek scaling near
the critical point. First, we consider a simple case with small
fluctuations of the σ field. The distribution functions fp/p̄ can

be linearly expanded as [31,32]

fp/p̄ = fp/p̄,0 + δ f = fp/p̄,0[1 − gσ/(γ T )], (12)

where fp/p̄,0 is the traditional Boltzmann distribution like the
one described by Eq. (10), but replace the variable mass m by
the physical mass m0 of protons and antiprotons. δ f denotes
the deviation associated with the critical fluctuations from the
σNN coupling and γ =

√
m2

0 + p2/m0.
With such expansion, various cumulants of net-protons can

be calculated as

C1,N =
(∫

p

fp,0(p) − f p̄,0(p)

γ (p)

)
〈σ 〉,

C2,N =
(∫

p

fp,0(p) − f p̄,0(p)

γ (p)

)2

〈(δσ )2〉,

C3,N = −
(∫

p

fp,0(p) − f p̄,0(p)

γ (p)

)3

〈(δσ )3〉,

C4,N =
(∫

p

fp,0(p) − f p̄,0(p)

γ (p)

)4

[〈(δσ )4〉 − 3〈(δσ )2〉2],

(13)

where the notations
∫

p ≡ dg
T

∫ d3 p
(2π )3 and δσ ≡ σ − 〈σ 〉. These

equations show that, with σNN coupling that transforms the
critical fluctuations of the σ field to the critical fluctuations of
protons and antiprotons, the cumulants of the net-protons are
proportional to the ones of the σ field with the simplified liner
expansion of Eq. (12). Correspondingly, the universal scaling
of net-protons behaves as the one of the σ field as shown in
Figs. 3 and 4.

For the σ field with large fluctuations, the linear expansion
of Eq. (12) is no longer valid. In the following calcula-
tions, we implement the full distribution function Eq. (10)
to calculate the multiplicity fluctuations of net-protons with
the configurations of the σ field and then investigate the
possible universal scaling behavior. Figures 5(a) and 6(a)
show the time evolution of the cumulants of net-protons for
a trajectory of type A with different τrel/τc and for trajectories
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FIG. 5. (a) The cumulants Cn,N (n = 1, . . . , 4) of net-protons as function of τ − τc, evolving along the trajectory of type A with τrel/τc =
0.02, 0.06, 0.10, 0.14. (b) The corresponding universal functions f̄n,N ((τ − τc )/τKZ, θKZ) (n = 1, . . . , 4) as a function of (τ − τc )/τKZ.

of type B with different rc. Note that the formulas of the
cumulants Cn,N , (n = 1, . . . , 4) for net-protons are similar to
the ones of the σ field, but replace σ with Np−p̄ in Eq. (6).
As the systems evolve near the critical point, higher order
cumulants of net-protons show strong oscillations and the
curves associated with different evolving trajectories largely
separate from each other. In Figs. 5(b) and 6(b), we construct
the corresponding possible universal functions f̄n,N ((τ −
τc)/τKZ, θKZ) (n = 1, . . . , 4) through rescaling the cumulants
of net-protons and τ − τc according to Eq. (9). Compared with
the separating/oscillating Cn,N curves in the left panels, the
constructed f̄n,N ((τ − τc)/τKZ, θKZ) approximately converge
into one curve in Figs. 5(b) and 6(b).

IV. SUMMARY AND OUTLOOK

In this paper, we investigated the Kibble-Zurek scaling for
the critical fluctuations of the σ field and net-protons within

the framework of Langevin dynamics. We focused on two
ideal cases: 1) the systems evolve along a chosen trajectory of
type A with fixed chemical potential but with different relax-
ation times, 2) the systems evolve along different trajectories
of type B that are associated with different rc parameters.
Our event-by-event simulations of the Langevin dynamics
demonstrated that the cumulants Cn, (n = 1, . . . , 4) of the σ

field are sensitive to both the relaxation times and evolving
trajectories.

Using these traditional cumulants Cn, (n = 1, . . . , 4),
we constructed the universal functions f̄n((τ −
τc)/τKZ, θKZ) (n = 1, . . . , 4) of the σ field through rescaling
the corresponding cumulants Cn and proper time τ − τc with
the the characteristic scales τKZ, lKZ, and θKZ for the evolving
systems. We found these constructed universal functions f̄n

are nicely overlapped each other in the critical regime for both
case 1) and case 2), which are insensitive to the relaxation
times and evolving trajectories, respectively.
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FIG. 6. Similar to Fig. 5, but evolving along type B trajectories with rc = 0.6, 0.7, 0.8, 0.9.
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For protons and antiprotons, the σNN coupling translate
the critical fluctuations of the σ field to the critical fluctuations
of net-protons. Correspondingly, the cumulants of net-protons
are sensitive to both relaxation times and evolving trajectories
as the case for the σ field. For small fluctuations of the σ field,
we found the linear expansion of the classical distribution
functions fp/p̄ directly transforms the universal scaling of
the σ field to the universal scaling of net-protons. For large
fluctuations of the σ field, the numerical calculations with the
full distribution functions fp/p̄ have shown that the universal
behavior of net-protons are slightly broken in the critical
regime, but still drastically reduce the sensitivity to the relax-
ation time and evolving trajectories, which even change the
oscillating behavior for higher cumulants of net-protons into
an approximate universal curves.

Finally, we emphasis that this paper focuses on investigat-
ing the universal scaling of the σ field and net-protons for
two ideal cases with specifically chosen trajectories, along
which spatially uniform temperature T and chemical potential
μ changes with the evolution time. These results cannot be
directly compared with the experimental data that involve the
complex QGP fireball evolution with inhomogeneous T (x)
and μ(x) changing in the whole positions space. Besides, we
implement the Langevin dynamics of model A to simplify the
numerical simulations, which only considers the evolution of
nonconserved order parameter field near the critical point. The
multiplicity fluctuations of net-protons are introduced through
σNN coupling in the classical distributions functions (10),
which cannot ensure the global charge conservation as the
case in the traditional Cooper-Frye freeze-out scheme [52,53].
In the near future, such Kibble-Zurek scaling analysis should
be extended to model B which directly evolves the conserved
charges near the critical point. Besides, it is also worthwhile to
develop sophisticated dynamical model near the critical point,
such as hydro+, to further investigate the possible universal
scaling of the experimental observables.
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APPENDIX A: PARAMETERIZATION OF THE
EFFECTIVE POTENTIAL FROM 3D ISING MODEL

The parameters σ0, mσ , λ3, λ4 in the effective potential
Eq. (3) can be obtained from a mapping between the bot QCD
systems and the 3d Ising model. In the 3d Ising model, the
equilibrium cumulants Meq(R, θ ), κeq

n (R, θ ), n = 2, 3, 4, . . .

can be written as [46,47]

Meq = M0R1/3θ ≡ M0a1, (A1a)

κ
eq
2 = M0

V4H0

1

R4/3(3 + 2θ2)
≡ M0

V4H0
a2, (A1b)

κ
eq
3 = −M0

(V4H0)2

4θ (9 + θ2)

R3(3 − θ2)(3 + 2θ2)3
≡ −M0

(V4H0)2
a3, (A1c)

κ
eq
4 = −12M0

(V4H0)3

81 − 783θ2 + 105θ4 − 5θ6 + 2θ8

R14/3(3 − θ2)3(3 + 2θ2)5

≡ −12M0

(V4H0)3
a4. (A1d)

Here, R and θ are the distance and angle with re-
spect to the location of the critical point and V4 ≡ V/T
(for the detail derivation of Eqs. (A1), please refer to Ap-
pendix A of Ref. [29]). The cumulants of sigma field can
also be calculated from the distribution function P0(σ ) ∼
exp (−U0(σ )/T ), which take the forms

Meq = σ0, κ
eq
2 = ξ 2

eq

V4
, κ

eq
3 = −2λ3

V 2
4

ξ 6
eq,

κ
eq
4 = 6

V 3
4

[2(λ3ξeq )2 − λ4]ξ 8
eq. (A2)

Comparing Eqs. (A1) with Eqs. (A2) gives

σ0(R, θ ) = M0a1, ξ 2
eq(R, θ ) = 5ξ 2

mina2,

λ3(R, θ ) = 1

2

H0

M2
0

a3

a3
2

, λ4(R, θ ) = 1

2

H0

M3
0

a2
3

a5
2

+ 2
H0

M3
0

a4

a4
2

.

(A3)

In this work, M0 and H0 are two free parameters and we set
M0 = 200 MeV and ξmin = 1 fm.

With the linear parametric relation r(R, θ ) = R(1 − θ2),
h(R, θ ) = R5/3(3θ − 2θ3), the above σ0(R, θ ), ξ 2

eq(R, θ ),
λ3(R, θ ), λ4(R, θ ) are converted into σ0(r, h), ξ 2

eq(r, h),
λ3(r, h), λ4(r, h), which then can be mapped to the T − μ

plane with the following linear transformation:
T − Tc

�T
= h

�h
,

μ − μc

�μ
= − r

�r
, (A4)

where the definitions and values of the parameters used in this
paper are �T = Tc/8,�μ = 0.1 GeV,�r = (5/3)3/4,�h =
1, Tc = 0.16 GeV, and μc = 0.395 GeV.

APPENDIX B: ANALYTICAL KIBBLE-ZUREK SCALING
OF MODEL A

In this Appendix, we will analytically explain the Kibble-
Zurek scaling of model A with a simplified Langevin equa-
tion, which is similar to Eq. (1), but neglect the higher
order terms in the effective potential (3). Correspondingly,
the evolution equation of the sigma field after the Fourier
Transformation is written as

∂σ (q, τ )

∂τ
= − 1

m2
σ τeff

{
q2σ (q, τ ) + m2

σ [σ (q, τ ) − σ0]
}

+ ζ (q, τ ), (B1)
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where the noise term in the Fourier space

〈ζ (q, τ )〉 = 0, (B2)

〈ζ (q, τ )ζ (q′, τ ′)〉 = 2(2π )3T

m2
σ τeff

δ3(q + q′)δ(τ − τ ′). (B3)

With the inverse Fourier transform and the definition of
Eq. (6), the evolution equation of the first and second order
cumulant C1, C2 are written as1

∂C1

∂τ
= − 1

τeff
[C1 − σ0], (B4a)

∂C2

∂τ
= − 2

τeff

[
C2 − ξ 2

eq

V4

]
. (B4b)

Suppose the nonuniversal factor is incorporated in the char-
acteristic scales τKZ, lKZ, and θKZ and the associated variables
is redefined as

τ̃ ≡ (τ − τc)/τKZ, ξ̃ ≡ ξeq/lKZ, C̃1 ≡ C1/l−1/2
KZ ,

C̃2 ≡ C2/l2
KZ. (B5)

The above dynamical equation (B4) can be rewritten as

∂C̃1

∂τ̃
= − τKZ

τrell
z
KZ(ξ̃ /ξmin)z

[C̃1 − σ̃0], (B6a)

∂C̃2

∂τ̃
= −2

τKZ

τrell
z
KZ(ξ̃ /ξmin)z

[
C̃2 − ξ̃ 2

eq

V4

]
, (B6b)

Here, V4 is assumed to be a constant and we use the form τeff =
τrel(ξeq/ξmin)z for the effective relaxation time τeff. The above

1The cumulants of C3 and C4 are zero for the simplified Langevin
equation (B1) without higher order terms.

Eqs. (B6) show that if one could eliminate the nonuniversal
factor τKZ/(τrell

z
KZ), C̃1 and C̃2 as a function of τ̃ become

universal, respectively. In the following part of this section,
we will show that the typical definition of τKZ within the
framework of KZM will ensure the universality of C̃1 and C̃2

for both Type A and Type B trajectories.
For the trajectory of Type A with r 	 0, θ 	 ±1, one finds

that ξeq ∼ t−2/5 from Eqs. (A1), (A4), and (5). Therefore,

τ
ξ

quench =
∣∣∣∣ ξeq

∂τ ξeq

∣∣∣∣ ∼ 5

2
t, (B7)

where t ≡ τ − τc. As defined in Eqs. (8) for these character-
istic scales

τKZ = τ
ξ

quench = τeff = τrel

(
ξeq

ξmin

)z

. (B8)

Then, one could obtain

τKZ = τrell
z
KZ, (B9)

which just eliminate the nonuniversal factor in Eq. (B6) near
the critical point.

For the trajectory of Type B, the equilibrium correlation
length varies slowly, and τ

ξ

quench is large. With θ ∼ τ − τc = t ,
the quench time is

τ θ
quench =

∣∣∣∣ θ

∂τ θ

∣∣∣∣ ∼ t, (B10)

and with the same condition (B8), we obtained the the same
relation described by Eq. (B9), which eliminate the nonuni-
versal factor in Eq. (B6).
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