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Effects of an induced three-body force in the incident channel of (d, p) reactions
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A widely accepted practice for treating deuteron breakup in A(d, p)B reactions relies on solving a three-body
A + n + p Schrödinger equation with pairwise A-n, A-p and n-p interactions. However, it was shown in Phys.
Rev. C 89, 024605 (2014) that projection of the many-body A + 2 wave function into the three-body A + n + p
channel results in a complicated three-body operator that cannot be reduced to a sum of pairwise potentials. It
contains explicit contributions from terms that include interactions between the neutron and proton via excitation
of the target A. Such terms are normally neglected. We estimate the first-order contribution of these induced
three-body terms and show that applying the adiabatic approximation to solving the A + n + p model results in
a simple modification of the two-body nucleon optical potentials. We illustrate the role of these terms for the
case of 40Ca(d, p)41Ca transfer reactions at incident deuteron energies of 11.8, 20, and 56 MeV, using several
parametrizations of nonlocal optical potentials.
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I. INTRODUCTION

Transfer reactions provide a useful way of probing the
structure of nuclei because differential cross sections show
features that are sensitive to the shell structure of the target and
residual nuclei. This is attractive for experimentalists looking
to probe the structure of a nucleus, and (d, p) reactions are
a popular choice at radioactive beam facilities for determin-
ing the spectroscopic strength of single-particle states for
nuclei beyond stability. One theory available for analysis of
(d, p) reactions is the adiabatic distorted-wave approximation
(ADWA) [1]. The ADWA accounts for deuteron breakup
effects through a three-body, n + p + A, description of the
deuteron channel, represented by the wave function �

(+)
d in

the (d, p) transition amplitude

T(d,p) =
√

S
〈
χ (−)

p φn

∣∣Vnp

∣∣� (+)
d

〉
, (1)

where χ (−)
p is the proton channel wave function, φn is the

normalized bound-state wave function of the transferred neu-
tron in the final state (more generally, the normalized neutron
overlap function) and S is its spectroscopic factor.

It is standard to calculate �
(+)
d by using a three-body

model consisting of the three Vnp, VpA, and VnA pairwise
interaction potentials between the n-p, p-A, and n-A pairs,
respectively. A two-body p-A or n-A scattering model based
on the Feshbach projection operator technique [2] involves
an energy-dependent nonlocal optical potential, implicitly
accounting for coupling to excited target states. Applying the
Feshbach approach to the three-body n + p + A channel has
two implications [3]:

(1) The n-A (p-A) optical potential in the n + p + A sys-
tem depends on the proton (neutron) dynamical vari-
ables and on the n-p interaction.

(2) In addition to the pairwise interactions, new terms
arise which correspond to an effective interaction

between the neutron and proton in the deuteron, via
excitation of the target A, to all orders. These create
a three-body interaction that has both diffractive and
absorptive parts.

The dependence of the optical potential of each N-A
subsystem within the n + p + A three-body system on the
position of the other nucleon can be averaged out if the wave
function is expanded over some appropriate n-p basis states. It
was shown in Ref. [3] that choosing the Weinberg expansion
[1] and retaining leading-order terms only (which corresponds
to the ADWA) results in an effective energy at which the
N-A potential should be used in (d, p) calculations. However,
applications of this idea in Refs. [3,4] treated only the pairwise
interactions in the n + p + A system, ignoring the additional
three-body terms.

One way to deal with these induced three-body (I3B) terms
is to explicitly include excited target states in the reaction
model. This has, for example, been done within the CDCC
[5,6] and Faddeev [7–9] approaches. However, these calcu-
lations include explicitly only a fraction of the model space
needed to fully account for all the absorption known to be
needed in the nucleon optical potentials. In this paper, we
point out that the ADWA allows us to estimate the contribution
of the effective I3B interaction, to first order, from all target
excited states. We explain this procedure in Sec. II, showing
that it results in a simple modification of the distorting poten-
tial in the deuteron channel and in Sec. III we describe their
connection to the dynamical part of the nonlocal dispersive
optical model (NLDOM). In Sec. VI we discuss nonlocal
scattering inputs for the ADWA with NLDOM. In Sec. V we
use the NLDOM potential with the required alterations and we
present our numerical calculations using the 40Ca(d, p)41Ca
reaction as an example. For comparison, we also present
calculations with two other nonlocal optical potentials. The
discussion and conclusions are presented in Sec. VI.
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II. EFFECTIVE INTERACTIONS IN THE ADIABATIC
DISTORTED WAVE APPROXIMATION

DEUTERON CHANNEL

For the case of two-body scattering of a nucleon N on a
complex target A, Feshbach shows, by using the projection op-
erators PA and QA which project onto the ground and excited
states of nucleus A, respectively, the total many-body scatter-
ing wave function is split into two parts, �P = PA |� (+)

N 〉 and
�Q = QA |� (+)

N 〉. Feshbach then shows that �P appears in a
modified Schrödinger equation [10]

(E − HPP )�P = 0, (2)

and this is governed by an effective Hamiltonian

HPP = TNA + V opt
NA (EN ). (3)

In the case of two-body scattering of a nucleon N Feshbach
[2] demonstrates that for a nucleon with kinetic energy EN the
optical potential V opt

NA takes the form

V opt
NA (EN ) = 〈φA|U opt

NA |φA〉, (4)

where U opt
NA is the optical model operator

U opt
NA = vNA + vNAQA

1

eN − QAvNAQA
QAvNA. (5)

Here vNA is the sum of interactions of the nucleon N with
all nucleons in the target A and the energy denominator eN

is given by eN = EN + i0 − TNA − (HA − EA), where TNA is
the N-A relative kinetic energy, HA and EA are the internal
Hamiltonian and the ground-state energy of the target A,
respectively.

In previous work [3] this idea of the optical potential
was extended for a three-body case. The three-body wave
function in this case can be considered as the projection �P

of the full many-body wave function, �
(+)
d , of the n + p + A

system onto the ground state of the target A. This projection is
governed by the effective Hamiltonian

Heff = T3 + Vnp + 〈φA|U |φA〉 , (6)

where T3 is the three-body kinetic-energy operator and Vnp is
a short-range n-p interaction. The operator U is an operator in
all A + 2 coordinates of n, p, and A. The final term implies
integration over the target nucleus coordinates to leave an
operator in three-body coordinates only. We can express U ,
which accounts for the excitation of target nucleus degrees of
freedom on the target ground-state projection of the scattering
wave function, in terms of operators UpA and UnA that define
excitations of A by n and p separately [3]. Up to second order
in UNA these terms are

U (0) = UpA + UnA,

U (1) = UnA
QA

e
UpA + UpA

QA

e
UnA,

(7)

where

UNA = vNA + vNA
QA

e − QAvNAQA
vNA. (8)

However, because of the definition of e, given by

e = E3 + i0 − T3 − Vnp − (HA − EA), (9)

the UnA is an operator in both n and p coordinates despite
including the n-A interaction only. The same is true of UpA.
In Eq. (9) E3 is the three-body energy, related to the incident
center-of-mass kinetic energy Ed and deuteron binding energy
εd by E3 = Ed − εd . The UNA is not equal to the Feshbach
optical operator that describes the two-body N-A scattering.

To calculate Vnp |� (+)
d 〉 the ADWA expands the three-body

wave function �
(+)
d (R, r) in a discrete set of states using the

Weinberg eigenstates [1], defined by

[−εd − Tr − αiVnp]φi(r) = 0, i = 1, 2, . . . , (10)

where the φi satisfy the orthonormality relation

〈φi|Vnp|φ j〉 = −δi, j . (11)

The eigenvalue equation (10) features a fixed deuteron energy
−εd and n-p kinetic-energy operator Tr . The αi increase
monotonically, with φi possessing i nodes within the range
of Vnp, such that φi becomes increasingly oscillatory. The
�

(+)
d (R, r) is thus expanded in this basis,

�
(+)
d (R, r) =

∞∑
i=1

φi(r)χ (+)
i (R), (12)

where

χ
(+)
i (R) = −〈φi|Vnp

∣∣� (+)
d

〉
. (13)

In the ADWA the first Weinberg component of �
(+)
d , which

provides the dominant contribution to the (d, p) stripping
amplitude [11], is found by determining the distorted wave
χ

(+)
d , which is the solution to the Schrödinger equation

(Ed − TR − 〈φ1φA|U |φ0φA〉)χ (+)
d (R) = 0, (14)

where TR is the kinetic energy associated with the n-p center-
of-mass coordinate R = (rn + rp)/2, and φA and φ0 are the
target and deuteron ground-state wave functions, respectively,
while |φ1〉 is given by

|φ1〉 = Vnp |φ0〉
〈φ0|Vnp|φ0〉 . (15)

The matrix element in 〈φ1φA|U |φ0φA〉 from Eq. (14) implies
integration over all internal degrees of freedom of A and over
n and p spin coordinates together with the relative n-p coor-
dinate r = rn − rp. This leaves 〈φ1|U |φ0〉 to be an operator in
the space of the coordinate R and the triplet spin-space of the
n and p [3].

In Ref. [3] it was assumed that 〈φ1|U |φ0〉 ≈ 〈φ1|U (0)|φ0〉
and it was shown that, because of the short-range nature of
φ1, the averaging procedure results in

〈φ1φA|U (0)|φAφ0〉 ≈
∑

N=n,p

〈φ1φA|U opt
NA (Eeff )|φ0φA〉, (16)

where U opt
NA is the optical model operator

U opt
NA (Eeff ) = vNA + vNA

QA

Eeff − TN − HA − QAvNAQA
vNA.

(17)

taken at energy

Eeff = 1
2 Ed + 1

2 〈Tr〉 , (18)
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which differs from the commonly used value of half the
deuteron incident energy by half the n-p kinetic energy Tr

averaged over the short range of the n-p interactions:

〈Tr〉 = 〈φ1|Tr |φ0〉 . (19)

This form (17) for the optical model operator differs from
that in Eq. (5) only in the energy denominator, as now U opt

NA
describes the two-body N-A scattering the effective energy
Eeff.

We want to show now that the same ideas allow us to
recover some of the contributions from U (1). Approximating
UNA in Eq. (7) by its leading value of vNA we obtain the
contribution to the deuteron distorted potential given by

〈φ1φA, R|U (1)|φAφ0, R′〉
≈ 〈φ1φA, R|vnA

QA

e
vpA|φAφ0, R′〉

+ 〈φ1φA, R|vpA
QA

e
vnA|φAφ0, R′〉

≡ U (1)
np (R, R′) + U (1)

pn (R, R′). (20)

This potential is nonlocal in space R. To estimate its mag-
nitude we consider the case of local, spin-independent inter-

actions vNA and ignore Coulomb contributions. We rewrite
U (1)

np (R, R′) as

U (1)
np

(
R, R′) =

∫
dξAdrφ∗

1 (r)φ∗
A(ξA)vnA

(
R − r

2
, ξA

)

× �̃p(rn, rp, R′, ξA), (21)

where rn = R − r
2 , rp = R + r

2 , and

�̃p(rn, rp, R′, ξA) = 〈rn, rp, ξA|QA

e
vpA|φ0φA, R′〉. (22)

Given the short range of φ1 we can replace rp and rn in �̃p

by R, and r in vnA by zero in Eq. (21). Then the expression
for U (1)

np becomes very similar to the one for U (0)
pp , arising from

averaging the second term on the right in UpA in Eq. (8) and
treated by using the same approximation. The only difference
is the presence of vnA(R, ξA) instead of vpA(R, ξA) in the
integrand of the right-hand side of Eq. (21). If we further
assume that the interaction of the proton p and neutron n with
the nucleons of target A are the same we obtain

〈φ1φA|U (0) + U (1)|φAφ0〉 ≈
∑

N=n,p

〈φ1φA|vNA + 2vNA
QA

e − QAvNAQA
vNA|φ0φA〉. (23)

Further reasoning along the lines in Ref. [3] leads to conclusion that e could be substituted by Eeff + iε − TN − HA, so that

〈φ1φA|U (0) + U (1)|φAφ0〉 ≈
∑

N=n,p

〈φ1φA|vNA + 2vNA
QA

Eeff − TN − HA − QAvNAQA
vNAQA|φ0φA〉. (24)

When compared with our expression for 〈φ1φA|U (0)|φAφ0〉 in Eq. (16) we can see that 〈φ1φA|U (0) + U (1)|φAφ0〉 includes a factor
of two in the term corresponding to the second term in Eq. (8). As such, it is possible to rewrite 〈φ1φA|U (0) + U (1)|φAφ0〉 in
terms of 〈φ1φA|U (0)|φAφ0〉 as

〈φ1φA|U (0) + U (1)|φAφ0〉 ≈ 2〈φ1φA|U (0)|φ0φA〉 −
∑

N=n,p

〈φ1φA|vNA|φ0φA〉. (25)

III. CONNECTION WITH DISPERSIVE OPTICAL MODEL

It has been shown in the previous section that I3B terms
arising from U (1) can be accounted for in the ADWA to
first order by doubling the adiabatic deuteron optical po-
tential and subtracting from it the Johnson–Tandy potential
calculated from nucleon-target (real) folding potentials. The
nucleon optical potentials, V opt

NA (E ) ≡ 〈φA|U opt
NA |φA〉, needed to

construct the deuteron adiabatic distorting potential should be
nonlocal, energy-dependent and complex since they arise due
to projecting out the space of excited states of the target [12].
It is also known that, due to causality, optical potentials fulfill
a dispersion relation [13]. This means that the optical potential
consists of two terms,

V opt
NA (E ) = V HF

NA + 	V dyn
NA (E ), (26)

one of which, V HF
NA , is a real energy-independent potential

and the other, 	V dyn
NA (E ), is generated dynamically though

coupling to inelastic channels and is energy dependent [14].
This complex term has an imaginary part WNA(E ) and a real
part that is related to WNA(E ) by the dispersive relation, so that

	V dyn
NA (E ) = iWNA(E ) + P

π

∫ ∞

−∞
dE ′ WNA(E ′)

E − E ′ . (27)

We identify the real, energy-independent, folding term in
Eq. (24), 〈φA|vNA|φA〉, with V HF

NA , ignoring the fact that the
Feshbach formalism used here does not carry the exchange
terms needed to generate V HF

NA , and identify the second term
in Eq. (24) with the dynamical term 	V dyn

NA (E ) multiplied by
two. Then,

〈φA|U (0) + U (1)|φA〉
= V HF

nA + 2	V dyn
nA (E ) + V HF

pA + 2	V dyn
pA (E ). (28)

This equation provides an approximate practical approach to
estimating the effect of the I3B terms if both the parts V HF

NA

and 	V dyn
NA (E ) are known. These potentials should be used
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at an energy E = Eeff defined in Eq. (18). Recently, a phe-
nomenological NLDOM parametrization has been proposed
to forge the link between nuclear structure and reactions [14]
for proton and neutron scattering from 40Ca. Below, we use
this potential for the 40Ca(d, p)41Ca calculations, employing
the updated NLDOM parameters from Ref. [4].

IV. NONLOCAL SCATTERING

The ADWA calculations require knowledge of the distorted
waves χd and χp in the entrance and exit channels. For nonlo-
cal optical potentials they are found from the equations [15](

T (L)
d + Uc(Rd ) − Ed

)
χ J

L′L(Rd )

= −
∑
L′′

∫ ∞

0
dR′

d Rd R′
dU J

L′L′′ (Rd , R′
d )χ J

L′ (R′), (29)

and (
T (L)

p + Uc(Rp) − Ep
)
χ J

L (Rp)

= −
∫ ∞

0
dR′

pRpR′
pU J

L (Rp, R′
p)χ J

L (R′
p), (30)

where T (L)
α is the kinetic-energy operator in a partial wave

with orbital angular momentum L in the channel α, charac-
terized by energy Eα and reduced mass μα:

T (L)
α = − h̄2

2μα

[
d2

dR2
α

− L(L + 1)

R2
α

]
, α = d, p. (31)

Equations (29) and (30) contain the Coulomb interaction
Uc and nonlocal deuteron-channel U J

L′L′′ (Rd , R′
d ) and proton-

channel U J
L (Rp, R′

p) potential kernels that depend on channel
coordinates Rα and R′

α (note that Rd ≡ R). In these equations
J is the total angular momentum in the scattering channels.
We neglect spin-orbit interaction in the present work. The
correct description of its effects within the ADWA requires
spin-dependent tensor terms [16], for which no numerical
implementations are yet available.

The nucleon NLDOM potential used in this work consists
of seven terms,

UNLDOM(R, R′) =
7∑

i=1

Ui

( |R + R′|
2

)
Hi(s), (32)

where s = R − R′, each described by its own nonlocality
range βi in the nonlocal factor

Hi(s) = exp
(−s2/β2

i

)
π

3
2 β3

i

. (33)

Details of nonlocal kernel calculations for one nonlocality
range and the s-wave deuteron only are given in Ref. [17],
while the generalization to a realistic deuteron wave function
that includes the deuteron d state is available in Ref. [15].
Nonlocal kernels with several nonlocality ranges are just the
sums of kernels calculated with one nonlocality range.

It has been shown in Ref. [18] that including the deuteron
d-wave component in ADWA leads to enhanced sensitivity of
(d, p) cross sections to high n-p momenta, which is an artifact
of the adiabatic approach [19,20]. It has also been shown in

Ref. [19] that ADWA and beyond-ADWA calculations differ
less when only a deuteron s state is included. For this reason
we use the Hulthén model for φ1 and φ0, which does not
contain any deuteron d state [21], in all our calculations of
deuteron-channel nonlocal kernels.

We have generated the deuteron-channel NLDOM kernels
for each nonlocality range and then summed them. To test
our procedure, we calculated the kernels in the leading-order
approximation Ui(|R + R′|/2) ≈ Ui(R). For one nonlocality
range, this approximation gives a very similar result to the
calculations performed with a local-equivalent potential Uloc

obtained as a solution of a transcendental equation (see
Ref. [15]). In the case of NLDOM, Uloc is the solution of the
generalized transcendental equation [4]

Uloc =
7∑

i=1

Ui exp

(
μdβ

2
i

2h̄2 (Ed − Uc − Uloc)

)
. (34)

We have checked that just as in Ref. [15], the calculations
with Uloc differ from the leading-order calculations at the cross
section peak by 1% at 11.8 and 20 MeV, respectively, but
differ by up to 5% for 56 MeV. Exact solutions of the nonlocal
Eq. (29) reduce the leading-order (d, p) cross sections in the
main peak by no more than 10% for all the deuteron energies,
with the largest differences due to a small change in the
location of the peak. This holds for all the optical models in
the proton channel that were considered here. In the p channel,
exact solutions of nonlocal Eq. (30) again reduce the (d, p)
cross sections in the main peak by no more than 10% for all
investigated energies.

It was also found that the difference between exact and
transcendental methods are smaller when I3B terms are ac-
counted for, with said differences in cross sections reduced in
both the d and p channels to no more than 5% at the main
peak for all investigated energies. This change is because the
nonlocal wave functions obtained from Eqs. (29) and (30) are
smaller in the nuclear interior than those obtained from the
local Schrödinger equation used in conjunction with Eq. (34).
This difference is given by the Perey factor [22]

f (r) = exp

(
μdβ

2

4h̄2 Uloc

)
, (35)

which is equal to unity outside the nucleus. With increased
absorption, the contribution from the nuclear interior becomes
less important, so applying the Perey factor does not have the
same effect. This leads to results closer to those found using
transcendental methods, reducing the difference between the
nonlocal and local solutions.

V. THE 40Ca(d, p)41Ca RESULTS

We have carried out numerical calculations of the
40Ca(d, p)41Ca reaction using the NLDOM nucleon potential
in the entrance deuteron channel evaluated at Eeff according
to Eq. (18) and Ref. [3]. The shift of 〈Tr〉/2 = 57 MeV was
applied, consistent with the Hulthén model, which does not
contain high relative n-p momenta. In the exit channel the NL-
DOM was used at the actual proton energy. The calculations
have been carried out at Ed = 11.8, 20, and 56 MeV. These
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FIG. 1. Comparison of 40Ca(d, p)40Ca cross sections for the
ground state at Ed = 11.8 MeV (top), 20 MeV (middle), and 56 MeV
(bottom) using the DOM optical potentials. Cross sections are found
with (solid lines) and without (dashed lines) I3B effects. We also
present results for when Re[	V dyn

NA ] is left unmodified (dotted lines).
Experimental data are from Refs. [23–26].

cross sections have been measured in Refs. [23–26] and we
note that, at 56 MeV, the two measured data sets differs signif-
icantly. In all of the nonlocal ADWA calculations presented,
the exact solutions of Eqs. (29) and (30) for deuteron and pro-
ton distorted waves in the entrance and exit channels are read
into the transfer reactions code TWOFNR [27] and the transition
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FIG. 2. Comparison of 40Ca(d, p)40Ca cross sections for the
ground state at Ed = 11.8 MeV (top), 20 MeV (middle), and 56 MeV
(bottom) using the GR potential with (solid lines) and without
(dashed lines) I3B effects, along with cross sections found with the
GRZ optical potential with (dot-dashed lines) and without (dotted
lines) I3B effects. Experimental data are from Refs. [23–26].

amplitude is calculated in the zero-range approximation by
using a standard value of D0 = −126.15 MeV fm3/2.

The overlap integral between the 41Ca and 40Ca
ground-state wave functions was taken from Ref. [4],
where the exact NLDOM overlap function was approximated,
with good accuracy, by the single-particle wave function
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TABLE I. The factor by which I3B terms change the size of
the cross-section peaks. Presented as the ratio between the peak
maximum when including first-order I3B, σ

peak
I3B , and without them,

σ peak. Peaks from Figs. 1 and 2 for each investigated optical potential
at Ed = 11.8, 20, and 56 MeV.

Ed (MeV) Ratio of σ
peak
I3B /σ peak

NLDOM GR GRZ

11.8 0.725 0.729 0.630
20 0.691 0.706 0.621
56 0.821 0.842 0.786

calculated in a Wood–Saxon potential well with the radius
r0 = 1.252 fm, diffuseness a = 0.718 fm, and spin-orbit
depth Vs.o. = 6.25 MeV. This single-particle wave function
has been multiplied by the square root of the NLDOM
spectroscopic factor, S = 0.73.

The results of the calculations are plotted in Fig. 1. It was
already noticed in Ref. [4] that the NLDOM overestimates
significantly the 40Ca(d, p)40Ca cross section at 11.8 MeV.
The cross sections at the two other energies we investigate are
also overestimated. Moreover, the shape of neither of the two
available 56 MeV data sets are reproduced. Including first-
order I3B terms, doubling the dynamical real and imaginary
NLDOM parts decreases the cross sections due to increased
absorption by the factors shown in Table I, bringing them to
much better agreement with experimental data at 11.8 and
20 MeV, with 56 MeV data remaining difficult to reproduce.

To investigate the role of the dynamical real part, we
present calculations where only the imaginary part of the
NLDOM is doubled. Using Re[	V dyn

NA ] instead of 2Re[	V dyn
NA ]

makes no notable difference to the calculated cross sections
(see Fig. 1). We have found that this effect is only present
when working with a doubled imaginary part, and the large
absorption this implies. When the absorption is increased in
such a manner, the effect of altering the dynamical real part of
the potential becomes less notable, because it corresponds to a
much smaller proportional change to the absolute optical po-
tential than it would for an unmodified imaginary component.
This could be a useful insight because several phenomeno-
logical systematics that do not include dynamical dispersive
corrections are available [28–31], and our findings suggest
that omitting a real dispersive term may not be significant in
(d, p) calculations when I3B terms are present.

It is important to note that this statement is also true for
cross sections produced from deuteron-target potentials found
by using the transcendental method (27) and for its linear ap-
proximation, making it clear that this behavior is a result of the
potential itself, rather than the method used to generate results.

Further calculations were carried out with phenomeno-
logical nonlocal optical potentials, the energy-independent
Giannini–Ricco (GR) [28] and energy dependent Giannini–
Ricco-Zucchiatti (GRZ) [29]. Energy-dependent n-A and p-A
potentials based on the Tian, Pang, Ma [32] optical potentials
have become available recently [30,31]. Unfortunately these
do not cover the nucleon energy range based on Eq. (10)
that is needed here. The GR and GRZ potentials include
only the imaginary term WNA from 	V dyn

NA , so accounting for

first-order I3B terms would imply doubling the well depths of
the imaginary part only, with no changes being made to the
real part of each potential. These imaginary terms feature a
surface term only. The calculations with these two potentials
are presented in Fig. 2 and they show, qualitatively, the same
result found when using NLDOM: that including first-order
I3B terms decreases the cross sections by factors similar
to those obtained with the NLDOM, shown in Table I for
each energy. The 11.8 MeV data are better reproduced with
the GR potential whereas the 20 MeV data favor the GRZ
calculations. The case of 56 MeV remains inconclusive. There
are large discrepancies between two sets of measurements in
the literature [25,26] and resolving them experimentally is an
important task.

VI. SUMMARY AND CONCLUSIONS

We have considered new terms in the optical potential
in the incident channel in the ADWA approximation for
A(d, p)B reactions. These terms arise because target exci-
tations in the A + n + p breakup channels are coupled to
different nucleons in the deuteron. These couplings are usu-
ally neglected when U is approximated as the sum of n-A
and p-A optical model operators. Treating the new terms
in the ADWA approximation leads to an effective operator
U in which the first-order I3B terms double the dynamical
excitation contributions to the n-A and p-A optical potentials.

Numerical calculations, performed for the 40Ca(d, p)41Ca
reaction with the NLDOM, GR, and GRZ potentials, have
shown that these I3B terms decrease the ADWA cross sections
by 20%–40%, depending on the deuteron energy, bringing
the cross sections closer to available experimental data. It
was found that, with stronger imaginary parts, the impact of
modifying the dynamical real part becomes insignificant. This
suggests that other (nondispersive) nonlocal optical potentials
could be used if I3B terms are taken into account by simply
doubling their imaginary parts in a standard ADWA calcu-
lation. Given that the NLDOM is available only for nucleon
scattering from 40Ca [14] and 48Ca [33], this finding could be
useful for applications to all other nuclei, because it would
allow for the use of existing global nucleon optical potentials
without dispersive terms.

Finally, our estimations suggest that I3B effects could play
an important role in forming both the shape and absolute
magnitude of (d, p) differential cross sections. This could
have important consequences for extracting spectroscopic in-
formation from (d, p) experiments. It is important to extend
the investigation of I3B force effects in the d + A system
beyond the approximate methods used here.
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