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Astrophysical factors of 12C + 12C fusion extracted using the Trojan horse method

A. M. Mukhamedzhanov,1,* D. Y. Pang,2,3,† and A. S. Kadyrov4,‡

1Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA
2School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China

3Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191, China
4Curtin Institute for Computation and Department of Physics and Astronomy, Curtin University, GPO Box U1987, Perth, WA 6845, Australia

(Received 22 June 2018; revised manuscript received 11 April 2019; published 27 June 2019)

Carbon-carbon burning plays an important role in many stellar environments. Recently, Tumino et al. [Nature
(London) 557, 687 (2018)] reported a sharp rise of the astrophysical S factor for carbon-carbon fusion determined
using the indirect Trojan horse method. We demonstrate that the rise at low energies seen in the aforementioned
work is an artifact of using an invalid plane-wave approximation that neglects the Coulomb interactions
between charged particles. Our analysis shows that such a rise disappears if the Coulomb (or Coulomb-nuclear)
interactions in the initial and final states are included.
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I. INTRODUCTION

Recently, the indirect Trojan horse method (THM) was
applied to measure the astrophysical S∗ factor of 12C + 12C
fusion [1]. The method is based on using a surrogate Trojan
horse (TH) reaction a(sx) + A → s + F (xA) → s + b + B to
determine the astrophysical S∗(E ) factor of the binary res-
onant subreaction x + A → F → b + B. In the case under
consideration a = 14N, A = 12C, x = 12C, s = d , and F =
24Mg∗. Four different channels in the final state were pop-
ulated in the THM experiment: p0 + 23Na, p1 + 23Na (0.44
MeV), α0 + 20Ne, and α1 + 20Ne (1.63 MeV) [1]. To analyze
the measured data Tumino et al. [1] used a simple plane-wave
approximation (PWA) developed by one of us (A.M.M.). This
approximation neglects the Coulomb interactions between the
fragments. In Refs. [2,3], a generalized R-matrix approach
was developed within the surface-integral formalism [4]. The
approach uses distorted waves in both initial and final states
(see Eq. (117) of Ref. [2]). The PWA follows from this
more general approach when the distorted waves are replaced
with the plane waves. The PWA was successfully applied for
analyses of many THM reactions in which the spectator is
a neutron. It was also applied to reactions at energies above
the Coulomb barrier in the initial and final states, and when
the interacting nuclei have small charges [5,6]. In the PWA
it is assumed that the angular distribution of the spectator
is forward peaked in the center-of-mass system (quasifree
kinematics) and that the bound-state wave function of the
spectator can be factorized out (see Eq. (117) of Ref. [2]
and Eq. (2) of Ref. [1]). Usage of the PWA can be justified
only if the PWA and the distorted-wave Born approximation
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(DWBA) give similar energy dependence for the differential
cross section (DCS) of the transfer reaction. This is because
in the THM only the energy dependence of the astrophysical
factor is measured while its absolute value is determined by
normalizing the THM data to available direct data at higher
energies.

Tumino et al. [1] reported that the astrophysical S∗(E )
factors extracted from the THM experiment demonstrate a
steep rise when the resonance energy E decreases. This rise
would have profound implications on different astrophysical
scenarios as the carbon-carbon fusion rate calculated from
the astrophysical S∗ factors deduced in Ref. [1] significantly
exceeds all previous estimations of the reaction rate obtained
by extrapolating the direct data to the low-energy region. For
example, the reaction rate calculated in Ref. [1] at temperature
T ∼ 2 × 108 K exceeds the adopted value [7,8] by a factor
of 500.

The authors of Ref. [1] were rightly concerned about
the Coulomb barrier in the initial state. That is why in the
experiment the initial energy was above the Coulomb barrier.
However, given the energy of the emitted particles, neglecting
the Coulomb effects in the final channel is unjustified. The
purpose of this paper is to present a detailed analysis of the TH
resonant reactions based on the distorted-wave formalism. We
take into account the distortions in the initial, intermediate,
and final states. The THM triple DCS is expressed in terms of
the THM amplitude.

This paper is structured as follows. In Sec. II we give
expressions for various differential cross sections relevant to
the THM. A detailed critical analysis of the THM experiment
is presented in Sec. III. Renormalization procedure for the
THM astrophysical factors is described in Sec. IV. Section V
presents the renormalized 12C + 12C fusion S∗ factors ob-
tained by renormalizing the THM astrophysical factors re-
ported in Ref. [1]. Finally, in Sec. VI we highlight the main
findings and draw conclusions.
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II. THM DIFFERENTIAL CROSS SECTIONS

A. Triple differential cross section

Let us consider the THM reaction

a + A → s + F ∗ → s + b + B, (1)

where a = (s x) is the Trojan horse particle and F ∗ is the res-
onance in the subsystem F = (xA). The idea of the THM is to
extract the information about the binary resonant subreaction

x + A → b + B. (2)

The TH reaction is a two-step reaction proceeding through
the intermediate resonance. The first step is the transfer re-
action a + A → s + F ∗ populating the resonance state F ∗,
which on the second stage decays into the two-body channel
b + B. Here we present equations, which will be used in the
following sections. The energy conservation in the center-of-
mass (c.m.) of the TH reaction reads

EaA − εsx = EsF + ExA = EsF + EbB − Qi f , (3)

where Eαβ = k2
αβ/(2 μαβ ), Qi f = mx + mA − mb − mB ,

Eαβ , kαβ , and μαβ are the relative energy, relative
momentum, and reduced mass of the particles α and β,
mα is the mass of the particle α, εsx is the binding energy of
the particles s and x in the TH particle a = (sx).

We introduce now a resonance energy in the subsystem
x + A: ER(xA) = E0(xA) − i �/2, E0(xA) is the real part of
the resonance energy in the channel x + A, � is the total
resonance width of the resonance F ∗ populated in the transfer
reaction. We consider a two-state coupled channel problem in
which the resonance formed in the channel i = x + A decays
into a different channel f = b + B. Therefore, when in the
channel i ExA → ER(xA) the relative energy EbB approaches
the resonance energy ER(bB) in the channel f : ER(bB) =
E0(bB) − i �/2. For ExA → ER(xA), due to energy conservation
[see (3)], one gets that EsF → ER, where

ER = E0 − i �/2. (4)

Here

E0 = EaA − εsx − E0(xA) = EaA − εsx + Qi f − E0(bB) (5)

is the real part of the resonance energy in the system s + F .
The triple DCS at kbB → k0(bB) is given by [9]

d3σ

d�kbB d�ksF dEsF
= μaAμsF

(2π )3

k0

kaA

k0(bB)

μbB
|MR|2, (6)

where

|MR|2 = 1

ĴaĴA

∑
MBMbMsMaMA

|MMBMbMs;MAMa (k0k̂sF , kbB, kaA)|2

= 1

ĴaĴA

∑
MF M ′

F MAMaMs

MMF Ms;MAMa (k0k̂sF , kaA) [MM ′
F Ms;MAMa (k0k̂sF , kaA)]∗

× |NC |2
(E0 − EsF )2 + �2/4

∑
MBMb

W MF
MBMb

(k0(bB) )
[
W M ′

F
MBMb

(k0(bB) )
]∗

, (7)

Mtr = MMF Ms;MAMa (kRk̂sF , kaA) is the a + A → s + F ∗ trans-
fer reaction amplitude and

W MF
MBMb

(k0(bB) ) =
√

4 π
∑

lb jbmlb νb

〈 jbνb JBMB|JF MF 〉

× 〈lbmlb JbMb| jbνb〉Ylbmlb
(k0(bB) )

× ei δp(k0(bB) )

√
μbB �(bB)

k0(bB)
(8)

is the vertex form factor for the resonance decay F ∗ → b + B.
Here, Ji (Mi ) is the spin (its projection) of particle i, Ĵ =
2J + 1, lb (mlb ) is the b-B relative orbital angular momentum
(its projection) in the resonance F ∗, jb (νb) is the total angular
momentum (its projection) of particle b in the resonance and
δp(k0(bB) ) is the potential scattering phase shift in the bB
channel. Taking into account that

|�[1 + i η]|2 = π η

sinh(π η)
(9)

we get the Coulomb renormalization factor NC [10]

|NC |2 = sinh[π (ηsb + ηsB)]

sinh(πηsb) sinh(πηsB)

πηsbηsB

(ηsb + ηsB)

πηζ

sinh(πηζ )

× |F (−iηsB,−iηsb, 1; −1)|2

× exp

[
2ζ arctan

2(E0(bB) − EbB)

�

]
, (10)

where

ζ = ηbs + ηBs − ηR, (11)

ηi j = (Zi Z j/137) μi j/ki j , ηR = Zs ZF μsF /kR, and Zi is the
charge of particle i.

It is convenient to integrate the triple DCS over �kbB to get
the double DCS [9], which is expressed in terms of the DCS of
the reaction a + A → s + F ∗ corresponding to the first step
of the TH reaction. However, in the case under consideration,
due to the presence of the Coulomb renormalization factor
NC , the DCS obtained from integrating the triple DCS over
�kbB cannot be expressed in terms of the DCS of the first
step. The reason is that NC depends on the integration variable
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�kbB . However, in the following cases one can neglect this
dependence.

(i) When |ηsb| 	 1 and ηsB ≈ η0, where η0 =
Zs ZF μsF /k0, the imaginary part of ηR can be
neglected because of the narrow resonance. In this
case, |NC | ≈ 1 and the integration over �ksF can be
performed without any complications.

(ii) When |ηsb| 	 1 and mB � ms, mb. Let us choose
as independent variables the Galilean momenta ks =
ksF and kbB. Then one can write

ksB = mB M

msB mbB
ksF + ms

msB
kbB ≈ ksF . (12)

Then ηsB = (Zs ZB/137) μsB/ksF and NC does not
depend on kbB and integration over �kbB can be
performed in a straightforward way.

For the TH reaction under consideration both cases can
be applied. We assume that |NC | = 1. Then we can integrate
the triple DCS over �kbB using orthogonality of the spherical
harmonics to get the double DCS:

dσ

d�ksF dEsF
= 1

2 π

�bB

(E0(bB) − EbB)2 + �2/4

dσ

d�ksF

, (13)

where

dσ

d�ksF

= μaAμsF

4π2

k0

kaA

∑
MF MsMAMa

|MMF Ms;MAMa (k0k̂sF , kaA)|2

(14)

is the DCS of the reaction a + A → s + F ∗. Note that inte-
grating over EsF gives∫ ∞

0
dEsF

dσ

d�ksF dEsF
= �bB

�

dσ

d�ksF

, (15)

where �bB is the partial resonance width for the decay of the
resonance to the channel b + B.

B. Double differential cross section of THM reactions
proceeding though resonance in the binary subsystem

in the intermediate state

In the THM it is enough to consider the double DCS
dσ/(d�ksF dEsF ) from which one needs to single out the
astrophysical S(ExA) factor for the two-coupled channel res-
onant binary subreaction

x + A → F ∗ → b + B (16)

at ExA → E0(xA). We have

S(ExA)
ExA→E0(xA)= ĴF

Ĵx ĴA

5 π

μxA
λ2

N mu e2 π ηxA

× �bB �xA

(E0(xA) − ExA)2 + �2/4
, (17)

where mu = 931.5 MeV is the atomic mass unit. Here and in
what follows ηxA is the x − A Coulomb parameter calculated
at kxA = k0(xA). Comparing Eqs. (17) and (13) one can observe
that to single out the S(ExA) astrophysical factor from the

latter it is enough to single out from the DCS dσ/d�ksF

the resonance width �xA. To this end in what follows we
consider the transformation of the Coulomb DWBA reaction
amplitude MMF Ms;MAMa (k0k̂sF , kaA) describing the transfer re-
action a + A → s + F ∗ populating the resonance state F ∗.
This amplitude represents the first step of the THM reaction.
The Coulomb DWBA means that the distorted waves in the
initial and final states and the optical potentials in the transi-
tion operator are the Coulomb ones. The reason for using the
Coulomb approximation is based on the fact that in THM only
the energy dependence of the DCS is measured. The inclusion
of the nuclear interactions do not change significantly this
energy dependence, which can be very reasonably approxi-
mated by the PWA. However, the Coulomb interactions can
significantly affect the energy dependence of the THM DCS
when energies are near or below the Coulomb barrier.

The Coulomb DWBA transfer reaction amplitude in the
prior form is given by

MMF Ms;MAMa (k0k̂sF , kaA)

=
∑

msxA mlxA Mx

〈
sxAmsxA lxAmlxA

∣∣JF MF
〉〈

JxMx JAMA

∣∣sxAmsxA

〉
× 〈

ssxmssx lsxmlsx

∣∣ JaMa
〉〈

JsMs JxMx

∣∣ssxmssx

〉
LDW(prior),

(18)

with

LDW(prior) =〈
�

C(−)
ksF

φ̃R(xA)

∣∣VsA + VxA − UC
aA

∣∣φsx �
C(+)
kaA

〉
.

(19)

Here si j (msi j ) is the channel spin (its projection) in the chan-
nel i + j, li j (mli j ) is the relative orbital angular momentum
of particles i and j, Ji (Mi) is the spin (its projection) of
particle i.

We use a three-body model of constituents s, x, and A,
all assumed to be structureless particles. In a more general
approach we need to introduce the projection operators to
ensure that particles x and A are in the ground states in
the intermediate states of the transfer reaction. In this case
the bound-state wave function φsx and the resonance wave
function φR(xA) given by Eq. (36) of Ref. [10], should be
replaced by the overlap functions. These overlap functions can
be approximated by the product of the two-body wave func-
tions and the square roots of the corresponding spectroscopic
factors. Because in the THM only the energy dependence
of the DCS are measured, these spectroscopic factors can
be dropped. In addition, here we use the two-body wave
functions rather than the overlap functions.

The matrix element in Eq. (19) involves integration over
variable rxA. Following Ref. [2] we can split the integral into
the internal part, rxA < Rch and the external part, rxA � Rch:

LDW(prior) = LDW(prior)
int + LDW(prior)

ext , (20)

where

LDW(prior)
int =〈

�
C(−)
ksF

φ̃R(xA)

∣∣VsA + VxA − UC
dA

∣∣φsx �
C(+)
kaA

〉∣∣
rxA<Rch

(21)
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and

LDW(prior)
ext = 〈

�
C(−)
ksF

φ̃R(xA)

∣∣VsA + VxA − UC
dA

∣∣φsx �
C(+)
kaA

〉∣∣
rxA�Rch

.

(22)

Here, Rch is the channel radius, which is chosen so that at
rxA > Rch the nuclear x-A interaction can be neglected.

It was shown in Ref. [2] that

LDW(prior)
int = LDW(post)

int + LDW(prior)
S , (23)

where

LDW(post)
int = 〈

�
C(−)
ksF

φ̃R(xA)

∣∣Vsx + VsA − UC
sF

∣∣φsx �
C(+)
kaA

〉∣∣
rxA<Rch

,

(24)

and

LDW(prior)
S = 〈

�
C(−)
ksF

φ̃R(xA)

∣∣←−T xA − −→
T xA

∣∣φsx �
C(+)
kaA

〉∣∣
rxA=Rch

= R2
ch

2μxA

∫
drsF �

C(+)
−ksF

(rsF )
∫

d�rxA

×
[
φsx(rsx ) �

C(+)
kaA

(raA)
∂φR(xA)(rxA)

∂rxA

− φR(xA)(rxA)
∂φsx(rsx )�C(+)

kaA
(raA)

∂rxA

]∣∣∣∣
rxA=Rch

,

(25)

where TxA is the kinetic energy operator of the relative motion
of particles x and A. An arrow above the operator points to the
direction of its action.

Let us consider now the external matrix element corre-
sponding to rxA > Rch. In the external region VsA + VxA −
UC

aA ≈ V C
sA + V C

xA − UC
sF . The distance between s and x is lim-

ited because of the presence of the bound-state wave function
φsx. Because s and x are close to each other the external matrix
element containing the transition operator V C

sA + V C
xA − UC

sF
should be small.

The internal matrix element consists of two terms, the in-
ternal postform Coulomb DWBA amplitude LDW(post)

int and the
surface term LDW(prior)

S . The internal Coulomb or Coulomb-
nuclear DWBA in the postform should be small due to the
highly oscillatory behavior of the binned resonance wave
functions (this will be demonstrated in the next section). Note
also that the smaller the resonance energy the smaller is the
contribution of the internal region.

Then the dominant contribution to the matrix element
LDW(prior) comes from the surface term LDW(prior)

S . We trans-
form now the surface matrix element into zero-range DWBA
amplitude. To this end we use

raA = rxA + ms

msx
rsx, rsF = mA

mxA
rxA + rsx. (26)

Rewriting the wave functions �
C(+)
kaA

(raA) and �
C(+)
−ksF

(rsF ) in
the momentum space we get

LDW(prior)
S = R2

ch

2μxA

∫
drsF

∫
dpsF

(2 π )3

∫
dpaA

(2 π )3
�

C(+)
ksF

(psF ) �
C(+)
kaA

(paA) φsx(rsx )e−ipsx ·rsx

∫
d�rxA

×
[

eipxA·rxA
∂φR(xA)(rxA)

∂rxA
− φR(xA)(rxA)

∂ eipxA·rxA

∂rxA

]∣∣∣∣
rxA=Rch

, (27)

where

pxA = paA − mA

mF
psF , psx = psF − ms

ma
paA. (28)

Taking into account that rxA = Rch is larger than the nuclear interaction radius we replace the relative pxA by the on-the-
energy-shell (ONES) momentum kxA = kaA − mA

mF
ksF . We consider the resonant wave function φR(xA) at the real part of the (xA)

resonance energy, i.e., kxA = k0(xA) and ksF = k0. Then returning to the coordinate-space representation for LDW(prior)
S we get

LDW(prior)
S = R2

ch

2μxA
MDWZR(prior)

∫
d�rxA

[
e−ikxA·rxA

∂φR(xA)(rxA)

∂rxA
− φR(xA)(rxA)

e−ikxA·rxA

∂rxA

]∣∣∣∣
rxA=Rch

. (29)

Here,

MDWZR(prior) =
∫

drsx �
C(+)
−k0

(rsx ) φsx(rsx )�C(+)
kaA

(
ms

ma
rsx

)
. (30)

is the DWBA amplitude, which does not depend on the resonant wave function φR(xA) and VxA potential. This equation looks like
the zero-range DWBA (ZRDWBA). However, in contrast to the standard zero-range approximation, Eq. (30) can be used for
arbitrary value of the orbital momentum of the resonance state (xA). Note that replacing in Eq. (30) the distorted waves by the
plane waves leads to the PWA introduced in [5] and used in Ref. [1].

Integrating over �rxA and using Eq. (36) from Ref. [10] for the external resonant wave function we arrive at

LDW(prior)
S = e−i δp(k0(xA) )

√
1

μxA k0(xA)
�xA

1

2
OlxA (k0(xA), Rch )MDWZR(prior)i−lxA YlxA,mlxA

(̂k0(xA) )WlxA , (31)

064618-4



ASTROPHYSICAL FACTORS OF 12C + 12C FUSION … PHYSICAL REVIEW C 99, 064618 (2019)

where the off-shell factor is

WlxA =
[

jlxA (kxArxA)

[
Rch

∂ln
[
OlxA (k0(xA), rxA)

]
∂rxA

− 1

]
− Rch

∂ jlxA (kxArxA)

∂rxA

]∣∣∣∣
rxA=Rch

, (32)

and Ol (k, r) is the Coulomb Jost singular solution of the Schrödinger equation with the outgoing-wave boundary condition.
Since LDW(prior)

S gives a dominant contribution, we use LDW(prior) ≈ LDW(prior)
S . Substituting LDW(prior)

S for LDW(prior) in Eq. (18) we
get

MMF Ms;MAMa (k0k̂sF , kaA) = i−lxA e−i δp(k0(xA) )

√
1

μxA k0(xA)
�xA

1

2
OlxA (k0(xA), Rch ) jlxA (kxARch )

× WlxA YlxA,mlxA
(̂k0(xA) ) MDWZR(prior)

MF Ms;MAMa
(k0k̂sF , kaA), (33)

where

MDWZR(prior)
MF Ms;MAMa

(k0k̂sF , kaA) =
∑

msxA mlxA Mx

〈
sxAmsxA lxAmlxA

∣∣JF MF
〉〈

JxMx JAMA

∣∣sxAmsxA

〉
× 〈

ssxmssx lsxmlsx

∣∣ JaMa
〉〈

JsMs JxMx

∣∣ssxmssx

〉MDWZR(prior). (34)

Returning to Eq. (13) we can now rewrite it as

dσ THM

d�ksF dEsF
= S(E0(xA) ) e−2 π ηxA P−1

lxA
(k(0)xA, Rch )

Ĵx ĴA

ĴF

l̂xARch

80 π2
λ−2

N m−1
u

∣∣WlxA

∣∣2 dσ DWZR(prior)

d�ksF

. (35)

We assigned to it the superscript “THM” because this double DCS can be used to analyze THM data. We assume that k̂0(xA)

is directed along the axis z, that is, YlxA,mlxA
(̂k0(xA) ) = √

(2 lxA + 1)/4 π δmlxA 0. With this for the DCS of the reaction a + A →
s + F ∗ populating the resonance state F ∗ we get

dσ DWZR(prior)

d�ksF

=μaAμsF

4π2

k0

kaA

∑
MF MsMAMa

∣∣MDWZR(prior)
MF Ms;MAMa

(k0k̂sF , kaA)
∣∣2

. (36)

III. CRITICAL ANALYSIS OF THE THM EXPERIMENT

A. Kinematics of the THM reaction

In Ref. [1] the normalization of the THM data to the direct
data was done in the energy interval E = 2.5–2.63 MeV,
where E is the 12C-12C relative kinetic energy. Here and in
what follows we use E0(xA) ≡ E . To check whether the PWA is
justified, we consider the kinematics of the THM in the energy
interval covered by the THM experiment [1]. In the THM
experiment [1] the relative 14N-12C energy in the entrance
channel is EaA = 13.845 MeV. From energy conservation in
the THM reaction, see Eq. (3), it follows that EaA + Q =
E f , where E f = EsF + EbB is the total kinetic energy of the
final three-body system s + b + B and Q = ma + mA − ms −
mb − mB. From this equation we get that the total kinetic
energy in the final d + p + 23Na channel is E f = 5.8 MeV.

Let us consider the 12C-12C relative energy E = 2.63 MeV
[1], which is the highest point of the THM normalization
interval. For the binary reaction 12C + 12C → p + 23Na, we
have Q2 = 2.24 MeV, where Q2 = mx + mA − mb − mB. Ac-
cordingly, the energy in the p + 23Na channel corresponding
to E = 2.63 MeV is Ep 23Na = 4.87 MeV. Hence, the relative
kinetic energy of the deuteron and the c.m. of the p + 23Na
system corresponding to this energy is Ed 24Mg = 0.93 MeV.
This energy is well bellow the Coulomb barrier in the d-24Mg
system, which is about 3 MeV. Even on the lower end of
the normalization interval corresponding to E = 2.5 MeV, the
relative energy is Ed 24Mg = 1.06 MeV.

At the energy of E = 1.5 MeV in the 12C-12C channel,
which corresponds to the energy Ep 23Na = 3.74 MeV in the
exit channel, the relative energy Ed 24Mg = 2.06 MeV. This
is still below the Coulomb barrier. Note that the resonance
energies that can be observed in the THM experiment are
E < 3.56 MeV. This is due to the fact that at E > 3.56
MeV, the resonance energy in the p + 23Na channel is 3.56 +
Q2 > 5.8 MeV. In other words, the d-24Mg relative energy is
Ed 24Mg < 0. Even for the energy of E = 0.805 MeV, which
corresponds to Ep 23Na = 3.05 MeV, the d-24Mg relative en-
ergy is Ed 24Mg = 2.75 MeV. The latter is close to but still
below the Coulomb barrier.

Figure 1 demonstrates the dependence of Ed 24Mg on the
relative 12C-12C energy E . One can see that within the
entire energy interval measured in the THM experiment [1]
the energy Ed 24Mg < 3 MeV. Especially low is the energy in
the interval E = 2.5–2.63 MeV used for THM normalization
to direct data. Thus we may conclude that the Coulomb
interaction plays a very important role in the energy interval
exploited in Ref. [1] and, therefore, cannot be neglected.

B. DWBA differential cross section

The presence of the strong Coulomb interaction for such
deep sub-Coulomb processes in the final state of the transfer
reaction significantly increases the DCS in the backward
hemisphere, shifting the peak of the angular distribution of the
deuterons to the backward angles. It completely contradicts to
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FIG. 1. The dependence of the relative kinetic energy Ed 24Mg

on the relative 12C-12C kinetic energy E . Calculations are done at
E12C 14N = 13.85 MeV. The gray column is the forbidden area by the
energy conservation law. The horizontal dotted line corresponds to
the Coulomb barrier in the system d-24Mg.

the PWA differential cross section in the c.m. system, which
has a pronounced peak at forward angles. Even at the lowest
observed resonances at 0.8–0.9 MeV in the THM experiment
[1] the angular distribution of the deuterons noticeably devi-
ates from the PWA one if the Coulomb (or Coulomb-nuclear)
rescattering effects in the initial and final states of the 12C
transfer reaction are included.

But what is even more important is the fact that the pres-
ence of the strong Coulomb interaction significantly changes
the absolute values of the DCSs of the 12C transfer reaction
and their variation with energy. The absolute values of the
DCSs in the THM normalization interval become smaller
than the corresponding PWA ones by more than three orders
of magnitude and they increase rapidly when the resonance
energy decreases. That is one of the main reasons for the drop
of the THM astrophysical factors found in this work compared
to those extracted in Ref. [1] using the PWA.

Below we demonstrate the PWA and DWBA DCSs for the
THM reaction. Eq. (35) will be used to obtain the energy
dependence of the astrophysical factor. It employs the zero-
range DWBAZR DCS. In this DCS the resonance vertex
12C + 12C → 24Mg

∗
is excluded. It allows us to calculate

the excitation function in the whole energy interval E =
0.8–2.64 MeV covered by the THM experiment without need
to refer to any specific resonance. This is especially important
because some reported resonances in Ref. [1] have a nega-
tive parity, which is forbidden in collisions of two identical
bosons with zero spins. It means that the accuracy of the
identification of resonance spins in Ref. [1] is ±1. Another
important point for using the DWBAZR DCS is related with
our intention to renormalize the S factor of the carbon-carbon
fusion by taking into account the distortion in the initial and
final states. Furthermore, in Ref. [1], where a simplified PWA
was used, the resonance vertex was completely excluded. The
only information about resonance is contained in the factor
WlxA , which depends on the orbital angular momentum of the

TABLE I. Parameters of the 12C-12C potentials used to calculate
the resonance bin wave functions.

E (MeV) No. V (MeV) r (fm) a (fm) Width (MeV)

2.7 Potential 1 58.87 1.25 2.40 3.595 × 10−3

2.7 Potential 2 94.51 1.05 2.40 4.924 × 10−3

2.7 Potential 3 221.95 1.25 1.85 3.104 × 10−4

1.5 Potential 1 110.57 2.80 3.05 2.189 × 10−3

1.5 Potential 2 60.07 2.60 3.05 2.253 × 10−4

1.5 Potential 3 150.8 2.80 2.30 1.055 × 10−4

0.8 Potential 1 140.47 4.50 4.50 2.165 × 10−5

0.8 Potential 2 185.284 4.20 4.50 2.022 × 10−5

0.8 Potential 3 198.798 4.50 4.04 9.566 × 10−6

resonance lxA. That is why to be consistent with Ref. [1] we
also eliminate the resonance vertex from the DWBA reaction
amplitude.

We start by considering the PWA calculations used in
Ref. [1]. However, in contrast to Ref. [1], in our PWA cal-
culations we include the resonance vertex. In each figure we
present three different curves corresponding to three different
potentials describing the resonance in 24Mg given in Table I.
We use the standard notations for the potential parameters
shown in Table I: V is the depth of the Woods-Saxon potential,
r and a are the radial parameter and the diffuseness.

Using the potentials from Table I we make the bin func-
tions for the 12C-12C resonance states. The bins are made by
integrating over the 12C-12C scattering wave functions within
a range of 12C-12C relative energies centered at the resonant
energy with a width of 0.05 MeV. This width corresponds
to a typical experimental energy resolution. The bin wave
functions are made real by normalization using a factor of
sin[δ(k12C 12C)] exp [−iδ(k12C 12C)] [11], where δ(k12C 12C) is the
12C-12C scattering phase shift. The bin sizes affect the result-
ing bin wave functions, and, hence, the amplitude of the THM
transfer reaction but they do not affect much the shapes of the
angular distributions.

The resonance energies given in Table I are selected from
the high end, middle, and low energy interval measured in
Ref. [1]. Note that we are not able to reproduce exactly the
location of the resonances reported in Ref. [1] but the obtained
resonance energy are pretty close to the corresponding exper-
imental ones. The bin wave functions for the three resonance
energies constructed using the potentials from Table I are
depicted in Fig. 2. The highly oscillatory behavior of the
resonance wave functions is a clear evidence that the internal
Coulomb or Coulomb-nuclear DWBA in the postform should
be small (see Sec. II B).

The PWA DCSs for three resonance energies E =
2.7, 1.5 , and 0.8 MeV of the 12C-12C system are shown in
Fig. 3. Each panel contains three lines corresponding to three
different potentials for each resonance energy, see Table I.

Next we show the DWBA DCSs calculated using the
bin wave functions shown in Fig. 2. Figure 4 presents the
Coulomb DWBA DCSs calculated at the same three reso-
nance energies of the system 12C-12C. We performed cal-
culations using the pure Coulomb DWBA (thin lines) and
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FIG. 2. The bin wave functions calculated for three resonance
energies E = 2.7, 1.5 , and 0.8 MeV of the 12C-12C system. Each
panel contains three lines corresponding to three different potentials
for each resonance energy. The red solid, blue dashed and black
dotted curves correspond to the potentials 1, 2, and 3 from Table I.
(a) E = 2.7 MeV; (b) E = 1.5 MeV; (c) E = 0.8 MeV.

the Coulomb-nuclear DWBA (thick lines). The optical-model
potential parameters are taken from the compilation [12],
namely, parameters for the 14N + 12C potential at 27.3 MeV
and the d + 24Mg potential at 3.3 MeV are used for the
entrance and exit channels, respectively. The relative energy
between the deuteron and the c.m. of the 24Mg subsystem
depends on the excitation energy of the latter. In principle,
different optical potentials should be used in the exit channel
for each 24Mg excitation energy. However, our calculations
suggest that the DCSs of the transfer reaction depend weakly
on the choice of the exit-channel optical model potentials.
This is because the relative d + 24Mg energies in the exit
channel are so low that the Coulomb interaction dominates
over the exit-channel distorted waves. For this reason, the
same exit-channel optical potential is used for all the cases.

In our approach we use the surface-integral approach, see
Ref [2], in which the dominant contribution is given by the
external part. To demonstrate that this is indeed the case for
the reaction under consideration, in Fig. 5 we present the
comparison of the Coulomb DWBA calculated without and
with cutoff of the transfer reaction matrix element at R12C 12C =
7.3 fm. The latter corresponds to the cut-off radius used in
Ref. [1] for the PWA calculations.
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FIG. 3. The PWA DCSs for the 14N + 12C → d + 24Mg
∗

reac-
tion at the relative kinetic energy E12C 14N = 13.85 MeV populating
three resonant states in 24Mg: E = 2.7, 1.5 , and 0.8 MeV. Each
panel contains three lines corresponding to three different potentials
for each resonance energy. The red solid, blue dashed and black
dotted curves correspond to the potentials 1, 2, and 3 from Table I.
(a) E = 2.7 MeV; (b) E = 1.5 MeV; (c) E = 0.8 MeV.

Finally, we show the deuteron momentum dependence of
the Coulomb DWBA DCSs. We introduce the momentum

q = kd − md

m14N
k14N, (37)

where in the c.m. of the 14N + 12C → d + 24Mg
∗

reaction we
have kd = kd24Mg and k14N = k14N12C.

The momentum q is the Galilean invariant momentum
transfer in the 14N + 12C → d + 24Mg

∗
reaction. In the PWA,

q = qd 12C is the d-12C relative momentum. Thus, in the
PWA, according to Eq. (37), the d-12C relative momentum
is observable because it is expressed in terms of the relative
momenta of the particles in the initial and final states of
the transfer reaction. At the same time, in the DWBA, due
to rescattering of the particles in the initial and final states,
it is impossible to determine the d-12C relative momentum.
Expressing the deuteron scattering angle in terms of q at fixed
kd and k14N one can determine the dependence of the DWBA
DCS on q. Since q = qd12C, the dependence of the PWA
DCS on q is determined by the momentum dependence of the
Fourier transform of the square of the s-wave d-12C bound-
state wave function φ2

d 12C
(q). By comparing the dependence
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FIG. 4. The DWBA DCSs for the 14N + 12C → d + 24Mg
∗

reac-
tion at the relative kinetic energy E12C 14N = 13.85 MeV populating
three resonant states in 24Mg. (a) E = 2.7 MeV; (b) E = 1.5 MeV,
and (c) E = 0.8 MeV. Each panel contains six lines. The thin (thick)
red solid, blue dashed and black dotted curves correspond to the
Coulomb (Coulomb-nuclear) DWBA DCSs calculated using the
12C-12C bin wave functions for the potentials 1, 2, and 3 from Table I,
respectively. Note that the DWBA DCSs in (a) are multiplied by 103.

of the DWBA DCS and φ2
d12C

on q we can determine the effect
of the distortions for the THM reaction and the validity of the
PWA.

Using Eq. (37) we get

dσ

dq
= m14N

md

q

kd24Mgk14N12C

1

sin θ

dσ

dθ
, (38)

where cos θ = k̂d · k̂14N, k̂ = k/k. The DCS dσ/dq calcu-
lated for three different resonance energies E = 2.7, 1.5 , and
0.8 MeV and three potentials from Table I are shown in Fig. 6.

From the presented figures we can draw the following
conclusions.

(i) The PWA and the DWBA DCSs differ significantly
both in the angular distributions and energy depen-
dences. In particular, the DWBA calculations show
that in the interval of the resonance energies E =
1.5–2.7 MeV the angular distributions have backward
peaks in contrast to the PWA ones. This is a very
important point. As we will see below, the different
energy dependences of the PWA and DWBA DCSs
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FIG. 5. Comparison of the Coulomb DWBA DCSs for the 14N +
12C → d + 24Mg

∗
reaction populating three resonant states in 24Mg

calculated with and without cutoff in the matrix element over r12C 12C.
The solid red lines: the Coulomb DWBA DCSs calculated without
cutoff; black dotted line: the internal part of the Coulomb postform
DWBA DCSs calculated for r12C 12C � 7.3 fm; blue dashed line: the
external part of the Coulomb postform DWBA DCSs calculated for
r12C 12C � 7.3 fm. Panel (a): E = 2.7 MeV; panel (b): E = 1.5 MeV
and panel (c): E = 0.8 MeV. All the calculations were performed
using the bin wave functions for the potential 1 from Table I.

lead to very different energy dependences of the
astrophysical factors calculated using the PWA and
DWBA.

(ii) The ratio of the DCSs from the PWA and the DWBA
at E = 2.7 MeV and 0.8 MeV are completely differ-
ent. The DWBA DCSs at any angle at E = 2.7 MeV
are significantly smaller than those at E = 0.8 MeV.
This happens only if the Coulomb or the Coulomb-
nuclear distortions are taken into account. This is
an additional corroboration of the fact that at the
resonance energies of the THM normalization interval
E = 2.5–2.63 MeV considered in Ref. [1], the THM
reactions are deep sub-Coulomb. This makes their
DWBA DCSs extremely small. The absolute value
of the DWBA DCS increases when E decreases be-
cause the energy of the outgoing deuteron increases
approaching the Coulomb barrier.

As we will see later [see Eq. (41) below] for the S
factor the DWBA DCS appears in the denominator.
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FIG. 6. The Coulomb DWBA DCSs dσ/dq for the 14N +
12C → d + 24Mg

∗
reaction at the relative kinetic energy E12C 14N =

13.85 MeV populating three resonant states in 24Mg: E = 2.7, 1.5,
and 0.8 MeV. (a) E = 2.7 MeV; (b) E = 1.5 MeV, and (c) E =
0.8 MeV. Each panel contains three lines corresponding to three
different potentials for each resonance energy. The red solid, blue
dashed and black dotted curves correspond to the potentials 1, 2, and
3 from Table I, respectively.

A very small DCS at high E should significantly
increase the THM astrophysical factor. As the en-
ergy E decreases the DWBA DCS increases and
the S(E ) factor quickly drops. For comparison we
set our renormalization factor R(E ) [see Eq. (43)
below] equal to unity at E = 2.664 MeV, which is on
the upper border of the THM normalization interval
considered in Ref. [1]. The significant rise of the
DWBA DCS toward small E is the factor that most
contributes to the drop of the THM S(E ).

(iii) The momentum distributions of the deuterons at E =
2.7 and 1.5 MeV completely contradict the momen-
tum distribution of the deuterons given by the Fourier
transform of the deuteron bound-state wave func-
tion in 14N, see the extended data given in Fig. 1
of Ref. [1]. This serves an additional confirmation
that the PWA-based Eq. (2) of Ref. [1] leading to
the factorization of the deuteron bound-state wave
function is not valid. Note that the resonance energy
E = 1.5 MeV corresponds to the most effective astro-
physical energy for carbon-carbon fusion.

IV. RENORMALIZATION OF THM
ASTROPHYSICAL FACTORS

Thus we have provided a compelling evidence that the
Coulomb effects must be included. Next we describe the
correct procedure, which shows how the S factors deduced
in Ref. [1] should be renormalized taking into account the
distortion effects in the initial and final states of the transfer
reaction.

We start from the THM double DWBA DCS given by
Eq. (35), which can be rewritten as

d2σ THM

dE d�ksF

= K (E ) S(E )
∣∣WlxA

∣∣2 dσ DWZR(prior)

d�ksF

.

(39)

Here,

K (E ) = e−2 π ηxA P−1
lxA

(k(0)aA, Rch )
Ĵx ĴA

ĴF

l̂xARch

80 π2
λ−2

N m−1
u

(40)

is a trivial kinematical factor, dσ DWZR(prior)/d�ksF is the zero-
range DWBA cross section of the 14N + 12C → d + 24Mg

∗

reaction populating the isolated resonance state, θs is the
scattering angle of the spectator s in the c.m. of the THM
reaction, S(E ) is the astrophysical factor.

Correspondingly, the THM astrophysical factor determined
from Eq. (39) is

S(E ) = NF

K (E )

d2σ THM

dE d�ksF

1∣∣WlxA

∣∣2

× 1

dσ DWZR(prior)(E , cos θs)/d�ksF

. (41)

Here NF is an overall, energy-independent factor for normal-
ization of the THM data to direct data. We recall that in the
THM only the energy dependence of the astrophysical factor
is measured. Its absolute value is determined by normalizing
the THM S(E ) factor to the direct data available at higher
energies.

Equations (39) and (41) are pivotal for understanding the
problem of extraction of the S(E ) factor from the THM dif-
ferential cross section. Because in the normalization interval
of E = 2.5–2.66 MeV the outgoing deuterons are below the
Coulomb barrier, dσ DWZR(prior)(E , cos θs)/d�ksF is small and
rapidly increases when the resonance energy E decreases.
This increase of dσ DWZR(prior)(E , cos θs)/d�ksF should reflect
in the behavior of d2σ THM/dE d�ksF and the THM S(E )
factor. As we mentioned, in Ref. [1] a simple PWA was used
instead of the distorted waves. The DCS as a function of
EdF obtained using the PWA changes very little compared
to the change of the DWBA DCS. This is the main reason
why the THM S(E ) factors show unusually high rise when E
decreases.

In Ref. [1] the selected normalization interval was cho-
sen to be E = 2.5–2.63 MeV. However, there are two reso-
nances with negative parities that are questionable because
the collision of the two identical bosons 12C + 12C cannot
populate resonances with the negative parity. There are two
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resonances with positive parities cited in Ref. [1]: at 2.664
and 2.537 MeV. It was underscored in Ref. [1] that the THM
data reproduce the higher-lying resonance. That is why here
we use the resonance at 2.664 MeV for the normalization
of the THM data to direct ones. Thus, we assume here that
the normalization factor NF is determined by normalizing the
THM astrophysical factor to the directly measured resonance
at E = 2.664 MeV. Practically we selected the normalization
of the THM data on the edge of the energy interval measured
in Ref. [1].

To find the renormalization of the THM astrophysical
factor presented in Ref. [1] we recall that in the PWA the THM
astrophysical factor for an isolated resonance is given by

S(PWA)(E ) = NF

K (E )

d2σ THM

dE d�ksF

1

φ2
sx(E ) |WlxA |2

. (42)

The factor WlxA was obtained in Ref. [2], φsx(E ) is the Fourier
transform of the a = (s x) bound-state wave function. The
Fourier transform, actually, depends on q = ksx, which is in
the case under consideration is q = kd 12C and expressed in
terms of kd . From energy conservation, see Eq. (3), it follows
that EsF = EaA − εsx − E . Hence the Fourier transform of the
bound-state wave function φsx(q) depends on E .

By taking the ratio of the S(E ) factors given by Eqs. (41)
and (42) and normalizing it to unity at E = EN we get
the renormalization factor of the THM astrophysical factor
presented in Ref. [1], but this time including the Coulomb
(Coulomb-nuclear) distorted waves in the initial and final
states of the THM transfer reaction

R(E ) = φ2
sx(E )

φ2
sx(EN )

dσ DWZR(prior)(EN , cos θs)/d�ksF

dσ DWZR(prior)(E , cos θs)/d�ksF

, (43)

where EN is the THM normalization energy.

V. ASTROPHYSICAL FACTORS FOR THE 12C-12C
FUSION FROM THM REACTION

In this section we present new 12C-12C fusion S∗ factors
obtained by renormalizing the THM astrophysical factors
presented in Ref. [1]. For renormalization the factor R(E )
given in Eq. (43) is used. The DWBA DCSs are calculated
using the FRESCO code [11]. For comparison we also cal-
culate dσ DWZR(prior)(E , cos θs)/d�ksF including the nuclear
distortions. To calculate the optical-model distorted waves
we use the optical potentials from Ref. [12] as described
above. Following Ref. [1] we use the normalization energy
EN = 2.664 MeV.

The Woods-Saxon potential for the bound-state wave func-
tion φd 12C has a depth of 34.459 MeV and standard shape:
a = 0.65 fm and r0 = rC = 1.25 fm, where r0 and rC are
the nuclear and the Coulomb radial parameters. With this
potential the 14N bound-state wave function has one node
away from the origin. The calculated d-12C radial s-wave
bound-state wave function and the square of its Fourier trans-
form are shown in Fig. 7. To calculate the Fourier transform of
the bound-state wave function as a function of the resonance
energy E we use Eq. (37). In the c.m., q2 depends on kd =
kd 24Mg, k14N = k14N 12C , and cos θ , where θ is the deuteron
scattering angle in the c.m. of the THM transfer reaction
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FIG. 7. (a) the d-12C radial s-wave bound-state wave func-
tion calculated using the Woods-Saxon potential with the depth
34.4588 MeV and the standard parameters, r0 = 1.25 fm and a =
0.65 fm. (b) the magnitude-square of the Fourier transform of the
d-12C bound-state wave function from (a) as a function of the
resonance energy E of the 12C-12C system.

14N + 12C → d + 24Mg. We fix the scattering angle at θ =
15 deg and consider k14N fixed taking into account the fact
that the experimental 14N-12C relative energy is 13.85 MeV.
From Eq. (3), where E ≡ ExA, it follows that kd and, hence, q
are functions of E .
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FIG. 8. The excitation function of the THM transfer reaction
14N + 12C → d + 24F∗ calculated using the zero-range DWBA at
the scattering angle of the deuteron of 15◦ in the c.m. of the reaction.
The solid red line is for the pure Coulomb DWBA and the dashed
blue line for the Coulomb-nuclear DWBA.
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To calculate the energy dependence of renormalization
factor R(E ) we need to know the energy dependence of
|φd 12C(E )|2 shown in Fig. 7(b), and the energy dependence of
the DWBAZR DCS, where E is the 12C-12C relative energy
at a fixed deuteron scattering angle. As mentioned earlier,
employing the DWBAZR DCS where the resonance 12C-12C
wave function is excluded, allows us to scan the energy
behavior of the DWBA DCS without any information about
resonances in the 12C + 12C system. The energy dependence
of the DWBAZR at the deuteron scattering angle of 15◦ in the
c.m. of the reaction is shown in Fig. 8.

The renormalized astrophysical factors are compared with
original ones from Ref. [1] in Figs. 9 and 10. The renor-
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FIG. 9. Astrophysical S∗(E ) factors for 12C + 12C
fusion. (a) S∗(E ) factors for the reaction 12C + 12C → p0 + 23Na.
Black solid line is the S∗(E ) factor from Ref. [1]. The red
dashed line is the renormalized R(E ) S∗(E ) factor calculated
using the pure Coulomb distortions. The blue dotted line
is the renormalized R(E ) S∗(E ) factor calculated using the
Coulomb-nuclear distortions. (b) S∗(E ) factors for the reaction
12C + 12C → p1 + 23Na(0.44 MeV), where the 23Na excitation
energy is 0.44 MeV. (c) S∗(E ) factors for the reaction
12C + 12C → α0 + 20Ne. (d) S∗(E ) factors for the reaction
12C + 12C → α1 + 20Ne(1.63 MeV). The notations in (b), (c), and
(d) are the same as in (a).

malized astrophysical factors are R(E ) S∗(E ), where S∗(E )
are taken from Ref. [1] (here we use the notation for the S
factor from Ref. [1]). Figure 9(a) shows the behavior of the
astrophysical factor for the channel p0 + 23Na. As seen in
Figs. 9(b)–9(d), a similar behavior of the R(E ) S∗(E ) factors
is found for the three other channels, p1 + 23Na(0.44 MeV),
α0 + 20Ne, and α1 + 20Ne(1.63 MeV). Therefore, in Fig. 10
we show the total astrophysical factors, by summing the
astrophysical factors of the four final channels detected in
Ref. [1]. We find that at the resonance energies E = 0.8–0.9
MeV the renormalization factor R(E ) decreases the THM
astrophysical factors from Ref. [1] by about a factor of 103.

We conclude from Figs. 9 and 10 that the inclusion of the
distorted waves in the initial and final states eliminates the
sharp raise of the S∗(E ) factors extracted in Ref. [1] using
the THM in the PWA. This constitutes the main result of our
paper. In this work we merely renormalized the astrophysical
factors reported in Ref. [1], taking into account the distorted
waves as required. Hence, our renormalized S∗ factors do
not, and are not supposed to, exhibit new resonances. They
just follow the resonance structure of the astrophysical factors
obtained in Ref. [1].

Our estimations of the DWBA DCSs of the 12C trans-
fer reaction show that in the THM normalization interval
of 2.5–2.664 MeV, the DWBA DCSs are of the order of
10−4–10−5 mb/sr. Such small DCSs can hardly be measured
in the coincidence experiment. That is why the THM data are
not reliable at higher energies. The absence in the THM data
of a strong isolated resonance at E ∼ 2.1 MeV observed in
Stella experiment [13] confirms the doubts about the quality of
the high-energy THM data at E > 2 MeV, which is important
for normalization of the THM data.

To corroborate our findings further, in Fig. 11 we present
the renormalization factors R(E ) at three different incident
14N energies: 30, 33, and 35 MeV. The first energy is used in
the THM experiment in Ref. [1]. We see a strong drop of R(E )
for E14N = 30 MeV. We do not discuss here whether the higher
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FIG. 10. Total S∗(E ) factors for 12C + 12C fusion. Black solid
line is the S∗(E ) factor from Ref. [1]. The red dashed line is the
renormalized R(E ) S∗(E ) factor calculated using the pure Coulomb
distortions. The blue dotted line is the renormalized R(E ) S∗(E )
factor calculated using the Coulomb-nuclear distortions.
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FIG. 11. Renormalization factors R(E ) calculated at three differ-
ent incident energies of 14N. Red lines are R(E ) for E14N = 30 MeV:
solid line is calculated with pure Coulomb distortions, dashed line
corresponds to the Coulomb-nuclear distortions; blue lines are R(E )
for E14N = 33 MeV: dotted line is for the Coulomb distortions, dash-
dotted line is for the Coulomb-nuclear distortions; magenta lines are
R(E ) for E14N = 35 MeV: dash-dotted-dotted line is for the Coulomb
distortions, short dash line is for the Coulomb-nuclear distortions.

energies would allow one to cover the whole resonance energy
interval. We just demonstrate that when the incident energy of
14N increases the renormalization factor quickly approaches
unity confirming that the Coulomb distortions are the main
reason for the drop of R(E ) at 30 MeV. This again confirms
that at this energy the simple PWA is not valid.

VI. SUMMARY

The Trojan horse method is a powerful and unique indi-
rect technique that allows one to measure the astrophysical
factors of the resonant reactions at low energies, where direct
methods are not able to obtain data due to very small cross
sections. A compelling evidence of the power of the THM
at astrophysically relevant energies is clearly demonstrated
in Ref. [1] by discovering a strong resonance peak in 24Mg∗

at E < 0.9 MeV. This region is not reachable by any direct
method. However, we question the validity of the results
for the astrophysical factors reported in Ref. [1] using the
plane-wave approximation. Since the THM deals with three-
body reactions rather than binary ones, a reliable theoretical
analysis of the THM data becomes critically important. For
the THM reactions with the neutron spectator or for the
reactions with the energies above the Coulomb barrier and for
interacting nuclei with small charges, the simple PWA works
quite well and the THM results are expected to be reliable.
However, this is not the case for the THM reaction under con-
sideration, which aims to determine the astrophysical factors
of 12C + 12C fusion. In this process we deal with the strong
Coulomb interactions in the initial and final states of the
THM transfer reaction. Moreover, the energies of the deuteron
spectator in the final state are significantly below the Coulomb
barrier at the energies of the normalization interval of the
THM data to direct ones. We have demonstrated here that the
replacement of the PWA by the approach, which takes into
account the Coulomb or Coulomb plus nuclear distortions,
decreases the THM astrophysical factors reported in Ref. [1]
at the resonance energies of E = 0.8–0.9 MeV by up to 103

times. We would like to add that the recent most accurate
direct measurements, which are extended down to E = 2.1
MeV [13] do not agree with the results from Ref. [1]. We
believe that the problem with the astrophysical factors for the
carbon-carbon fusion reaction calls for new direct and indirect
experiments.
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