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α elastic and inelastic scattering on 12C is investigated with the coupled-channels calculation by using
microscopic α-12C potentials, which are derived by folding the Melbourne g-matrix NN interaction with the
densities of α and 12C. The matter and transition densities of 12C are obtained by a microscopic structure model
of the antisymmetrized molecular dynamics combined with and without the 3α generator coordinate method. The
calculation reproduces satisfactorily well the observed elastic and inelastic cross sections at incident energies of
Eα = 130, 172.5, 240, and 386 MeV without phenomenological fitting parameters adjusted to hadron scattering
reactions. Isoscalar monopole and dipole excitations to the 0+

2 , 0+
3 , and 1−

1 states in the α scattering are discussed.
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I. INTRODUCTION

Cluster structure is one of the essential aspects of nuclear
systems. A variety of well-developed cluster structures have
been discovered in excited states of stable light nuclei and also
unstable nuclei. In the past two decades, new types of multi-α
cluster states have been theoretically suggested in light Z = N
nuclei, and experimental searching for new cluster states has
been intensively performed (see Refs. [1–4] and references
therein).

In the study of nuclear clustering, 3α cluster states in 12C
have been attracting great interest for a long time [2,4,5]. 3α-
cluster models suggested various cluster states near and above
the 3α threshold energy [3,6–22] such as the 0+

2 state with a
cluster gas feature of weakly interacting three-α particles, and
higher 0+ and 2+ states in the excitation energy Ex ∼ 10 MeV
region. Properties and band structure of those cluster states
are one of the main issues to be clarified. In spite of the
success of 3α-cluster models in describing many excited states
with cluster structures, the cluster models fail to describe
properties of low-lying states of 12C such as the 2+

1 excitation
energy and β-decay transitions from 12B because the α-cluster
breaking is omitted in the models. Microscopic calculations
of 12C with the antisymmetrized molecular dynamics (AMD)
[23–25] and fermionic molecular dynamics [26,27] beyond
the 3α-cluster models have been applied to 12C and have
shown that α-cluster breaking plays an important role not only
in the low-lying states but also in transitions and spectra of
cluster states [28–31]. Furthermore, ab initio calculations are
being developing for structure study of 12C [32–34].

On the experimental side, the α inelastic scattering has
been proved to be a powerful tool for study of cluster states,
because cluster states can be strongly populated by that
process. For instance, the 2+

2 at 9.84 MeV of 12C has been

recently discovered with the multipole decomposition analy-
sis (MDA) in the 12C(α, α′) reaction experiments [35,36]. The
α inelastic scattering has been used also for study of isoscalar
monopole and dipole excitations in a wide energy range. In the
MDA analysis of the 12C(α, α′) reaction, significant strengths
have been observed in the low-energy region below the en-
ergy region of the giant resonances [37] and theoretically
described by the decoupling of the low-lying cluster modes
from the compressive collective vibration modes of the giant
resonances [38,39].

To extract structure information of the excited states, α

elastic and inelastic cross sections have been analyzed with
reaction models [35,37,40–45]. To describe these cross sec-
tions, many attempts of the coupled-channels (CCs) cal-
culations have been performed with the optical potentials
obtained by using microscopic 3α-cluster models of 12C
such as the resonating group method (RGM) [9] and the α

condensation model [18]. However, many of them encoun-
tered the overshooting problem of the 0+

2 cross sections, the
so-called “missing monopole strength” [42]. To circumvent
this problem, phenomenological manipulation of the optical
potentials have been done; for instance, an introduction of
state-dependent normalization factors for the imaginary part
of the potentials and the use of density-independent effective
NN interactions instead of the density-dependent ones.

Recently, the g-matrix folding model has been developed
for the study of hadron scattering reactions, and the Mel-
bourne NN interaction [46] is found to successfully describe
the nucleon-nucleus and α-nucleus scattering cross sections
for various nuclei and in a wide range of incident energies.
For the α scattering on 12C, the microscopic CCs calculation
with the Melbourne g-matrix interaction has been performed
by Minomo and one of the authors (K.O.) by using the RGM
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transition density and has succeeded to reproduce the 0+
2 cross

sections as well as the elastic cross sections [47]. One of
the advantages is that there is no adjustable parameter in the
reaction calculation of the g-matrix folding model because
the density- and energy-dependencies of the real and imag-
inary parts of the effective NN interaction were determined
fundamentally from the g-matrix theory. It turns out that this
approach of the g-matrix folding model can be a promising
tool to investigate cluster states of general nuclei by means of
the α scattering if reliable transition densities are provided by
structure model calculations.

In this paper, we adopt the g-matrix folding model with
the Melbourne NN interaction and calculate the cross sections
of the α scattering to the 0+

1 , 0+
2 , 0+

3 , 1−
1,2, 2+

1 , 2+
2 , 3−

1 ,
and 4+

1 , 4+
2 states of 12C. The α-nucleus CCs potentials are

derived by folding the matter and transition densities of 12C
obtained by a microscopic structure model of AMD combined
with and without the 3α-cluster generator coordinate method
(GCM). The calculated elastic and inelastic cross sections
are compared with the observed data at incident energies of
Eα = 130, 172.5, 240, and 386 MeV [35,37,45,48,49]. The
transitions to the 0+

2 , 0+
3 and 2+

2 states and also the isoscalar
(IS) dipole transitions to the 1−

1,2 state are focused on. In the
comparison of the present CCs calculation with the distorted
wave Born approximation (DWBA) calculation, we discuss
the CCs effect to the elastic and inelastic cross sections.
The result obtained with the RGM density is also shown in
comparison with the present result with the AMD density.

The paper is organized as follows: Sections II and III
describe the formulations of the structure and reaction calcu-
lations, respectively. The structure properties of 12C are shown
in Sec. IV and the α scattering cross sections are discussed in
Sec. V. Finally, a summary is given in Sec. VI. The matter
and transition densities of 12C are shown in Appendix A,
and definitions of the transition operators, strengths, and form
factors are given in Appendix B.

II. STRUCTURE CALCULATION OF 12C WITH
AMD + VAP WITH AND WITHOUT 3α-CLUSTER

GENERATOR COORDINATE METHOD

The ground and excited states of 12C are calculated with the
variation after projection (VAP) in the AMD framework, in
which the variation is performed for the spin-parity projected
AMD wave function as done in Refs. [28,29]. In addition, we
combine AMD + VAP with 3α-cluster GCM. The AMD +
VAP and 3α-cluster wave functions adopted in the present
calculation are the same as those used in Ref. [38]. For details
of the calculation procedures and wave functions of 12C, the
reader is referred to those references.

In the AMD method, a basis wave function is given by a
Slater determinant,

�AMD(Z) = 1√
A!

A{ϕ1, ϕ2, . . . , ϕA}, (1)

where A is the antisymmetrizer, and ϕi is the ith single-
particle wave function written by a product of spatial, spin,

and isospin wave functions,

ϕi = φX iχiτi, (2)

φX i (r j ) =
(

2ν

π

)3/4

exp[−ν(r j − X i )
2], (3)

χi =
(

1

2
+ ξi

)
χ↑ +

(
1

2
− ξi

)
χ↓. (4)

Here φX i and χi are the spatial and spin functions, respec-
tively, and τi is the isospin function fixed to be proton or
neutron. The width parameter ν = 0.19 fm−2 is used to min-
imize the ground-state energy of 12C. The parameters Z ≡
{X 1, . . . , X A, ξ1, . . . , ξA} indicate Gaussian centroids and spin
orientations, which are treated as variational parameters. To
obtain the AMD wave function for the lowest Jπ state, VAP is
done as

0 = δ

δZ
〈�|H |�〉
〈�|�〉 , (5)

� = PJπ
MK�AMD(Z), (6)

where PJπ
MK is the spin-parity projection operator. For the

second and third Jπ states, VAP is done for the component
orthogonal to the lower Jπ states. One of the advantages of the
AMD method is that the model is free from a priori assump-
tion of clusters because Gaussian centroids and spin orienta-
tions of all single-particle wave functions are independently
treated, but it is able to describe the cluster formation as well
as the cluster breaking. However, the AMD calculation with
a limited number of basis wave functions is insufficient for
describing a large amplitude intercluster motion in developed
cluster states.

To improve this problem of the AMD method, we ex-
plicitly include the 3α-cluster wave functions with GCM.
We express various 3α-cluster configurations with the Brink–
Bloch cluster wave functions [50] and superpose them with
the AMD + VAP wave functions. In what follows, we call
the AMD + VAP calculation without 3α-cluster GCM just
“AMD,” and that with 3α-cluster GCM “AMD + GCM.” In
the former calculation, we superpose 23 configurations of the
AMD wave functions adopted in Ref. [29]. In the latter, 150
configurations of the 3α-cluster are included with the AMD
wave functions as done in Ref. [38].

As inputs from the structure calculations to the micro-
scopic CCs calculation of the α scattering, the matter and
transition densities of 12C are calculated by using the AMD
and AMD + GCM wave functions. The transition strengths
and form factors are also calculated and compared with exper-
imental data determined by the γ -decay lifetimes and electron
scattering. The definitions of the densities, strengths, and form
factors are given in Appendixes A and B.

III. MICROSCOPIC COUPLED-CHANNELS
CALCULATION WITH g-MATRIX FOLDING MODEL

The CCs potentials are microscopically derived by folding
the g-matrix effective NN interaction with the target and
projectile densities. We use the Melbourne g-matrix inter-
action [46], which has been successfully used in describing
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TABLE I. Excitation energies Ex (MeV) and rms proton radii Rp (fm) of 12C obtained with the AMD and AMD + GCM calculations.
Theoretical values of RGM from Ref. [9] are also shown. The experimental energies are taken from Ref. [58]. The experimental value of the
rms proton radius of the ground state is deduced from the experimental charge radius measured by the electron scattering [59].

Expt. AMD AMD + GCM RGM

Ex Rp Ex Rp Ex Rp Ex Rp

0+
1 0.0 2.33 0.0 2.53 0.0 2.54 0.0 2.40

0+
2 7.65 8.1 3.27 7.3 3.62 7.74 3.47

0+
3 10.3 10.7 3.98 10.0 3.92

1−
1 10.84 12.6 3.42 10.7 3.87

2+
1 4.44 4.5 2.66 4.2 2.67 2.77 2.38

2+
2 9.87 10.6 3.99 9.5 4.09 9.38 3.85

3−
1 9.64 10.8 3.13 9.3 3.49 8.14 2.77

4+
1 13.3 10.9 2.71 10.5 2.79

4+
2 14.08 12.6 4.16 11.6 4.22

the α-nucleus scattering [47,51]. The α-nucleus potential is
calculated with an extended nucleon-nucleus folding (NAF)
model. For the 4He density, we employ the one-range Gaus-
sian density given by Eq. (24) of Ref. [52].

The validity of the NAF model for the α elastic scattering
is discussed through the comparison with the so-called target
density approximation (TDA) in Ref. [51]. The NAF model
is found to simulate the TDA model well and reasonably
describe the α elastic scattering on 58Ni and 208Pb over a
wide range of incident energies of Eα = 20–200 MeV/u.
It is concluded in Ref. [51] that the TDA model has a
clear theoretical foundation in view of the multiple scattering
theory and is superior to the conventional frozen density
approximation (FDA) in describing the α elastic scattering.
Later, the TDA model has successfully been applied to the 3He
elastic scattering [53] on 58Ni and 208Pb, and to the α inelastic
scattering on 12C [47]. In the NAF model adopted in this
study, first, the nucleon-nucleus CCs potentials are obtained
by the single-folding model using the transition densities of
the target nucleus, and then these potentials are folded with
the 4He one-body density. This model is based on a similar
concept to that of the TDA model, but making an additional
approximation to the exchange part of the NN interaction
[51]. Consequently, once nucleon-nucleus coupling potentials
are evaluated, those for the α-nucleus system can be obtained
by just making a single-folding procedure. This is much sim-
pler than the standard double-folding procedure even when
the g-matrix interaction is assumed to be independent of the
density of α as in the TDA model. Therefore, the NAF model
will be interpreted as a practical alternative to the TDA model.
Nevertheless, there remain some model uncertainties in the
reaction calculation, at backward angles in particular.

In the default CCs calculation of the elastic and inelastic
α scattering, we adopt the nine states, 0+

1 , 0+
2 , 0+

3 , 2+
1 , 2+

2 ,
4+

1 , 4+
2 , 1−

1 , and 3−
1 , of the target 12C nucleus with the matter

and transition densities obtained with the AMD and AMD +
GCM calculations, which are scaled so as to reproduce the
observed transition strengths to reduce possible ambiguity
from the structure calculations. For the excitation energies
of 12C, we use the experimental values listed in Table I. In
the calculation of the 1−

2 cross sections with AMD + GCM,
we adopt 13 states including four states, 2+

3 (12.0 MeV), 2+
4

(15.44 MeV), 1−
2 , and 3−

2 , additionally to the above-mentioned
nine states. We choose the excitation energies of the 1−

2 and
3−

2 states as Ex = 14 MeV and Ex = 13 MeV, respectively, of
the theoretical values. The 1−

2 state is theoretically predicted
by the AMD + GCM calculation but is not obtained by the
present AMD calculation. Note that the CCs calculations with
and without these four additional states give almost same
cross sections for the default nine states.

For comparison, we also perform the CCs calculation with
the RGM density of 12C taken from Ref. [9], which have
been used in reaction calculations of the α scattering on 12C
[40–42,44,47]. In the CCs calculation with the RGM density,
we adopt five states: the 0+

1 , 0+
2 , 2+

1 , 2+
2 , and 3−

1 , of 12C. We
do not include the 0+

3 state of the RGM calculation because it
does not correspond to the physical 0+

3 state observed around
10 MeV.

IV. STRUCTURE PROPERTIES OF 12C

In this section, we show structure properties such as radii,
transition strengths, and form factors of the ground and ex-
cited states of 12C obtained with the AMD and AMD + GCM
calculations. For comparison, we also show the RGM result
of the 3α-cluster model from Ref. [9]. Note that, in these
structure calculations, there are differences not only in the
model wave functions but also in the effective nuclear inter-
actions. The MV1 central interaction [54] with the Majorana
parameter M = 0.62 and the G3RS [55,56] spin-orbit interac-
tions with the strength parameters u1 = −u2 = 3000 MeV are
used in the AMD and AMD + GCM calculations, whereas the
Volkoff No. 2 central interaction [57] with M = 0.59 is used
in the RGM calculation.

A. Energy spectra and radii of 12C

In Table I, excitation energies and root-mean-square (rms)
proton radii of the ground and excited states of 12C ob-
tained with the structure model calculations of AMD, AMD +
GCM, and RGM are listed together with the experimental
data. The AMD and AMD + GCM calculations well repro-
duce the energy spectra except for those of the 4+

1 , 4+
2 states,

which are somewhat underestimated. Compared to the RGM,
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TABLE II. The transition strengths B(Eλ) of 12C calculated with AMD, AMD + GCM, and RGM. For the 1−
1 → 0+

1 transition, a quarter
of the isoscalar dipole transition strength B(ISλ)/4 is shown. The scaling factor ftr = √

Bexp(Eλ)/Bcal(Eλ) determined by the ratio of the
experimental strength Bexp(Eλ) and the calculated strength Bcal(Eλ) are also shown. The experimental B(Eλ) are taken from Ref. [58]. The
units of the transition strengths are e2 fm4 for B(E0), fm6 for B(IS1), and e2 fm2λ for other B(Eλ).

Expt. AMD AMD + GCM RGM

B(Eλ) (error) B(Eλ) ftr B(Eλ) ftr B(Eλ) ftr

E2 : 2+
1 → 0+

1 7.59 (0.42) 8.53 0.94 9.09 0.91 9.31 0.90
E0 : 0+

2 → 0+
1 29.2 (0.2) 43.5 0.82 43.3 0.82 43.8 0.82

E2 : 0+
2 → 2+

1 13.5 (1.4) 25.1 0.73 24.1 0.75 5.6 1.56
E2 : 2+

2 → 0+
1 1.57a (0.13) 0.39 1.99 0.49 1.93 2.48 0.80

E2 : 3−
1 → 1−

1 40.7 1 79.0 1
E0 : 0+

3 → 0+
1 5.2 1 10.0 1

IS1 : 1−
1 → 0+

1 2.6 1.57b 2.4 1.93b 5.7 1
IS1 : 1−

2 → 0+
1 1.5 1

E3 : 3−
1 → 0+

1 103 (17) 71 1.20 71 1.20 125 0.91
E4 : 4+

1 → 0+
1 733 1 995 1 655 1

E3 : 3−
1 → 0+

2 428 1 1210 1 228 1
E2 : 2+

2 → 0+
2 102 1 182 1 212 1

E2 : 2+
2 → 0+

3 309 1 223 1

aThe updated value of B(E2 : 2+
2 → 0+

1 ) from Ref. [2] by the reanalysis of the data in Ref. [61].
bThe ftr value for the 1−

1 → 0+
1 transition is determined by adjusting the charge form factor to the electron scattering data [60].

the better reproduction of the 2+
1 excitation energy is obtained

in these two calculations because of the α-cluster breaking
effect. For the nuclear size of the excited states, three calcu-
lations show a trend similar to each other. Namely, relatively
small sizes are obtained for the 2+

1 and 4+
1 states in the ground

band, whereas much larger sizes than the ground state are
obtained for the developed cluster states such as 0+

2 , 0+
3 ,

1−
1 , 2+

2 , 3−
1 , and 4+

2 states. Quantitatively, the AMD + GCM
calculation tends to give slightly larger sizes for the developed
cluster states than the AMD calculation because of the large-
amplitude cluster motion. Compared with the two calcula-
tions, the RGM calculation shows almost consistent sizes for
the 0+

2 and 2+
2 states, but a much smaller size for the 3−

1 state
than other two calculations. In the density profile, one can
see qualitatively similar behavior in the three calculations, but
quantitatively, some differences are found in the central and
tail parts of the density. Comparison of the density between
three calculations is given in Fig. 6 of Appendix A. These
differences in the nuclear size and density can be regarded as
model ambiguity from structure calculations.

B. Transition strengths and scaling factor of 12C

The transition strengths of 12C obtained with the AMD,
AMD + GCM, and RGM calculations are listed in Table II
together with the experimental data. The calculated transition
strengths are in reasonable agreement with the experimental
data, although the agreement is not perfect. To reduce am-
biguity from the structure model calculation, we introduce
the scaling factor ftr = √

Bexp(Eλ)/Bcal(Eλ) [square root of
the B(Eλ) ratio of the experimental value to the theoretical
one] and scale the calculated transition densities as ρ(tr)(r) →
ftrρ

(tr)(r) to fit the experimental Eλ transition strengths for the
use of the α scattering calculation. The value of ftr for each
transition is shown in Table II. For the 1−

1 → 0+
1 transition,

we determine the scaling factor ftr by adjusting the calculated
charge form factors to the experimental data measure by the
electron scattering [60]. For other transitions with no data
of the Eλ transition strengths, we set ftr = 1 and use the
calculated transition densities without the scaling, but the
model ambiguity remains. For instance, for the 0+

3 → 0+
1

transition, the predicted B(E0) value of AMD + GCM is
twice as large as that of AMD. Also in the transitions of
2+

2 → 0+
2 and 2+

2 → 0+
3 , which are important for the band as-

signment of these cluster states near the 3α threshold energy,
there are significant differences in the predicted E2 strengths
between the AMD, AMD + GCM, and RGM calculations.
Even though the transition strengths are adjusted to the exper-
imental data with the scaling factor, some differences can be
seen in detailed behavior of the calculated transition densities
between AMD (or AMD + GCM) and RGM. In Appendix A,

TABLE III. References for experimental differential cross sec-
tions of the α scattering on 12C at incident energies of Eα = 130,
172.5, 240, and 386 MeV.

Jπ
f (Ex) 130 MeV 172 MeV 240 MeV 386 MeV

0+
1 (0.00) [45] [49], [48] [37] [35]

2+
1 (2.44) [45] [49] [37] [35]

0+
2 (7.65) [45] [49] [37] [35], [45]

0+
3 (10.3)a [37] [35]b

2+
2 (9.84) [35]b

3−
1 (9.64) [45] [49] [37] [35], [45]

1−
1 (10.84) [45] [37]

4+
1 (14.0) [49]

aThe excitation energy of the 0+
3 state (the broad resonance around

10 MeV) is 10.3 MeV in Ref. [37] and 9.93 MeV in Ref. [35].
bThe sum of the cross sections of the 2+

2 (9.84 MeV) and 0+
3

(9.93 MeV).
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FIG. 1. Squared charge form factors of 12C. The theoretical values are those obtained with AMD and AMD + GCM scaled by the factor f 2
tr

(labeled by AMD ftr and AMD + GCM ftr , respectively). The experimental data are those measured by electron elastic and inelastic scattering
on 12C from Refs. [60,62–64].

we compare the scaled transition densities ftrρ
(tr)(r) between

three calculations.
In Fig. 1, the theoretical form factors for electron elastic

and inelastic scattering of AMD and AMD + GCM are shown
compared with the experimental data. The calculated squared
form factors after the scaling with the factor f 2

tr reasonably
agree with the experimental data.

V. α SCATTERING CROSS SECTIONS

The cross sections of the 12C(α, α′) reaction at incident
energies of Eα = 130, 172.5, 240, and 386 MeV are calculated
by the CCs calculation with the g-matrix folding potentials
using the theoretical transition densities scaled by the factor
ftr. The cross sections obtained with the AMD, AMD +
GCM, and RGM densities are discussed in comparison with
experimental data. The cross sections obtained by the DWBA
calculation are also shown to discuss the CCs effect.

A. Cross sections with AMD and AMD + GCM

In Figs. 2 and 3, the calculated cross sections with AMD
(solid lines) and AMD + GCM (dashed lines) are shown
together with experimental data. The cross sections obtained
by the DWBA calculation with AMD are also shown by the
dotted lines.

The obtained cross sections are qualitatively similar to each
other between AMD and AMD + GCM. These calculations
reasonably reproduce the cross sections for the elastic scat-
tering and the inelastic scattering to the 0+

2 , 0+
3 , 2+

1 , 1−
1 , and

3+
1 states. It should be stressed again that the present micro-

scopic CCs calculation with the g-matrix folding potentials
contains no fitting parameters adjusted to hadron scattering
in the reaction model, although the scaling factor is used for
structure calculation to fit the data of the electric transition
strengths, B(Eλ). It indicates the applicability of the present
model for the α scattering on 12C in this energy region of
Eα = 130–400 MeV.
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FIG. 2. α scattering cross sections on 12C at Eα = 130 MeV (×104), 172.5 MeV (×102), 240 MeV, and 386 MeV (×10−2). The differential
cross sections of the 0+

1 , 0+
2 , 0+

3 , 2+
1 , 2+

2 , and 3−
1 states obtained by the CCs calculation with the AMD and AMD + GCM transition densities

are shown. The cross sections obtained by the DWBA calculation with the AMD transition densities are also shown for comparison. The
experimental data are taken from Refs. [35,37,45,48,49]. References for those data are summarized in Table III.

In the 0+
2 cross sections, one can see that the amplitudes of

the first and second peaks are reproduced well, and there is no
overshooting problem of the 0+ cross sections for this state as
in Ref. [47]. In the 0+

3 inelastic cross sections, two calculations
of AMD and AMD + GCM show a slight difference in the ab-
solute amplitude: the AMD + GCM calculation shows about
1.5 times larger cross sections than the AMD one because
of the larger E0 strength for the direct transition 0+

1 → 0+
3 ,

but both reasonably describe the experimental cross sections
taken at Eα = 240 MeV [37]. It should be remarked that the
data corresponding to the broad resonance around 10.3 MeV,
and it can contain two 0+ states as reported recently [35].

For the 2+
1 cross sections, there is no difference between

AMD and AMD + GCM. Both reproduce the cross sections
with comparable quality to the elastic scattering. As for the 3−

1
cross sections, AMD and AMD + GCM show a quantitative
difference in the absolute amplitude even though the E3 tran-
sition strength is adjusted to the experimental value in both
cases. The AMD + GCM calculation gives somewhat smaller
cross sections than the AMD calculation. A possible reason
for this is the larger radius of the 3+

1 state in AMD + GCM,
which may cause stronger absorption than in AMD.

For the 1−
1 cross sections, the AMD and AMD + GCM

results are consistent with each other, and both are in
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FIG. 3. Same as Fig. 2, but for the 1−
1 , 1−

2 , 4+
1 ,

and 4+
2 states.

reasonable agreement with the experimental data at Eα =
240 MeV. From the scaled transition density which can
reproduce both the electric scattering and α scattering
data, we can estimate the IS dipole transition strength as
B(IS1; 1−

1 → 0+
1 )/4 = 6–9 fm6.

The 2+
2 state is the newly discovered state by α inelastic

scattering and β-decay experiments [2,35,36]. The predicted
cross sections of the 2+

2 state are much smaller than the 2+
1

state consistently with the weak E2 transition from the 0+
1 ,

a small B(E2; 2+
2 → 0+

1 ), because this state is the cluster
state and has the strong E2 transitions not to the ground
state but to the 0+

2 and 0+
3 states. In Fig. 4, we compare

the incoherent sum of the 2+
2 and 0+

3 cross sections at 386
MeV compared with the experimental sum of the 2+

2 (9.84
MeV) and 0+

3 (9.93 MeV) reported in Ref. [35]. The 2+
2 and

0+
3 cross sections at 240 MeV are also shown together with

the experimental 0+
3 cross sections. In the calculation, the

0+
3 and 2+

2 cross sections describe respectively the first and
second peaks, and both contribute to the third peak of the
summed cross sections. This result is similar to the experi-
mental MDA analysis [35] and the theoretical calculation of
Ref. [44], where the optical potentials have been phenomeno-
logically tuned to reproduce the experimental cross sections.
In the reproduction of the experimental data, the AMD result
seems to be favored rather than the AMD + GCM result,
although quality of the reproduction is not satisfactory to
conclude it.

For the 1−
2 and 4+

2 states, there are no available data and
the calculated cross sections are theoretical predictions. As
discussed in Ref. [39], the predicted 1−

2 is a toroidal dipole
state and contributes to the isoscalar dipole strengths in the
low-energy region below the giant dipole resonance. In the
α scattering experiment at 240 MeV [37], the significant
isoscalar dipole strength around 15 MeV has been observed
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FIG. 4. 2+
2 and 0+

3 cross sections at Eα = 240 and 386 MeV calculated with AMD and AMD + GCM. The incoherent sum of the 2+
2 and

0+
3 cross sections at 386 MeV is compared with the experimental sum of the 2+

2 (9.84) MeV and 0+
3 (9.93 MeV) taken from Ref. [35]. The

experimental 0+
3 cross sections at 240 MeV are taken from Ref. [37].

in the MDA, and it is a candidate for the predicted toroidal
state of the 1−

2 .

B. Coupled-channels effects

Let us discuss the CCs effect in comparison with the
DWBA calculation shown in Figs. 2 and 3.

For the 0+
1 and 2+

1 cross sections, the results are almost
consistent between the DWBA and CCs calculations, and only
a slight difference can be seen at large scattering angles. For
other states, the CCs effect is significant, in particular, at low
incident energies, and still remains even at Eα = 386 MeV.
In the 0+

2 , 2+
2 , and 3−

1 cross sections, the absolute amplitudes
are reduced by the CCs effect. Compared with the DWBA
calculation, the peak positions are almost unchanged but dips
are somewhat smeared in the CCs calculation for the 0+

2 and
2+

2 . The CCs effect on the 0+
2 cross sections is dominantly con-

tributed by the λ = 2 transitions with the 2+
1 and 2+

2 states and
the λ = 3 transition with the 3−

1 state. The CCs effect on the
2+

2 cross sections is found to be through the λ = 2 transition
with the 0+

2 and the λ = 3 transition with the 3−
1 state.

For the 0+
3 cross sections, the CCs effect gives an op-

posite contribution; namely, it enhances the cross sections.
Consequently, the calculated 0+

3 cross sections are of the same
order as the 0+

2 cross sections even though the monopole
transition strength to the 0+

3 is about one order smaller than
the strength to the 0+

2 . This result indicates that the 0+ cross
sections do not scale with the monopole transition strengths
contrary to the naive expectation of the linear scaling, which is
often assumed in the experimental determination of isoscalar
transition strengths with the DWBA analysis of the α inelastic
scattering.

Further significant CCs effects are found in the 1−
1 , 4+

1 ,
and 4+

2 cross sections. For these states, not only the absolute
amplitude but also the diffraction pattern of the cross sections
are affected. For the 1−

1 cross sections, the absolute values are
reduced and the first and second peak positions are shifted
to the forward angle by the CCs effect, which is essential
to describe the experimental cross sections at 130 MeV. The
dominant contribution to the 1−

1 cross sections is the coupling
with the 3−

1 state through the strong λ = 2 transition. Com-
pared with the 1−

1 case, the CCs effect in the 1−
2 cross sections

is not so large. The present calculation predicts almost the
same amplitude of the 1−

2 cross sections as the 1−
1 cross

sections even though the isoscalar dipole transition strength
is weaker in the 1−

2 → 0+
1 than in the 1−

1 → 0+
1 , as shown in

Table II.
For the 4+

1 and 4+
2 states, the cross sections are strongly

influenced by the channel coupling. For the 4+
1 cross sections,

the present CCs calculation reproduces the absolute amplitude
but does not describe the diffraction pattern of the experimen-
tal cross sections.

C. Cross sections with resonating group method

Figure 5 shows the cross sections obtained with RGM
together with the AMD result as well as the experimental data.
Some differences can be seen in the inelastic cross sections
between RGM and AMD. The RGM calculation shows larger
cross sections for the 3−

1 than AMD, and tends to overestimate
the experimental data. The absorption may be too weak in
RGM because of the smaller radius of the 3−

1 state than that of
AMD. For the 0+

2 cross sections, the peak and dip structures
are smeared by the stronger CCs effect in the RGM result, and

064601-8



α SCATTERING CROSS SECTIONS ON 12C WITH A … PHYSICAL REVIEW C 99, 064601 (2019)

10-4

10-2

100

102

104

106

108

 0  5  10  15  20  25  30  35  40

0+
1

130 MeV(×104)

172.5 MeV(×102)

240 MeV 

386 MeV
(×10-2)

R
ut

he
rf

or
d 

ra
ti

o

θ (degree)

AMD
RGM

exp

10-4

10-2

100

102

104

106

 0  5  10  15  20  25  30  35  40

0+
2

cr
os

s 
se

ct
io

n 
(m

b/
sr

)

θ (degree)

AMD
RGM

exp

10-2

100

102

104

106

108

 0  5  10  15  20  25  30  35  40

2+
1

cr
os

s 
se

ct
io

n 
(m

b/
sr

)

θ (degree)

AMD
RGM

exp

10-4

10-2

100

102

104

106

 0  5  10  15  20  25  30  35  40

2+
2

cr
os

s 
se

ct
io

n 
(m

b/
sr

)

θ (degree)

AMD
RGM

10-4

10-2

100

102

104

106

 0  5  10  15  20  25  30  35  40

3−
1

cr
os

s 
se

ct
io

n 
(m

b/
sr

)

θ (degree)

AMD
RGM

exp

FIG. 5. α scattering cross sections on 12C at Eα = 130 MeV (×104), 172.5 MeV (×102), 240 MeV, and 386 MeV (×10−2), obtained by
the CCs calculation with the RGM densities compared with the AMD result. The calculated differential cross sections of the 0+

1 , 0+
2 , 2+

1 , 2+
2 ,

and 3−
1 states are shown. The experimental data from Refs. [35,37,45,48,49] are also shown.

the reproduction of the experimental data becomes somewhat
worse than AMD. Also in the 2+

2 cross sections, the strong
CCs effect smears the diffraction pattering in the RGM result.

VI. SUMMARY

The α elastic and inelastic scattering on 12C was inves-
tigated by using a microscopic CCs calculation with the
g-matrix folding model. The α-nucleus CCs potentials are
derived by folding the Melbourne g-matrix NN interaction
with the transition densities calculated with the microscopic
structure models of AMD and AMD + GCM.

The present calculation reasonably reproduces the differ-
ential cross sections of the α scattering at incident energies
of Eα = 130, 172.5, 240, and 386 MeV with no fitting pa-
rameters adjusted to hadron scattering in the reaction model,
although the scaling factor is used for structure calculation
to fit the data of the electric transition strengths, B(Eλ). The
calculation successfully describes the absolute amplitude of
the 0+

2 cross sections and does not encounter the overshoot-
ing problem of the 0+ cross sections; the so-called missing
monopole strength. This result is consistent with the preced-
ing work by Minomo and one of the authors (K.O.) [47] using
the RGM transition densities. Moreover, the present calcula-
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FIG. 6. Proton densities ρp(r) = ρ(r)/2 of the AMD, AMD + GCM, and RGM calculations.

tion reproduces the 0+
3 cross sections and also describes the

sum of the 0+
3 and 2+

2 cross sections. In comparison with the
DWBA calculation, the CCs effect on the inelastic scattering
cross sections is found to be significant except for 2+

1 ; in
particular, at low incident energies, and still remains even at
Eα = 386 MeV.

It was found that the absolute values of the inelastic cross
sections do not necessarily scale linearly with the transition
strength, because it is sensitively influenced by the coupling
with other channels and also by the radius of the excited state.
This may be a characteristic aspect of the α scattering on
12C, in which cluster states near the threshold energy have
larger radii than the states in the ground-band states and there
exist strong transitions between each other. It indicates that
reliable microscopic calculation of α scattering is needed to
extract quantitative information on the transition strengths
from the α inelastic scattering. It should be remarked that
such calculations may reveal also properties of the coupling
between excited states that cannot be studied if the DWBA
picture holds. The α inelastic cross sections contain rich
information on the excited states of 12C through the CCs
effect. The present model has been proved to be applicable to
the α elastic and inelastic scattering for cluster states and can
be a powerful tool for investigation of not only the isoscalar

monopole and dipole transitions but also transitions between
excited states for general stable and unstable nuclei.

Nevertheless, there still remain problems in an accurate
reproduction of the cross sections. There is no ambiguity for
the known transitions because the theoretical transition densi-
ties are scaled to fit existing data of the transition strengths.
However, for unknown transitions, in particular, transitions
between excited states, model ambiguity remains in the struc-
ture calculations. Another unknown factor is the nuclear size
of the excited states. Further reliable structure calculations
are needed to reduce the ambiguity from these factors. Also
in the reaction part, further improvements can be considered.
For example, treatments of the density dependencies of the
g-matrix effective interactions and a possible contribution of
the three-nucleon force effect should be tested more carefully
for better reproduction of the scattering cross sections; those
at backward angles in particular.
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FIG. 7. Transition densities ρ tr(r) of the AMD, AMD + GCM, and RGM calculations. The calculated densities scaled with a factor If ≡√
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APPENDIX A: MATTER AND TRANSITION DENSITIES

The density operator of nuclear matter is

ρ(r) =
∑

k

δ(r − rk ). (A1)

The transition density for the transition |i〉 → | f 〉 is given as
ρ

(tr)
i→ f (r) ≡ 〈 f |ρ(r)|i〉, and its λth moment is obtained from the

multipole decomposition,

ρ
(tr)
i→ f (r) = 1√

2Jf + 1

∑
λ

ρ
(tr)
λ;i→ f (r)

×
∑

μ

Y ∗
λμ(r̂)(JiMiλμ|Jf M f ), (A2)

where Ji and Mi (Jf and M f ) are the spin quantum numbers
of the initial |i〉 (final | f 〉) state. It should be remarked that
the transition density ρ

(tr)
λ;i→ f (r) defined here is related to the

transition density ρ
(tr:K)
λ;i→ f (r) used by Kamimura in Ref. [9] as

ρ
(tr:K)
λ;i→ f (r) = 1√

2Jf + 1
ρ

(tr)
λ;i→ f (r). (A3)
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The matter density ρ(r) of the state |i〉 is related to the
diagonal component of the λ = 0 transition density as

ρ(r) = 1√
4π

ρ
(tr)
0;i→i(r). (A4)

The volume integral of the matter density equals to the mass
number A as

A =
∫

4πr2ρ(r)dr. (A5)

The matter and transition densities obtained with the AMD,
AMD + GCM, and RGM calculations are shown in Figs. 6
and 7, respectively.

APPENDIX B: DEFINITIONS OF TRANSITION
OPERATORS, STRENGTHS, AND FORM FACTORS

For the rank λ �= 0, 1, the isoscalar transition operator is
give as

MISλ(μ) ≡
∫

drρ(r)rλYλμ(r̂), (B1)

and the matrix element is related to the transition density as

〈 f ||MISλ||i〉 =
∫

drr2rλρ
(tr)
λ;i→ f (r). (B2)

In the present calculation, the electric transitions are calcu-
lated by assuming the mirror symmetry because the symmetry
breaking in the initial and final states are negligibly small. The
Eλ transition strength is given as

B(Eλ) = e2

4

1

2Ji + 1
|〈 f ||MISλ||i〉|2, (B3)

where the factor of 1
4 comes from the mirror symmetry

assumption. For the λ = 0 case, the E0 transition operator,
matrix elements, and strengths are given as

MIS0 ≡
∫

drρ(r)r2, (B4)

〈 f ||MIS0||i〉 =
√

4π

∫
drr2rλ+2ρ

(tr)
λ;i→ f (r), (B5)

B(E0) = e2

4

1

2Ji + 1
|〈 f ||MIS0||i〉|2. (B6)

The λth multipole component of the so-called longitudinal
form factor is related to the Fourier–Bessel transform of the
transition charge density ρch

λ;i→ f (r) by

F (q) =
√

4π

Z

1√
2Ji + 1

∫
drr2 jλ(qr)ρch

λ;i→ f (r), (B7)

where ρch
λ;i→ f (r) is calculated by taking into account the

proton charge radius.
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