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Low-energy M1 excitations in 208Pb and the spin channel of the Skyrme energy-density functional
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We investigate the performance of the Skyrme energy-density functional with respect to magnetic modes,
checking in particular the impact of the spin-orbit and spin-spin interaction. Test cases are the low-energy M1
excitations in 208Pb treated within the self-consistent random-phase approximation based on the Skyrme energy-
density functional. We scan a large variety of Skyrme parametrizations to find out which parameters of the
functional have strongest correlations with M1 properties. We explore a simple method of the modification of
the spin-related parameters, which delivers a better description of M1 excitations while basically maintaining
the good description of ground-state properties.
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I. INTRODUCTION

The aim of this paper is to explore the self-consistent
description of nuclear magnetic excitations by an energy-
density functional (EDF) of Skyrme type [1] taking the low-
lying magnetic dipole (M1) excitations in 208Pb as test case.
Tool of choice is the random phase approximation (RPA) and
its various extensions which is the most often used method
for the investigation of nuclear excitation spectra. It takes
as input data single-particle (sp) energies, sp wave functions
and a particle-hole (ph) residual interaction. Early calculations
as, e.g., Migdal’s theory of finite Fermi systems (TFFS, see
Refs. [2–4]) started with an effective single-particle model
whose parameters are adjusted to experimental sp properties
and used (in nearly all numerical applications) a density-
dependent zero-range ph interaction. It requires only a few
parameters, coined Landau-Migdal (LM) parameters, which
are adjusted to electric and magnetic nuclear excitations and
which turn out to be universal in the sense that the same values
apply throughout the chart of nuclei [5]. In self-consistent
nuclear models, one obtains the sp properties as well as
the ph interaction from one and the same effective Hamil-
tonian, or EDF respectively. The parameters of the Skyrme
EDF are primarily adjusted to bulk properties of the nuclear
ground state. An appropriate ph residual interaction is not
a priori guaranteed. For example, the first realistic Skyrme
parametrizations [6,7] had an incompressibility of the order
of 350 MeV and produced therefore the breathing mode in
208Pb at around 17 MeV (which was off by 3 MeV from
the experimental value measured some years later). Includ-
ing data specific to excitations, one could later on develop
parametrizations which also perform well for breathing mode
and isoscalar quadrupole resonance [8,9]. In general, there is
sufficient flexibility in the Skyrme EDF to accommodate all
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modes with natural parity, isoscalar as well as isovector reso-
nances [10]. The LM parameters for natural-parity excitations
derived from such Skyrme EDFs agree nicely with long tested
LM parameters of TFFS [11].

For magnetic modes, self-consistent models as, e.g.,
Skyrme EDFs have not yet reached that high level of descrip-
tive power while TFFS has been adapted very well also for
these excitation channels. The plan for this paper is thus to
explore the chances for a better description of magnetic modes
with a Skyrme EDF exploiting yet loosely determined aspects
of the functional. Here we are guided by the large body of
experience gathered within the TFFS. It tells us that the spin
dependent ph interaction is weak for the isoscalar part and
is strongly repulsive for the isovector part. This agrees with
the experimental findings: There are no isoscalar collective
magnetic resonances over the whole periodic system but there
exist strong Gamow-Teller resonances in heavy nuclei, which
are created by the spin-isospin-dependent part of the residual
interaction. We also know from such investigations that the
M1 states in 208Pb represent an ideal test case. Experimental
data on the distribution of the M1 strength in this nucleus at
the excitation energies up to 8.4 MeV are known since the
work of Refs. [12–14]. Updates for the energies below neutron
separation energy were published in Ref. [15]. The observed
spectrum of the low-energy M1 excitations in 208Pb consists
of two marked features: an isoscalar 1+ state with E =
5.844 MeV and a broad isovector M1 resonance in the interval
6.6–8.1 MeV. Strong fragmentation of the M1 resonance was
one of the reasons for the difficulties with identification in
the early experiments (see, e.g., Ref. [16] for discussion).
Moreover, several states that had been originally identified
as M1 turned out to be E1 after experiments with polarized
photons were available.

The numerous theoretical papers devoted to the micro-
scopic description of M1 excitations in 208Pb can be divided
into two main groups. The first group includes the papers
in which the nuclear excitations are treated as superposition
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of the one-particle–one-hole (1ph) configurations, i.e. within
the RPA or the Tamm-Dancoff approximation (see, in partic-
ular, Refs. [3,4,17–24]). In the papers of the second group,
various versions of beyond-RPA approaches are used in
which the RPA configuration space is enlarged by adding
the 2ph, 1ph ⊗ phonon or two-phonons configurations (see,
e.g., Refs. [25–31]). Most of the earlier work as mentioned
before was performed within the TFFS. Using experimental
single-particle energies as input for the mean-field part and
properly tuning the interaction parameters (LM parameters)
in the spin-spin channel, they managed to provide an appro-
priate description of peaks and M1 strengths. Beyond-RPA
treatments, properly including the coupling of 1ph states to
2ph configurations, were necessary to describe the spectral
fragmentation of the M1 resonance around 7.5 MeV [31].

Fully self-consistent RPA calculations as done in
Refs. [20–24] did not yet reach that level of description. In
fact, there is no published Skyrme parametrization that can
describe simultaneously position and strength of M1 modes
in 208Pb and other nuclei [21,22]. Already 208Pb alone seems
to pose insurmountable difficulties. It is hard to get the lower
M1 peak and the M1 resonance simultaneously at their correct
energies, not to mention a proper prediction of M1 strength.
Inappropriate strengths of spin-orbit coupling were identified
as one major source of the problem [21,22]. We had applied
a recently optimized phonon-coupling model on top of self-
consistent RPA [32,33] to M1 modes and, unfortunately, did
not find any improvement concerning spectral separation of
lower and upper mode nor sufficiently strong fragmentation.
The problem has first to be cleared at RPA level before
invoking more advanced approaches.

In our paper we address two major tasks. In the first
part we present a thorough overview of the performance of
many published Skyrme forces concerning their spin stability
and the M1 modes. In a second step, we exploit the expe-
rience gathered in the first part to move toward a Skyrme
parametrization for fully self-consistent calculations, which
describe characteristics of the leading M1 modes correctly.
To this end we determine the crucial handles in the Skyrme
energy functionals, which have the most impact on the M1
spectrum. They include two groups of the parameters being
the coupling constants of the spin-spin and the spin-orbit
terms of the Skyrme EDF. The first group is closely related to
the spin-spin parameters of the residual interaction used in the
TFFS. The parameters of the second group govern the spin-
orbit splitting of the single-particle states and were examined
in this context by many authors including Skyrme himself (see
Refs. [34,35]). The problem that we try to solve in the present
paper is to tune all these parameters to deliver correct energies
and strengths of the leading M1 modes in 208Pb within the
fully self-consistent RPA based on the Skyrme EDF without
spoiling the high quality with respect to nuclear ground-state
observables achieved in the original parametrizations of this
functional.

The paper is organized as follows. Section II provides
the formal background of RPA, the Skyrme functional, the
magnetic operators, and the numerical scheme. Section III dis-
cusses M1 modes in the context of Skyrme EDFs and works
out the leading mechanisms defining these modes. In Sec. IV

we try a moderate readjustment of Skyrme parameters, which
leads to better description of M1 modes. The last section
contains the conclusions.

II. FORMAL BACKGROUND

A. Summary of the RPA

Within the RPA one can calculate the spectrum of
the excitation energies ωn of the even-even nucleus and
the corresponding set of the transition amplitudes Zn

12
where the numerical indices (1, 2, 3, . . .) stand for the sets of
the quantum numbers of some single-particle basis. Generally,
this basis can be arbitrary, but it is convenient to suppose that
it diagonalizes the single-particle density matrix ρ12 and the
single-particle Hamiltonian h12, which satisfy the relations
ρ2 = ρ and [ h, ρ ] = 0. In this case the following equations
are fulfilled:

h12 = ε1δ12, ρ12 = n1δ12. (1)

In what follows the indices p and h will be used to label the
single-particle states of the particles (np = 0) and holes (nh =
1) in this basis.

The RPA eigenvalue equation has the form∑
34

�RPA
12,34 Zn

34 = ωn Zn
12, (2)

where

�RPA
12,34 = h13 δ42 − δ13 h42 +

∑
56

MRPA
12,56 V56,34, (3)

MRPA
12,34 = δ13 ρ42 − ρ13 δ42, (4)

V is the amplitude of the residual interaction and MRPA is the
metric matrix. The matrices �RPA and MRPA act in the ph +
hp space. The transition amplitudes Zn

12 are normalized to∑
1234

Zn∗
12 MRPA

12,34 Zn′
34 = sgn(ωn) δn, n′ . (5)

In the self-consistent RPA, which is supposed in the following,
the following relations are fulfilled:

h12 = δE [ρ]

δρ21

, V12,34 = δ2E [ρ]

δρ21 δρ34

, (6)

where E [ρ] is an energy-density functional.
The amplitudes Zn

12 allow us to calculate the reduced
probabilities of the transitions caused by the external field
operator Qα

LM according to the formula

Bn(αLn) =
∑
Mn

∣∣〈 Zn
∣∣ Qα

LnMn

〉∣∣2
, (7)

where index α labels different kinds of the operators of
the multipolarity L (in particular, α = m for the magnetic
transitions).

B. Skyrme energy-density functional

As the energy-density functional E [ρ] in Eqs. (6) we
take the Skyrme EDF of the standard form (see, e.g.,
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Refs. [36,37]). It can be represented as the sum of the fol-
lowing terms:

ESkyrme = Ekin + Eint + ECoul, (8)

where

Ekin =
∫

dr
[

h̄2

2mp
τp(r) + h̄2

2mn
τn(r)

]
, (9)

Eint =
∫

dr Eint (r), (10)

ECoul = e2

2

∫
dr dr′ ρp(r)ρp(r′)

|r − r′|

−3e2

4

(
3

π

)1/3 ∫
drρ4/3

p (r). (11)

The energy density in Eq. (10) is given by

Eint =
∑

T =0,1

[
Cρ

T ρ2
T + Cρ,α

T ρ2
T ρα

0 + C
ρ
T ρT 
ρT

+Cτ
T

(
ρT τT − j2

T

) + CJ
T

(
J2

T − sT ·T T

)
+C∇J

T

(
ρT ∇ ·JT + sT ·∇× jT

)
+Cs

T s2
T + Cs,α

T s2
T ρα

0 + C
s
T sT 
sT

]
, (12)

where Cρ
T , Cρ,α

T , C
ρ
T , Cτ

T , CJ
T , C∇J

T , Cs
T , Cs,α

T , C
s
T , and

α are the constants, ρT , τT , JT , sT , T T , and jT are the
local densities and currents. These densities and currents are
divided into two groups (see Refs. [1,38]): time-even ( ρT , τT ,
JT ) and time-odd ( sT , T T , jT ). Their definition through the
single-particle density matrix is given in Appendix A.

In the general case, if the form of the functional Eint is con-
strained only by the conditions of the global symmetries, the
C constants are the independent parameters. Usually, they are
determined by fitting the results of the Skyrme-Hartree-Fock
(SHF) and RPA calculations to the experimental data on basic
nuclear properties with taking into account the constraints
imposed by the nuclear matter properties. However, if the
Skyrme EDF, Eqs. (8)–(12), is derived within the Hartree-
Fock approximation from the many-body Hamiltonian con-
taining two-body velocity- and density-dependent zero-range
interaction, the number of the independent C constants de-
creases. In this case 18 C constants in Eq. (12) are expressed
through 10 Skyrme-force parameters t0, x0, t1, x1, t2, x2, t3, x3,
W0, and xW (see, e.g., Ref. [1]). The respective formulas are
given in Appendix B.

Different bias in choosing the data and steady growth
of information on exotic nuclei has led to a great variety
of parametrizations. In order to keep the present survey
sufficiently general, we consider a large set of 30 different
parametrizations of the Skyrme EDF: SIII [7], SGII [39],
SkM∗ [8,9], RATP [40], T5 and T6 [41], SkP [42], SkI3, SkI4,
and SkI5 [43], SLy4, SLy5, and SLy6 [44], SKX, SKXm,
and SKXce [45], SkO and SkO′ [46], MSk1 and MSk3 [47],
MSk9 [48], SV-bas, SV-K218, SV-kap00, SV-mas07, SV-
sym34, and SV-min [10], SV-m56k6 and SV-m64k6 [49], and
SAMi [50].

Here it should be noted that the time-odd densities and
currents are equal to zero in the ground states of the even-
even nuclei [38]. So, the constants Cs

T , Cs,α
T , and C
s

T do
not affect the ground-state properties of these nuclei and the
mean field deduced by making use of Eq. (6). Nevertheless,
these constants can have an impact on the characteristics
of the excited states of the even-even nuclei because in the
general case the respective terms of the functional Eint give
the nonzero contribution to the residual interaction according
to Eqs. (6), (8), (10), and (12), even if the time-odd densities
and currents are equal to zero. This circumstance allows us to
change the constants Cs

T , Cs,α
T , and C
s

T (assuming that they
are the independent parameters) for the purpose of description
of nuclear excitations without affecting the ground state and
the self-consistent mean field.

It is known that the parameters Cs
T , Cs,α

T , and C
s
T in

most cases have little influence on the characteristics of the
natural parity excitations, but in some cases can lead to the
spin instability in the self-consistent RPA and extended RPA
calculations. In particular for this reason sometimes (includ-
ing our recent papers [32,33,51–53]) they are set to be equal
to zero, while the other C constants are determined by the
Skyrme-force parameters according to Eqs. (B1). However,
this choice is not suitable for the self-consistent description
of the magnetic excitations which are the subject of the
present paper. In this case the terms of the functional Eint

containing the constants Cs
T , Cs,α

T , and C
s
T become relevant.

In particular, from Eqs. (6), (8), (10), and (12) it follows that
the terms containing Cs

T yield the term V s of the residual
interaction V having the form of the Landau-Migdal ansatz

V s = CN

(
g σ · σ ′ + g′ σ · σ ′ τ · τ ′ ), (13)

where

CN g = 2Cs
0, CN g′ = 2Cs

1, (14)

CN is a normalization constant. Just the parameters g and g′
in Eq. (13) are responsible for the description of the unnatural
parity excitations in the TFFS (see Refs. [2–4]). The method
of determining the C constants of the functional Eint adopted
in the present paper is described in Sec. IV.

C. M1 operator

The field operator Q in the case of the M1 excitations has
the following (vector) form:

Q = μN

√
3

16π
{(γn + γp ) σ + l

+ [ (1 − 2ξs) (γn − γp ) σ − (1 − 2ξ l ) l] τ3}, (15)

where l is the single-particle operator of the angular mo-
mentum, σ and τ3 are the spin and isospin Pauli matrices,
respectively (with positive eigenvalue of τ3 for the neutrons),
μN = eh̄/2mpc is the nuclear magneton, γp = 2.793 and γn =
−1.913 are the spin gyromagnetic ratios, ξs and ξ l are the
renormalization constants introduced to simulate quenching
of the M1 strength that is usually necessary for the description
of the experimental data. The nonzero ξs and ξ l correspond
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to the effective operator Q. Their standard values are (see
Refs. [4,54])

ξs = 0.1, ξ l = −0.03. (16)

Zero values

ξs = 0, ξ l = 0 (17)

correspond to the bare operator Q(0).
Equation (15) can be represented as the result of the action

of the effective charge operator eq introduced in the TFFS [2]
on the bare operator Q(0), that is

Q = eqQ(0), (18)

where

eq = 1 − 1
2 ( ξ l σ0 σ ′

0 + ξs σ · σ ′ ) τ · τ ′, (19)

and σ0 is the identity spin matrix. According to the TFFS, the
operator eq is universal, i.e., it should act on all the external
field operators Q including the operators of the electric type
Qe, which are proportional to σ0. From this it follows that if
we impose the condition of the invariance

eqQe = Qe, (20)

we should set ξ l = 0. The actual values of this constant used
in the calculations of the magnetic excitations are very small
and thus violate the condition (20) only slightly.

D. Numerical details

The equations of the RPA for the M1 excitations in 208Pb
were solved within the fully self-consistent scheme as de-
scribed in Refs. [51–53]. The single-particle basis was dis-
cretized by imposing the box boundary condition with the box
radius equal to 18 fm. The particle energies εp were limited
by the maximum value εmax

p = 100 MeV. These conditions
ensure fulfillment of the RPA energy-weighted sum rule for
the isoscalar EL excitations in 208Pb within 0.1 % for L � 8.

III. M1 EXCITATIONS IN 208Pb IN RPA

A. Defining the problem and observables

In order to illustrate the observables for the following
survey, we start with showing in Fig. 1 the distribution of
M1 strength in 208Pb calculated within self-consistent RPA
based on the Skyrme EDF with two different parametrizations
and comparing it with experimental data. We employ here the
discrete version of the RPA because the single-particle contin-
uum plays a minor role in the considered case. The strength
functions were obtained by folding the discrete RPA spectrum
and the discrete experimental mode (lower M1 mode) with
a Lorentzian of half-width 
 = 20 keV. The experimental
data demonstrate the basic features of M1 strength in 208Pb:
there is a very narrow peak at lower energy E1 = 5.84 MeV
and a broad resonance at E2 = 7.39 MeV. The height of the
lower peak is characterized by its integrated B1(M1) strength
equal to 2.0 μ2

N . Experimental mean energy E2 and summed
strength

∑
B(M1) of the upper M1 resonance are computed

from moments mk = �ν Bν (M1) Ek
ν summed/integrated in

the interval 6.6–8.1 MeV with the probabilities Bν (M1) and

FIG. 1. Strength functions of the M1 excitations in 208Pb cal-
culated within RPA using the parametrization SV-bas [10] (black
dashed line) and SV-basmx as a modified variant thereof (red
solid line) introduced in Sec. IV. Experimental data taken from
Refs. [13,15] are shown by the blue dotted line. The low-lying
M1 state is at 5.84 MeV, hidden below the result from SV-basmx .
The discrete peaks from RPA and the lower M1 mode have been
broadened with a smearing parameter 
 = 20 keV to represent a
smooth distribution.

the excitation energies Eν taken from Refs. [13,15]. Note
that we do not include in this interval the state with E =
7.335 MeV [and possible B(M1) = 1.8 μ2

N ] from Ref. [15]
because of the uncertainty with the identification of its spin.
We also note that the chosen smearing parameter 
 = 20 keV
is sufficiently large to average out the fine structure of the
experimental spectrum, which is not essential for our analysis,
but remains sufficiently small to resolve the spreading widths.
The experimental strength distribution is composed from two
data sets, below the neutron separation energy 7.37 MeV from
Ref. [15] and above from Ref. [13]. It is thus not clear whether
the dip between the peaks at 7.26 MeV and 7.47 MeV is a
real effect. Inelastic proton scattering data [55,56] seems to
indicate that the dip does not exist. Anyway, such detailed
fragmentation structure cannot be described within RPA. Thus
we use for comparison with RPA the average peak properties
as explained above. Altogether, we have four observables
E1 = 5.84 MeV, E2 = 7.39 MeV, B1(M1) = 2.0 μ2

N , and
B2(M1) = ∑

B(M1) = 15.3 μ2
N , which we use henceforth to

characterize the M1 modes in 208Pb.
Figure 1 shows theoretical results from two different

parametrizations. The parametrization SV-basmx (which is
tuned to data such that theoretical and experimental curve for
the lower peak at 5.84 MeV coincide) stands at the end of
our investigations and will be discussed later. The results for
SV-bas (computed here with the all spin-spin terms included,
i.e., η
s = 1) are typical for most of the available Skyrme
parametrizations. They agree qualitatively in that theory also
produces two dominant peaks in the correct energy range. But
the position of the peaks and their strengths differs too much
from the data. Reasons for that and possible cures will be
discussed in the following.
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B. State of the art

It is well known that the properties of the low-energy M1
excitations in 208Pb in the RPA are mainly determined by two
ph configurations formed by the neutron’s (ν) and proton’s
(π ) spin-orbit doublets 1i11/2-1i13/2 and 1h9/2-1h11/2. The
main characteristics of these configurations are the ph energy
differences. Since the single-particle spectra produced by the
various parametrizations of the Skyrme EDF are very different
one can trace correlations between the values of these energy
differences, parameters of the EDF, and the RPA results for
the M1 excitations in 208Pb.

Let us introduce the notations:

εν
ph = εν

p(1i11/2) − εν
h (1i13/2), (21)

επ
ph = επ

p (1h9/2) − επ
h (1h11/2), (22)

ε̄ph = 1
2

(
εν

ph + επ
ph

)
, 
εph = εν

ph − επ
ph. (23)

The experimental values of these quantities are: εν
ph =

5.84 MeV, επ
ph = 5.55 MeV, ε̄ph = 5.70 MeV, and 
εph =

0.29 MeV. The theoretical values of εν
ph and επ

ph along with
the energies and the reduced probabilities of the excitation of
the (isoscalar) 1+

1 state and the mean energies and the summed
strengths of the (isovector) M1 resonance in 208Pb calculated
within the self-consistent RPA for the parametrizations of the
Skyrme EDF indicated in Sec. II B are presented in Fig. 2. The
effective M1 operator (15) with the renormalization constants
ξs and ξ l from Eq. (16) is used. The shifts from mere εph

to the corresponding RPA energies En indicate the strength of
residual interaction in the M1 channel. It is generally smaller
than for the giant resonances, although still sufficiently large
to be decisive. We mention in passing that the contribution
of the spin-orbit term to the residual interaction is very
small. The figure reveals three main problems: First, some
Skyrme-EDF parametrizations used with all spin terms [that
means η
s = 1 in Eqs. (B1) and is denoted by open circles
and the label “with s
s” in Fig. 2] lead to spin instability
(imaginary RPA solutions) and thus have no entry in the
plot (missing open circles). Second, the reduced probability
B1(M1) of excitation of the first 1+ state significantly exceeds
its experimental value 2.0 μ2

N for the most parametrizations,
despite the quenching produced by the effective M1 operator.
Third, the mismatch starts already at the level of pure 1ph
energies εν

ph, which are definitely too large [Fig. 2(b)], which
can be tracked down to the fact that all parametrizations give
too large values of 
εph as compared to the experiment (see
Fig. 3). As a result, none of the parametrizations listed in
Fig. 2 gives a satisfactory description of both M1 modes
simultaneously. These problems were already found in earlier
publications and the spin-orbit coupling was identified as one
mechanism driving the M1 properties [21,22]. We will now
discuss that in more detail and explore ways for a solution.

C. Spin stability

Spin stability is a crucial issue in the construction of
Skyrme parametrizations [44,57]. The first is to check the
stability of bulk matter, which is done easily in terms of the
LM parameters of the residual interaction. The LM parameters
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FIG. 2. RPA results for the Bn(M1) values [(a) and (c)] and
the energies En [(b) and (d)] of the two leading M1 modes in
208Pb for a variety of published Skyrme-EDF parametrizations as
listed in Sec. II B. For the energies, we show also the leading 1ph
excitations εν

ph [(b)] and επ
ph [(d)]. Experimental values of Bn(M1)

and En are indicated by horizontal dotted lines. The parametrizations
are grouped in those that omit tensor spin-orbit (ηJ = 0, CJ

T = 0) and
those that use it (ηJ = 1, CJ

T �= 0). RPA results are considered for two
options concerning the spin gradient terms ∝s
s: η
s = 1 (C
s

T �= 0)
and η
s = 0 (C
s

T = 0).

are related with the C constants of the Skyrme-EDF by the
following equations (see, e.g., Refs. [58,59])

F0 = 2N0
[
Cρ

0 + 1
2 (α + 1)(α + 2)Cρ,α

0 ρα
eq + Cτ

0 k2
F

]
, (24a)

F ′
0 = 2N0

[
Cρ

1 + Cρ,α
1 ρα

eq + Cτ
1 k2

F

]
, (24b)

G0 = 2N0
[

Cs
0 + Cs,α

0 ρα
eq − CJ

0 k2
F

]
, (24c)
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FIG. 3. Average 1ph energy and difference as defined in Eq. (23)
for the same selection of published Skyrme parametrizations as in
Fig. 2. Experimental values are indicated by horizontal dotted lines.

G′
0 = 2N0

[
Cs

1 + Cs,α
1 ρα

eq − CJ
1 k2

F

]
, (24d)

F1 = −2N0C
τ
0 k2

F, F ′
1 = −2N0C

τ
1 k2

F, (24e)

G1 = 2N0C
J
0 k2

F, G′
1 = 2N0C

J
1 k2

F, (24f)

where N0 = 2m∗kF/(π h̄)2, kF = (3π2ρeq/2)1/3 is the Fermi
momentum, and ρeq is the equilibrium density of the infinite

nuclear matter (INM). Equations (24) coincide with the defi-
nitions of Ref. [39] if the C constants are expressed through
the parameters of the Skyrme force by the standard formulas.
However, Eqs. (24) produce GL and G′

L at variance with
Ref. [39] for those parametrizations in which the J2 terms
are omitted (ηJ = 0 and CJ

T = 0) as noted in Ref. [60]. In
particular, the parameters G1 and G′

1 are exactly equal to zero
if the J2 terms are absent in the Skyrme EDF. To ensure
stability, the LM parameters should satisfy the following
inequalities (see Ref. [2])

FL

2L + 1
> −1,

F ′
L

2L + 1
> −1, (25a)

GL

2L + 1
> −1,

G′
L

2L + 1
> −1. (25b)

Table I shows the LM parameters corresponding to the
Skyrme-EDF parametrizations listed in Fig. 2. The values
of the spin-orbit parameter xW , which will be discussed in
Sec. III D are also given. The conditions (25) are fulfilled for
all parameters from Table I except for the parameter G0 of
SkO′. However, as can be seen from Fig. 2, the parametriza-
tions T5, SkI4, SkO, SV-mas07, SV-sym34, SV-min, SV-
m56k6, and SV-m64k6, for which the INM is stable, lead to

TABLE I. Landau-Migdal parameters of the Skyrme-EDFs listed in Fig. 2.

EDF ηJ xW F0 F ′
0 G0 G′

0 F1 F ′
1 G1 G′

1 N−1
0 m∗/m kF

(MeV fm3) (fm−1)

SIII 0 1 0.31 0.87 0.54 0.95 −0.71 0.49 0 0 207.8 0.76 1.29
SGII 0 1 −0.23 0.73 0.62 0.93 −0.64 0.52 0 0 196.1 0.79 1.33
SkM∗ 0 1 −0.23 0.93 0.33 0.94 −0.63 0.62 0 0 194.6 0.79 1.33
RATP 0 1 −0.28 0.59 0.63 0.89 −1.00 0.56 0 0 230.2 0.67 1.33
T5 1 1 −0.10 1.96 −0.88 0.05 −0.00 −0.00 0.97 0.97 152.3 1.00 1.34
T6 1 1 0.06 1.43 −0.22 0.18 −0.00 −0.00 0.86 0.86 153.3 1.00 1.34
SkP 1 1 −0.10 1.42 −0.23 0.06 0.00 1.05 −0.18 0.97 152.7 1.00 1.34
SkI3 0 0 −0.32 0.65 1.90 0.85 −1.27 −0.84 0 0 267.2 0.58 1.33
SkI4 0 −0.99 −0.27 0.56 1.77 0.88 −1.05 −0.57 0 0 236.4 0.65 1.33
SkI5 0 1 −0.32 0.76 1.79 0.85 −1.26 −0.84 0 0 267.7 0.58 1.32
SLy4 0 1 −0.28 0.81 1.39 0.90 −0.92 −0.40 0 0 221.2 0.69 1.33
SLy5 1 1 −0.28 0.81 1.12 −0.14 −0.91 −0.39 0.25 1.04 220.1 0.70 1.33
SLy6 0 1 −0.28 0.80 1.41 0.90 −0.93 −0.41 0 0 223.0 0.69 1.33
SKX 0 0 0.24 1.56 −0.46 1.04 −0.02 0.98 0 0 156.1 0.99 1.32
SKXm 0 0 0.05 1.47 −0.29 1.02 −0.10 0.87 0 0 159.4 0.97 1.33
SKXce 0 0 0.24 1.52 −0.45 1.04 0.02 1.01 0 0 154.1 1.01 1.32
SkO 0 −1.13 −0.10 1.33 0.48 0.98 −0.31 0.16 0 0 171.2 0.90 1.33
SkO′ 1 −0.58 −0.10 1.33 −1.61 0.79 −0.31 0.09 2.16 0.19 171.3 0.90 1.33
MSk1 1 1 0.07 1.47 −0.18 0.25 −0.00 −0.00 0.78 0.78 154.3 1.00 1.33
MSk3 1 1 0.07 1.30 −0.00 0.27 −0.00 −0.00 0.77 0.77 154.3 1.00 1.33
MSk9 1 1 0.07 1.30 −0.02 0.25 −0.00 −0.00 0.78 0.78 154.3 1.00 1.33
SV-bas 0 0.55 −0.05 1.20 0.00 0.99 −0.30 0.78 0 0 170.8 0.90 1.33
SV-K218 0 0.45 −0.12 1.18 0.02 0.99 −0.30 0.77 0 0 170.3 0.90 1.34
SV-kap00 0 1.33 −0.05 1.20 1.08 0.99 −0.30 −0.30 0 0 170.8 0.90 1.33
SV-mas07 0 1.02 −0.26 0.71 1.16 0.90 −0.90 −0.06 0 0 219.5 0.70 1.33
SV-sym34 0 0.29 −0.04 1.50 −0.29 0.99 −0.30 0.78 0 0 170.9 0.90 1.33
SV-min 0 0.83 −0.05 1.37 0.58 1.01 −0.14 0.07 0 0 160.9 0.95 1.34
SV-m56k6 0 0.79 −0.35 0.24 1.78 0.84 −1.33 −0.33 0 0 277.4 0.56 1.33
SV-m64k6 0 1.10 −0.30 0.40 1.30 0.87 −1.09 0.05 0 0 242.3 0.64 1.33
SAMi 1 0.31 −0.25 0.56 0.15 0.35 −0.97 0.05 1.03 0.54 228.0 0.68 1.33
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the spin instability of the ground state of 208Pb in the case of
η
s = 1, in spite of bulk stability as proven by Table I. This
instability appears only in certain finite nuclei and is generated
by the spin surface terms ∝C
s

T , not contained in Eqs. (24) for
the LM parameters (see also Ref. [61] where this question is
discussed in more detail). On the other hand, Fig. 2 shows that
the inclusion of the terms proportional to C
s

T into the Skyrme
EDF usually decreases the energy of the 1+

1 state (compare
open with filled circles). Exceptions from this general trend
are SkP, SKX, and SKXce for which E (1+

1 ) slightly increases
if η
s = 1. If the downshift by the C
s

T terms grows too large,
it drives the finite nucleus to instability. All the Skyrme-EDF
parametrizations shown in Fig. 2 except for SkO′ provide a
stable ground state for 208Pb in case of η
s = 0, which is in
agreement with the INM properties resulting from Table I.

Note that the instability generated by the EDF SkO′ dis-
appears in the modified parametrization SkO′

m, in which the
C constants are determined by Eqs. (B1) with ηs = ηs,α =
η
s = 0, CN = 300 MeV · fm3, g = 0.891, and g′ = 1.39. In
this case we have G0 = −0.60, G′

0 = 2.24. The parameters
F0,1, F ′

0,1, G1, and G′
1 are not changed. Thus, the nuclear

matter becomes stable. The parameters g and g′ in SkO′
m have

been adjusted to reproduce within the RPA the experimental
energies of the M1 excitations in 208Pb, E1 = 5.84 MeV and
E2 = 7.39 MeV. The B(M1) values for the 1+

1 state and the
isovector M1 resonance in 208Pb in this parametrization are
equal to 1.9 μ2

N and 16.9 μ2
N , respectively.

D. Impact of spin-orbit parameters

Figure 2 indicates that problems appear already at the level
of the 1ph energies. This becomes even more apparent when
looking at the average and difference 1ph energies (23) as
shown in Fig. 3. First, the most parametrizations have the spin-
orbit parameter xW � 0, and for them the calculated value of

εph exceeds the experimental value (0.29 MeV) by a factor
of 3.4 (SAMi) to 7.5 (SkM∗). In the case of parametrizations
with xW < 0 (they are SkI4, SkO, and SkO′, see Table I), the
value of 
εph considerably decreases, becoming negative for
SkI4 and SkO. This demonstrates the well-known fact that
the value of xW is one of the key agents for the spin-orbit
splitting (see Refs. [21,22] where this question was considered
in terms of the parameter b′

4 = xW W0/2). Second, for the
parametrizations with xW > 0, the value of B1(M1) calculated
with η
s = 0 is greater than its experimental value (2.0 μ2

N )
by a factor of 2.2 (SkP) to 10 (SLy5). This together suggests
that the values of xW and 
εph should also have a strong
influence on the RPA results for the M1 excitations in 208Pb.

To explore this further, we consider simultaneous variation
of the spin-orbit parameters xW and W0. In other words, we
keep the ph interaction approximately fixed and vary the 1ph
energies. (This is possible because the M1 results in 208Pb
depend practically only on the two spin-orbit doublets and
because the residual interaction V only slightly depends on
the spin-orbit parameters). To that end, we start from the set
SV-bas [10], vary xW , keeping all other model parameters
frozen, and tune W0 to reproduce the SHF binding energy
of 208Pb at its experimental value 1636.43 MeV within the
accuracy of 0.2 MeV. This is done for the option η
s = 1.

FIG. 4. Dependence of the characteristics of M1 excitations in
208Pb on the parameter xW of the Skyrme EDF. Parametrization
SV-bas [10] is used. (a) The reduced probabilities B(M1) of the
excitation of the first (solid red line) and second (dashed black line)
1+ states calculated in the RPA. (b) Same as in (a) but for the energies
of these states. (c) The values of the energy differences 
εph (solid
red line) and ε̄ph (dashed black line), Eqs. (23), and the spin-orbit
parameter W0 (dotted blue line). All the quantities are given in units
of their values obtained for the original parametrization [10]. See text
for more details.

Figure 4 shows the dependence of the RPA results for the
first and second 1+ states in 208Pb on the parameter xW ob-
tained in this way. The respective values of 
εph, ε̄ph, and W0

are also shown. All these quantities are given in units of their
values obtained for the original set SV-bas [10] and shown
in Figs. 2 and 3 [B1(M1) = 5.5 μ2

N , B2(M1) = 17.4 μ2
N ,

E1 = 5.66 MeV, E2 = 7.95 MeV, 
εph = 1.60 MeV, ε̄ph =
6.02 MeV] and the value W0 = 124.634 MeV · fm5. The
B1(M1) shows the strongest dependence on xW . This is due to
the fact that in the case of the M1 operator (15), the proton’s
and the neutron’s contributions to the amplitudes 〈 Zn | Qα

LnMn
〉

in Eq. (7) for the reduced probabilities have the opposite signs
for B1(M1) and the equal signs for B2(M1). Actually, one
can obtain any value of B1(M1) < 6 μ2

N by decreasing the
parameter xW . The experimental value B1(M1) = 2.0 μ2

N is
obtained at xW < 0. The values of E1, E2, and B2(M1) depend
on xW to much lesser extent. The energy difference 
εph also
shows a strong dependence on xW , while the value of ε̄ph is
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FIG. 5. Same as in Fig. 4 but for the dependence of the reduced
probabilities B(M1) on the value of the energy difference 
εph.

nearly constant (it is changed within 2.2% in the considered
interval of xW ). The trend of 
εph with xW is monotonous.
This allows to transform the dependencies shown in Figs. 4(a)
and 4(b) into analogous dependencies on 
εph. The results are
shown in Fig. 5, where again we see the crucial dependence of
B1(M1) on 
εph at the constant ε̄ph. This dependence explains
why the parametrization SkO′

m introduced in Sec. III C gives
nice agreement with the experimental value of B1(M1): it has
negative xW = −0.58 and thus a value of 
εph = 0.48 MeV,
which is closest to the experimental value 0.29 MeV. The
other Skyrme-EDF parametrizations have generally too large

εph which leads to significant overestimation of the B1(M1).

The impact of the value of 
εph on the properties of M1
excitations in 208Pb was already pointed out in Refs. [21,22].
This value characterizes the isotopic properties of the spin-
orbit interaction. Notice that the questions concerning the
form and the parameters of the spin-orbit terms of the Skyrme
force were discussed since the original papers on this topic
(see Refs. [34,35]). In Refs. [43,62,63] it was shown that there
is a significant difference between the isospin dependence
of the spin-orbit terms in the relativistic mean-field (RMF)
and the nonrelativistic Skyrme models and that the RMF
results correspond to the value xW 
 0.1 of the Skyrme-EDF
parameter. Another possible options for more flexibility in
the spin-orbit terms of the one-body potential were discussed
in Refs. [64,65], however, at the price of breaking isospin
symmetry.

IV. TOWARD BETTER REPRODUCTION OF M1 MODES

The results presented in Sec. III D show that spin-orbit
parameters are most decisive for the M1 modes mediated
through the 1ph spin-orbit splittings while their influence in
the residual interaction is negligible. And, of course, the pa-
rameters of the spin-spin terms play an equally important role,
here, however, exclusively through the residual interaction.
This motivates us to check the chances to find a Skyrme func-
tional in standard form, which provides a good description
of M1 modes together with traditionally good modeling of

TABLE II. Parameters ηJ , xW , W0, g, and g′ of the modified
Skyrme EDFs. Parameters g and g′ of the Landau-Migdal interac-
tion (13) are taken from Ref. [19]. All Landau-Migdal parameters
are normalized to CN = 300 MeV · fm3.

EDF ηJ xW W0 g g′

(MeV fm5)

SkM∗
m 0 −0.65 295 −0.366 −0.015

SLy4m 0 −0.62 275 −0.308 0.102
SV-basmx 0 −0.50 213 −0.028 0.516
SV-basm 0 −0.55 221 −0.037 0.518
SV-K218m 0 −0.54 220 −0.040 0.520
SV-kap00m 0 −0.57 225 −0.040 0.520
SV-mas07m 0 −0.59 244 −0.159 0.335
SV-sym34m 0 −0.68 244 0.027 0.645
SV-minm 0 −0.57 222 −0.003 0.590
SV-m56k6m 0 −0.56 258 −0.303 0.118
SV-m64k6m 0 −0.52 239 −0.235 0.205
SkPm 1 −0.26 175 −0.013 0.630
SLy5m 1 −0.19 212 −0.151 0.463
Landau-Migdal 0.1 0.75

ground-state properties. At present stage, it is too early to
launch a fully fledged least-squares fitting scheme [10,66,67]
particularly because a high-precision RPA computation of M1
modes is far too expensive. Thus, for a first exploration, we
employ a simple, restricted fitting procedure: We start from
a given Skyrme parametrization, keep all model parameters
at their given value except for the spin-orbit parameters C∇J

T
(alias xW , W0) and the spin-spin parameters Cs

T , Cs,α
T , and

C
s
T . The spin-spin parameters play no role for ground states

of even-even nuclei. Thus we exploit here the freedom of not
yet fixed parameters. However, the spin-orbit parameters enter
ground-state properties. Here we have to check that retuning
does not destroy ground-state quality.

To keep the number of free spin-spin parameters low, we
set ηs,α =η
s =0 and determine Cs

T by Eqs. (B1) with ηs =0
and the fitting parameters g and g′ at CN = 300 MeV · fm3.
After all, we have four free parameters xW , W0, g, and
g′, which are determined by adjusting four observables in
208Pb: the binding energy and the RPA results for the M1
energies E1 and E2 and the transition probability B1(M1)
to their experimental values (see Sec. III A). Note that here
we use, as before, the effective M1 operator (15) with the
renormalization constants ξs and ξ l from Eq. (16). This fitting
procedure is applied to a subset of the parametrizations shown
in Figure 2. The modified parametrizations thus obtained are
marked by an index “m”. Resulting retuned model parameters
and properties of M1 modes are shown in Fig. 6 and the
corresponding retuned spin-orbit and spin-spin parameters are
given in quantitative detail in Table II. As expected from
the exploration in Sec. III D, all retuned xW parameters are
negative, most of them in the interval between −0.6 and −0.5.
Exceptions are SkPm and SLy5m which have higher xW due
to the J2 terms in these parametrizations, which contribute
also to the single-particle spin-orbit potential. The retuned
parameters W0 are all rather large. This seemingly happens
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FIG. 6. Results for the retuned parametrizations. (a) and (e) The M1 energies E1 and E2 together with their corresponding 1ph energies
επ

ph and εν
ph. (d) The B(M1) strength for the upper M1 mode integrated over the interval 6.6–8.1 MeV. Experimental values are indicated by

horizontal faint dashed lines. (b) and (f) Spin-spin LM parameters G0 and G′
0 together with the interaction parameters g and g′ defined in

Eqs. (B1). (c) and (g) Retuned values (filled circles) of the spin-orbit parameters W0, xW , and −C∇J
0 (abbreviated −C0 in the legend) together

with their original values (open circles).

to compensate the negative xW . Figure 6(c) shows also the
isoscalar spin-orbit parameter C∇J

0 = − 1
4 (2 + xW )W0. This

combination shows much less variations over the different
forces and, in particular, remains practically unmodified by
retuning. It is the isovector spin-orbit term proportional to
C∇J

1 = − 1
4 xW W0, which makes the difference. Seeing the

dramatic differences in spin-orbit parameters, one wonders
what happens to the overall quality of the parametrization.
This question will be addressed further below.

The spin-spin coupling parameters g and g′ show some
correlation with the effective mass m∗/m of a parametriza-
tion. The sets SkPm, SV-basm, SV-K218m, SV-kap00m,
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SV-sym34m, and SV-minm all having m∗/m ≈ 1 have similar
values, which are also close to the values g = 0.1, g′ =
0.75 used previously in the non-self-consistent TFFS (see
Ref. [19]) while the other parametrizations having lower
m∗/m also produce lower g and g′.

The LM parameters G0 and G′
0 in Figs. 6(b) and 6(f) stay

all safely above −1 and thus lead to stable INM, which also
persists in finite nuclei because the modified parametrizations
set the critical gradient spin term to zero.

The RPA energies En stay by construction at the experi-
mental values. We show them in Figs. 6(a) and 6(e) to illus-
trate the span toward the pure 1ph energies επ

ph [Fig. 6(a)] and
εν

ph [Fig. 6(e)]. Let us concentrate first on the isoscalar mode,
Fig. 6(a). The upshift by the residual interaction is small for
the parametrizations with m∗/m ≈ 1, in accordance with the
small values of g or G0. In these cases, the 1ph energies
represent already a good estimate of E1 and the theoretical επ

ph
lie close to the experimental value (faint dotted line). Lower
effective masses increase επ

ph, away from the wanted E1, and
need more residual interaction to compensate. The impact of
residual interaction is much larger for the isovector modes,
Fig. 6(e), again in accordance with the much larger spin
coupling parameter g′. In that case, we also have the problem
that all theoretical εν

ph are much higher than the experimental
value of 5.84 MeV.

Figure 6(d) shows the B(M1) strength integrated over the
vicinity of the upper M1 mode. One observes a close relation
between g′ and the isovector B(M1) value: An increase of g′
reduces the B(M1) value. This is due to the increase of the
ground-state correlations (Y -components of the RPA transi-
tion amplitudes), which decreases the transition probabilities
in the magnetic case in contrast to the electric case where
the ground-state correlations add coherently. The parametriza-
tions SkPm and SLy5m behave slightly different because as
mentioned before in these parametrizations the J2 terms are
included. These terms have a noticeable impact on the B(M1)
values that can be estimated with the help of the single-particle
part of the RPA energy-weighted sum rule (EWSR) ms.p.

1 . In
the case of the M1 excitations with the operator (15) it has the
form

ms.p.
1 = 1

2 Tr (ρ [[ Q, h ], · Q ]) (26)

(see Ref. [68] for more details). In our self-consistent RPA
calculations we obtain that this EWSR is fulfilled within
0.2% in the case of the Skyrme-EDF parametrizations without
the J2 terms (ηJ = 0). In the case of the SkPm and SLy5m
parametrizations (ηJ = 1), this EWSR is exceeded by 19%
and 25%, respectively.

Generally, we see in Fig. 6(d) that the theoretical isovec-
tor B(M1) strengths, even for the best parameter sets, are
significantly larger than the experimental values. Here one
has to bear in mind that the experimental data in Fig. 6
have been integrated only up to 8.1 MeV. We know from
previous beyond-RPA calculations within the Landau-Migdal
approach [31] that the theoretical strength is distributed by
coupling to 2ph states up to much higher energies. Such
spectral fragmentation is also seen in data. A recent (p,p’)
experiment [55,56] reports a summed B(M1) = 20.5(1.3) μ2

N
when integrated up to 9 MeV, a value that would fit nicely into

the theoretical results of Fig. 6. This situation reminds us at
the case of the Gamow-Teller resonance in 208Pb where only
half of the sum-rule strength was concentrated in one single
strong resonance and the rest was missing. Calculations within
a 2ph model [69] (where one of the authors was involved)
predicted a long tail, which included the other half of the
total strength. Ten years later the predicted strength had been
detected experimentally. Thus, excess of the strength can be
corrected in extended RPA models including particle-phonon
coupling that give also rise to a shift of the RPA strength to
higher energies.

So far, we have computed the B(M1) strengths with the
effective M1 operator using the renormalization constants ξs

and ξ l as defined in Eq. (16). This construction is designed
to account for correlation effects not included in the actual
Hilbert space. Thus the ξs and ξ l can, in principle, be different
for the different models. This was exploited in the variant
SV-basmx where ξs was used tentatively as further free pa-
rameter and the isovector B(M1) strength as additional data
point. The fitted renormalization constants for SV-basmx are
ξs = 0.154 while ξ l = 0 is chosen in accordance with the
condition (20). The results in Fig. 6 shows that this strategy
allows to produce better B(M1) strength while maintaining
the quality of the other observables. Note that the changes in
ξs and ξ l are, in fact, small, which rather supports the original
choices (16). Anyway, this fit of renormalization constants
should be considered as an exploration of still loose ends in
modeling. Playing with these values needs yet to be supported
by sound many-body theory.

As argued above, spin-orbit parameters have not only huge
impact on M1 modes, but also on ground-state properties.
Thus a dramatic change of isovector spin-orbit coupling as
implied in the retuned parametrizations could have unwanted
side effects on the quality concerning the reproduction of
ground-state characteristics. Figure 7 shows the performance
of the refitted parametrizations with respect to ground-state
energy and charge radius. The change of spin-orbit parameters
leaves the overall quality basically conserved. There is no ef-
fect at all for the radii. Energy reacts more sensitively, which is
a little surprise because pairing in semimagic nuclei is highly
sensitive to level density, which, of course, is influenced by
spin-orbit splitting. Note that particularly the more recent,
well-fitted parametrizations show a loss of energy quality,
fortunately in acceptable bounds. Still, the simple minded
retuning strategy spoils somewhat the overall quality of the
parametrizations, the better the quality originally the larger the
loss. Moreover, there are more subtle observables as pairing
gaps and isotopic shifts of radii. The latter are known to be
sensitive to the isovector spin-orbit term [43], for pairing gaps
it is likely. All this calls for more continued investigations,
more systematic fits, and correlation analysis [67] to clearly
work out the impact of information from M1 modes on
nuclear density functionals.

So far, we have discussed the properties of M1 modes
in terms of two energies and B(M1) values. Let us finally
look again at the whole spectral distribution as it was shown
in Fig. 1. The results obtained with the freshly retuned
parametrization SV-basmx agree, by construction, nicely with
experimental data. Comparison with the original SV-bas
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FIG. 7. Average quality of the retuned parametrizations quanti-
fied in terms of root-mean-square deviation of energy and charge
radii taken over the set of spherical nuclei from Ref. [10].

shows the gain. Similar plots would be obtained when com-
paring original and retuned versions of the other parametriza-
tions. But Fig. 1 also points toward the yet open problems
with the upper M1 mode: First, the strength is overestimated,
and second, its spectral fragmentation is not described at all.
Both problems are related to each other as discussed above.
The hope is that a beyond-RPA modeling within the phonon-
coupling model could deliver the missing pieces.

V. CONCLUSIONS

In the present paper, we have investigated the impact of
the spin-dependent part of the Skyrme energy density func-
tional (EDF) on magnetic excitation modes computed within
the self-consistent random-phase approximation (RPA). We
considered here, in particular, magnetic dipole (M1) modes
in 208Pb as test case. The M1 modes are found to depend
crucially on the spin-orbit term and on the spin-spin interac-
tion. The latter has no influence on ground-state properties and
generally only weak relations to natural-parity modes in even
nuclei and is thus open to adjustment. The spin-orbit term is to
some extent constrained by ground-state properties. However,
we find that ground states leave enough leeway in them to
accommodate the properties of M1 modes with only small
sacrifices on the overall quality of the ground-state properties.
We have tested that on a variety of 12 published Skyrme
EDFs.

In the analysis, we were guided by the Landau-Migdal
(LM) parameters from the theory of finite Fermi systems
(TFFS), which are weak in the isoscalar spin part and strongly
repulsive in the isovector part. The retuned Skyrme EDFs
deliver LM parameters in accordance with the TFFS. The
relations between the LM parameters and the parameters of
the Skyrme-EDF serve also for a quick first check of spin
stability of the chosen parameter set.

As open questions remain the fragmentation and the mag-
nitude of the isovector M1 resonance. Both are connected
with more complex configurations beyond RPA, e.g., the
coupling to the low-lying phonons (strong modes in each
angular momentum channel). This, however, requires that all
relevant phonons, also in the magnetic channels, are correctly
described by RPA. The present survey is a first step toward a
proper description of magnetic excitations in the framework
of Skyrme-EDF and so paves the way to subsequent beyond-
RPA calculations.
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APPENDIX A: LOCAL DENSITIES
AND CURRENTS

Let us introduce the isoscalar (T =0) and isovector (T =1)
single-particle density matrices

ρT (r, σ ; r′, σ ′)

= ρn(r, σ ; r′, σ ′) + (−1)T ρp(r, σ ; r′, σ ′), (A1)

where ρn(r, σ ; r′, σ ′) and ρp(r, σ ; r′, σ ′) are the neutron’s
and proton’s density matrices. The expressions for the local
densities and currents entering Eq. (12) in terms of these
matrices read

ρT (r) =
∑

σ

ρT (r, σ ; r, σ ), (A2)

τT (r) =
∑

σ

∇ · ∇′ ρT (r, σ ; r′, σ )|r=r′ , (A3)

JT (r) = i
∑
σ, σ ′

[(σ)σ ′, σ × ∇] ρT (r, σ ; r′, σ ′)|r=r′ (A4)

for the time-even quantities and

sT (r) =
∑
σ, σ ′

(σ)σ ′, σ ρT (r, σ ; r, σ ′), (A5)

T T (r) =
∑
σ, σ ′

(σ)σ ′, σ ∇ · ∇′ ρT (r, σ ; r′, σ ′)|r=r′ , (A6)

jT (r) = i

2

∑
σ

(∇′ − ∇) ρT (r, σ ; r′, σ )|r=r′ (A7)

for the time-odd quantities. For the local densities τp(r), τn(r),
and ρp(r) in Eqs. (9) and (11) we have τp = (τ0 − τ1)/2, τn =
(τ0 + τ1)/2, ρp = (ρ0 − ρ1)/2.
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APPENDIX B: PARAMETERS OF THE SKYRME EDF

The following equations establish the relation between the C constants in Eq. (12) and the parameters of the Skyrme force t0,
x0, t1, x1, t2, x2, t3, x3, W0, and xW

Cρ
0 = 3

8 t0, Cρ
1 = − 1

4 t0
(

1
2 + x0

)
,

Cρ,α
0 = 1

16 t3, Cρ,α
1 = − 1

24 t3
(

1
2 + x3

)
,

C
ρ
0 = − 9

64 t1 + 5
64 t2 + 1

16 t2x2, C
ρ
1 = 1

32

[
3t1

(
1
2 + x1

) + t2
(

1
2 + x2

)]
,

Cτ
0 = 3

16 t1 + 5
16 t2 + 1

4 t2x2, Cτ
1 = − 1

8

[
t1

(
1
2 + x1

) − t2
(

1
2 + x2

)]
,

CJ
0 = 1

8

[
t1

(
1
2 − x1

) − t2
(

1
2 + x2

)]
ηJ , CJ

1 = 1
16 (t1 − t2) ηJ ,

C∇J
0 = − 1

4 (2 + xW )W0, C∇J
1 = − 1

4 xW W0,

Cs
0 = 1

2CN g − 1
4 t0

(
1
2 − x0

)
ηs, Cs

1 = 1
2CN g′ − 1

8 t0 ηs,

Cs,α
0 = − 1

24 t3
(

1
2 − x3

)
ηs,α, Cs,α

1 = − 1
48 t3 ηs,α,

C
s
0 = 1

32

[
3t1

(
1
2 − x1

) + t2
(

1
2 + x2

)]
η
s, C
s

1 = 1
64 (3t1 + t2) η
s. (B1)

The formulas for the spin-orbit constants C∇J
T imply the

parametrization introduced in Refs. [43,62] in which the
spin-orbit term of the interaction is treated in the Hartree
approximation. The parameters W0 and xW are related with
the constants b4 and b′

4 of Ref. [43] by the formulas:

W0 = 2b4, xW = b′
4/b4. The parameter ηJ = 1 if the J2

terms are included in the Skyrme EDF and ηJ = 0 if not.
In the standard parametrizations, the parameters xW , ηs,
ηs,α , and η
s are equal to 1, the parameters g and g′ are
equal to 0.
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[19] E. Migli, S. Drożdż, J. Speth, and J. Wambach, Z. Phys. A 340,

111 (1991).
[20] L.-G. Cao, G. Colò, H. Sagawa, P. F. Bortignon, and L.

Sciacchitano, Phys. Rev. C 80, 064304 (2009).
[21] P. Vesely, J. Kvasil, V. O. Nesterenko, W. Kleinig, P.-G.

Reinhard, and V. Y. Ponomarev, Phys. Rev. C 80, 031302(R)
(2009).

[22] V. O. Nesterenko, J. Kvasil, P. Vesely, W. Kleinig, P.-G.
Reinhard, and V. Y. Ponomarev, J. Phys. G: Nucl. Part. Phys.
37, 064034 (2010).

[23] L.-G. Cao, H. Sagawa, and G. Colò, Phys. Rev. C 83, 034324
(2011).

[24] P. Wen, L.-G. Cao, J. Margueron, and H. Sagawa, Phys. Rev. C
89, 044311 (2014).

[25] J. S. Dehesa, J. Speth, and A. Faessler, Phys. Rev. Lett. 38, 208
(1977).

[26] S. P. Kamerdzhiev and V. N. Tkachev, Phys. Lett. B 142, 225
(1984).

[27] D. Cha, B. Schwesinger, J. Wambach, and J. Speth, Nucl. Phys.
A 430, 321 (1984).

[28] D. T. Khoa, V. Y. Ponomarev, and A. I. Vdovin, Preprint JINR
E4-86-198 (1986).

[29] S. P. Kamerdzhiev and V. N. Tkachev, Z. Phys. A 334, 19
(1989).

[30] V. I. Tselyaev, Sov. J. Nucl. Phys. 50, 780 (1989).
[31] S. P. Kamerdzhiev, J. Speth, G. Tertychny, and J. Wambach,

Z. Phys. A 346, 253 (1993).
[32] V. Tselyaev, N. Lyutorovich, J. Speth, and P.-G. Reinhard,

Phys. Rev. C 96, 024312 (2017).

064329-12

https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1016/0370-2693(73)90001-4
https://doi.org/10.1016/0370-2693(73)90001-4
https://doi.org/10.1016/0370-2693(73)90001-4
https://doi.org/10.1016/0370-2693(73)90001-4
https://doi.org/10.1103/PhysRevC.5.626
https://doi.org/10.1103/PhysRevC.5.626
https://doi.org/10.1103/PhysRevC.5.626
https://doi.org/10.1103/PhysRevC.5.626
https://doi.org/10.1016/0375-9474(75)90338-3
https://doi.org/10.1016/0375-9474(75)90338-3
https://doi.org/10.1016/0375-9474(75)90338-3
https://doi.org/10.1016/0375-9474(75)90338-3
https://doi.org/10.1016/0375-9474(82)90403-1
https://doi.org/10.1016/0375-9474(82)90403-1
https://doi.org/10.1016/0375-9474(82)90403-1
https://doi.org/10.1016/0375-9474(82)90403-1
https://doi.org/10.1016/0370-1573(86)90078-5
https://doi.org/10.1016/0370-1573(86)90078-5
https://doi.org/10.1016/0370-1573(86)90078-5
https://doi.org/10.1016/0370-1573(86)90078-5
https://doi.org/10.1103/PhysRevC.79.034310
https://doi.org/10.1103/PhysRevC.79.034310
https://doi.org/10.1103/PhysRevC.79.034310
https://doi.org/10.1103/PhysRevC.79.034310
https://doi.org/10.1016/j.nuclphysa.2014.03.023
https://doi.org/10.1016/j.nuclphysa.2014.03.023
https://doi.org/10.1016/j.nuclphysa.2014.03.023
https://doi.org/10.1016/j.nuclphysa.2014.03.023
https://doi.org/10.1103/PhysRevLett.49.18
https://doi.org/10.1103/PhysRevLett.49.18
https://doi.org/10.1103/PhysRevLett.49.18
https://doi.org/10.1103/PhysRevLett.49.18
https://doi.org/10.1103/PhysRevC.35.1646
https://doi.org/10.1103/PhysRevC.35.1646
https://doi.org/10.1103/PhysRevC.35.1646
https://doi.org/10.1103/PhysRevC.35.1646
https://doi.org/10.1103/PhysRevLett.61.1710
https://doi.org/10.1103/PhysRevLett.61.1710
https://doi.org/10.1103/PhysRevLett.61.1710
https://doi.org/10.1103/PhysRevLett.61.1710
https://doi.org/10.1103/PhysRevC.78.061303
https://doi.org/10.1103/PhysRevC.78.061303
https://doi.org/10.1103/PhysRevC.78.061303
https://doi.org/10.1103/PhysRevC.78.061303
https://doi.org/10.1016/0375-9474(81)90597-2
https://doi.org/10.1016/0375-9474(81)90597-2
https://doi.org/10.1016/0375-9474(81)90597-2
https://doi.org/10.1016/0375-9474(81)90597-2
https://doi.org/10.1016/0370-2693(71)90307-8
https://doi.org/10.1016/0370-2693(71)90307-8
https://doi.org/10.1016/0370-2693(71)90307-8
https://doi.org/10.1016/0370-2693(71)90307-8
https://doi.org/10.1016/0375-9474(80)90660-0
https://doi.org/10.1016/0375-9474(80)90660-0
https://doi.org/10.1016/0375-9474(80)90660-0
https://doi.org/10.1016/0375-9474(80)90660-0
https://doi.org/10.1007/BF01303822
https://doi.org/10.1007/BF01303822
https://doi.org/10.1007/BF01303822
https://doi.org/10.1007/BF01303822
https://doi.org/10.1103/PhysRevC.80.064304
https://doi.org/10.1103/PhysRevC.80.064304
https://doi.org/10.1103/PhysRevC.80.064304
https://doi.org/10.1103/PhysRevC.80.064304
https://doi.org/10.1103/PhysRevC.80.031302
https://doi.org/10.1103/PhysRevC.80.031302
https://doi.org/10.1103/PhysRevC.80.031302
https://doi.org/10.1103/PhysRevC.80.031302
https://doi.org/10.1088/0954-3899/37/6/064034
https://doi.org/10.1088/0954-3899/37/6/064034
https://doi.org/10.1088/0954-3899/37/6/064034
https://doi.org/10.1088/0954-3899/37/6/064034
https://doi.org/10.1103/PhysRevC.83.034324
https://doi.org/10.1103/PhysRevC.83.034324
https://doi.org/10.1103/PhysRevC.83.034324
https://doi.org/10.1103/PhysRevC.83.034324
https://doi.org/10.1103/PhysRevC.89.044311
https://doi.org/10.1103/PhysRevC.89.044311
https://doi.org/10.1103/PhysRevC.89.044311
https://doi.org/10.1103/PhysRevC.89.044311
https://doi.org/10.1103/PhysRevLett.38.208
https://doi.org/10.1103/PhysRevLett.38.208
https://doi.org/10.1103/PhysRevLett.38.208
https://doi.org/10.1103/PhysRevLett.38.208
https://doi.org/10.1016/0370-2693(84)91186-9
https://doi.org/10.1016/0370-2693(84)91186-9
https://doi.org/10.1016/0370-2693(84)91186-9
https://doi.org/10.1016/0370-2693(84)91186-9
https://doi.org/10.1016/0375-9474(84)90043-5
https://doi.org/10.1016/0375-9474(84)90043-5
https://doi.org/10.1016/0375-9474(84)90043-5
https://doi.org/10.1016/0375-9474(84)90043-5
https://doi.org/10.1007/BF01292513
https://doi.org/10.1007/BF01292513
https://doi.org/10.1007/BF01292513
https://doi.org/10.1007/BF01292513
https://doi.org/10.1103/PhysRevC.96.024312
https://doi.org/10.1103/PhysRevC.96.024312
https://doi.org/10.1103/PhysRevC.96.024312
https://doi.org/10.1103/PhysRevC.96.024312


LOW-ENERGY M1 EXCITATIONS IN 208Pb AND … PHYSICAL REVIEW C 99, 064329 (2019)

[33] V. Tselyaev, N. Lyutorovich, J. Speth, and P.-G. Reinhard,
Phys. Rev. C 97, 044308 (2018).

[34] J. S. Bell and T. H. R. Skyrme, Philos. Mag. 1, 1055 (1956).
[35] T. H. R. Skyrme, Nucl. Phys. 9, 635 (1959).
[36] J. Dobaczewski and J. Dudek, Phys. Rev. C 52, 1827 (1995).
[37] J. Dobaczewski and J. Dudek, Acta Phys. Pol. B 27, 45 (1996).
[38] Y. M. Engel, D. M. Brink, K. Goeke, S. J. Krieger, and D.

Vautherin, Nucl. Phys. A 249, 215 (1975).
[39] N. Van Giai and H. Sagawa, Phys. Lett. B 106, 379 (1981).
[40] M. Rayet, M. Arnould, F. Tondeur, and G. Paulus, Astron.

Astrophys. 116, 183 (1982).
[41] F. Tondeur, M. Brack, M. Farine, and J. M. Pearson, Nucl. Phys.

A 420, 297 (1984).
[42] J. Dobaczewski, H. Flocard, and J. Treiner, Nucl. Phys. A 422,

103 (1984).
[43] P.-G. Reinhard and H. Flocard, Nucl. Phys. A 584, 467 (1995).
[44] E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer,

Nucl. Phys. A 635, 231 (1998).
[45] B. A. Brown, Phys. Rev. C 58, 220 (1998).
[46] P.-G. Reinhard, D. J. Dean, W. Nazarewicz, J. Dobaczewski,

J. A. Maruhn, and M. R. Strayer, Phys. Rev. C 60, 014316
(1999).

[47] F. Tondeur, S. Goriely, J. M. Pearson, and M. Onsi, Phys. Rev.
C 62, 024308 (2000).

[48] S. Goriely, M. Pearson, and F. Tondeur, Nucl. Phys. A 688,
349c (2001).

[49] N. Lyutorovich, V. I. Tselyaev, J. Speth, S. Krewald, F.
Grümmer, and P.-G. Reinhard, Phys. Rev. Lett. 109, 092502
(2012).

[50] X. Roca-Maza, G. Colò, and H. Sagawa, Phys. Rev. C 86,
031306(R) (2012).

[51] N. Lyutorovich, V. Tselyaev, J. Speth, S. Krewald, F. Grümmer,
and P.-G. Reinhard, Phys. Lett. B 749, 292 (2015).

[52] N. Lyutorovich, V. Tselyaev, J. Speth, S. Krewald, and P.-G.
Reinhard, Phys. At. Nucl. 79, 868 (2016).

[53] V. Tselyaev, N. Lyutorovich, J. Speth, S. Krewald, and P.-G.
Reinhard, Phys. Rev. C 94, 034306 (2016).

[54] S. Kamerdzhiev, J. Speth, and G. Tertychny, Phys. Rep. 393, 1
(2004).

[55] I. Poltoratska, P. von Neumann-Cosel, A. Tamii, T. Adachi,
C. A. Bertulani, J. Carter, M. Dozono, H. Fujita, K. Fujita,
Y. Fujita, K. Hatanaka, M. Itoh, T. Kawabata, Y. Kalmykov,
A. M. Krumbholz, E. Litvinova, H. Matsubara, K. Nakanishi,
R. Neveling, H. Okamura, H. J. Ong, B. Özel-Tashenov, V. Y.
Ponomarev, A. Richter, B. Rubio, H. Sakaguchi, Y. Sakemi, Y.
Sasamoto, Y. Shimbara, Y. Shimizu, F. D. Smit, T. Suzuki, Y.
Tameshige, J. Wambach, M. Yosoi, and J. Zenihiro, Phys. Rev.
C 85, 041304(R) (2012).

[56] J. Birkhan, H. Matsubara, P. von Neumann-Cosel, N. Pietralla,
V. Y. Ponomarev, A. Richter, A. Tamii, and J. Wambach,
Phys. Rev. C 93, 041302(R) (2016).

[57] S. Stringari, R. Leonardi, and D. M. Brink, Nucl. Phys. A 269,
87 (1976).

[58] M. Bender, J. Dobaczewski, J. Engel, and W. Nazarewicz,
Phys. Rev. C 65, 054322 (2002).

[59] N. Chamel, S. Goriely, and J. M. Pearson, Phys. Rev. C 80,
065804 (2009).

[60] T. Lesinski, M. Bender, K. Bennaceur, T. Duguet, and J. Meyer,
Phys. Rev. C 76, 014312 (2007).

[61] A. Pastore, D. Tarpanov, D. Davesne, and J. Navarro, Phys. Rev.
C 92, 024305 (2015).

[62] M. M. Sharma, G. Lalazissis, J. König, and P. Ring, Phys. Rev.
Lett. 74, 3744 (1995).

[63] G. A. Lalazissis, D. Vretenar, W. Pöschl, and P. Ring,
Phys. Lett. B 418, 7 (1998).

[64] O. Moreno, E. Moya de Guerra, P. Sarriguren, and A. Faessler,
Phys. Rev. C 81, 041303(R) (2010).

[65] E. Moya de Guerra, O. Moreno, and P. Sarriguren, J. Phys.:
Conf. Ser. 312, 092045 (2011).

[66] M. Kortelainen, T. Lesinski, J. Moré, W. Nazarewicz, J. Sarich,
N. Schunck, M. V. Stoitsov, and S. Wild, Phys. Rev. C 82,
024313 (2010).

[67] J. Dobaczewski, W. Nazarewicz, and P.-G. Reinhard, J. Phys. G
41, 074001 (2014).

[68] V. I. Tselyaev, N. A. Lyutorovich, and N. A. Belov, Bull. Russ.
Acad. Sci. Phys. 75, 899 (2011).
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