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Recently we investigated an effective method of multicranked configuration mixing for angular-momentum-
projection calculations, where several cranked mean-field states are coupled after projection: The basic idea was
originally proposed by Peierls and Thouless more than fifty years ago. With this method a good description
of the rotational band has been achieved in a fully microscopic manner. In the present work, we apply the
method to the high-spin superdeformed band, for which a long rotational sequence is observed, and study how
a good description is obtained for the rotational spectrum as well as the J (1) and J (2) moments of inertia as
functions of angular momentum. The Gogny D1S force is employed as an effective interaction, and the yrast
superdeformed bands in 152Dy and 194Hg are taken as typical examples in the A ≈ 150 and A ≈ 190 regions,
respectively. The effect of pairing correlations is examined by the method of variation after particle-number
projection to understand the different behaviors of J (2) moments of inertia observed in these two nuclei. The
particle-number projection on top of the angular-momentum projection has been performed for the first time
with the multicranked configuration mixing.

DOI: 10.1103/PhysRevC.99.064328

I. INTRODUCTION

Collective motion in atomic nuclei has been an interesting
subject in nuclear structure physics [1,2]. Rotational motion is
a typical collective motion and exhibits many interesting phe-
nomena, especially at high-spin states; see, e.g., Refs. [3–8].
Recently, we have developed a theoretical framework for
describing the high-spin rotational band in a fully microscopic
manner by employing the technique of angular-momentum
projection from the self-consistent mean-field states [9]. We
called it “angular-momentum-projected multicranked con-
figuration mixing”, where several self-consistently cranked
mean-field states are quantum-mechanically coupled after
projection. It has been shown that good agreement of the
spectra and the kinematic moments of inertia, J (1), is ob-
tained for the ground-state rotational bands in rare earth
nuclei without any adjustable parameters [10]. In contrast
to the projected shell-model approach, where the angular-
momentum-projection method is successfully applied (see,
e.g., Refs. [11–13]), the number of mean-field states coupled
after projection is relatively small in our approach, where they
are obtained self-consistently within the cranking procedure.

Generally, calculation of the mass parameter is crucial for
the appropriate description of nuclear collective motion. It
has been well known that the generator coordinate method
(GCM) with only collective coordinates does not give a proper
mass parameter; see, e.g., Sec. 11.4.5 of Ref. [2] for an in-
structive argument, especially for the center-of-mass motion.
The angular-momentum-projection procedure is a special case
of the GCM for collective rotational motion with the Euler
angles as collective coordinates. In order to obtain the proper
mass, Peierls and Thouless proposed to superpose not only
wave functions with different coordinates but also those with

different velocities (or momenta) [14], which incorporates
time-odd components into the wave function; the correct total
mass appears for the center-of-mass motion as a result of the
boost because of the Galilean invariance. In fact the time-odd
components are generally important for mass parameters, and
we have investigated a procedure to take them into account,
which we call “infinitesimal cranking,” and successfully ap-
plied it to the collective γ vibration in Ref. [15].

The basic idea of the framework of multicranked con-
figuration mixing [9] is just the one proposed by Peierls
and Thouless for rotational motion [14], i.e., the total wave
function is calculated as∣∣�I

M,α

〉 =
∫

dωrot

∑
K

gI
K,α (ωrot ) P̂I

MK |�(ωrot )〉, (1)

where the operator P̂I
MK is the angular-momentum projec-

tor and gI
K,α (ωrot ) is the amplitude of superposition. Here

the cranked mean-field state, |�(ωrot )〉, with the rotational
frequency (angular velocity) ωrot, is determined by the self-
consistent cranking procedure [2]. There is no principle like
Galilean invariance for the rotational motion, and the configu-
ration mixing with respect to the cranking frequency in Eq. (1)
should be evaluated numerically, as will be discussed in more
detail below in Sec. II. The same method has been also applied
recently for the GCM calculation with respect to the (β, γ )
collective coordinates in Ref. [16].

In the present work, we apply the framework to the su-
perdeformed rotational band, which is one of the most striking
rotational motions in nuclei; see, e.g., Refs. [17–20]. With
this application we would like to demonstrate the importance
of multicranked configuration mixing especially for high-
spin states; proper description of the moment of inertia for
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superdeformed states cannot be obtained by the angular-
momentum-projection calculation from a single mean-field
state. The superdeformed band is best suited for this investi-
gation because long rotational sequences have been measured
without any quasiparticle alignments in many cases. More-
over, the influence of pairing correlations is relatively small
on the moments of inertia of the superdeformed states; for
the normal deformed states studied in the previous work [10]
the reduction of moments of inertia due to the static pairing
correlations is very large, the reduction factor being 1/2 to
1/3 as is well known, and it is not so easy to identify the
importance of multicranked configuration mixing.

The yrast superdeformed bands of two even-even nuclei,
152Dy and 194Hg, are selected as representative examples in
the A ≈ 150 and A ≈ 190 regions. It has been known that the
behaviors of the dynamic moments of inertia [21], J (2), are
different for the superdeformed bands in the two mass regions.
The reason for selecting these two nuclei is that the linking
transitions were measured and the spin assignments were
given. Therefore we can study both J (1) and J (2) moments of
inertia as functions of angular momentum. Another purpose
of the present paper is to look for the main reason for the
difference in these two mass regions; the effect of pairing
correlations is studied for this purpose, employing the cranked
mean-field states obtained by the method of variation after
number projection. The particle-number projection as well
as the angular-momentum projection have been carried out
for the first time in this type of multicranked configuration-
mixing calculation.

The paper is organized as follows. We briefly explain the
basic formulation of the actual procedure in Sec. II. The
results of calculations are presented in Sec. III, where the
importance of multicranked configuration mixing is discussed
for typical examples of the yrast superdeformed bands in the
152Dy and 194Hg nuclei. A part of the results of moments of
inertia for 152Dy was already presented in Ref. [9]; the process
of configuration mixing leading to the results is investigated in
more detail in comparison with another nucleus, 194Hg, in this
section. Section IV is devoted to conclusions.

II. THEORETICAL FRAMEWORK

A. Multicranked configuration mixing

Practically we discretize the continuous cranking fre-
quency ωrot in Eq. (1), as {ω(n)

rot ; n = 1, 2, . . . , nmax},
∣∣�I

M,α

〉 =
nmax∑
n=1

∑
K

gI
Kn,α P̂I

MK

∣∣�(
ω

(n)
rot

)〉
, (2)

and obtain the configuration mixing amplitudes gI
Kn,α ≡

gI
K,α (ω(n)

rot ) by solving the so-called Hill-Wheeler equation;
see, e.g., Ref. [2]:∑

K ′n′
HI

Kn,K ′n′ gI
K ′n′,α = EI

α

∑
K ′n′

N I
Kn,K ′n′ gI

K ′n′,α, (3)

where the Hamiltonian and norm kernels are defined by{
HI

Kn,K ′n′

N I
Kn,K ′n′

}
= 〈

�
(
ω

(n)
rot

)∣∣{H
1

}
P̂I

KK ′
∣∣�(

ω
(n′ )
rot

)〉
. (4)

If the particle-number projection is performed on top of the
angular-momentum projection (see below), the wave function
in Eqs. (1), (2) and (4) is replaced as

P̂I
MK |�(ωrot )〉 → P̂I

MK P̂N0 P̂Z0 |�(ωrot )〉, (5)

where P̂N0 and P̂Z0 are the neutron- and proton-number projec-
tors fixing the neutron and proton numbers to the desired val-
ues N0 and Z0, respectively. If the particle-number projection
is not performed, the number conservation is treated approx-
imately by replacing H → H − λν (N − N0) − λπ (Z − Z0).
For the neutron and proton chemical potentials λν and λπ we
use those of the first state |�(ω(1)

rot )〉.
We recently developed an efficient method for the angular-

momentum-projection and the configuration-mixing calcula-
tions [22]. This method is fully utilized also in the present
work. More details of our theoretical framework can be found
in Refs. [9,22]. For an effective interaction in the Hamilto-
nian H , we employ the Gogny force [23] with the so-called
D1S parametrization [24] as in our previous works [9,10,15];
therefore, there is no adjustable parameter in the Hamiltonian.
This interaction has been utilized in many applications of
the Hartree-Fock-Bogolyubov (HFB) calculation and various
theoretical methods beyond it; see, e.g., Ref. [25].

B. Determination of the mean-field states

The mean-field state, |�(ωrot )〉 with ωrot = ω
(n)
rot , is de-

termined by the cranked HFB procedure with the Routhian
(cranked Hamiltonian) H − ωrotJy; i.e., by the variation

δ〈�(ωrot )|H − ωrotJy|�(ωrot )〉 = 0. (6)

The self-consistent mean-fields of the superdeformed nuclei
studied in the present work are axially deformed in a good
approximation even at highest frequencies. We choose the
z axis as the (approximate) symmetry axis and the y axis
as a cranking axis, as can be seen in Eq. (6). Namely, we
consider the one-dimensional cranking in the present work.
The full three-dimensional cranking [26], or the tilted-axis
cranking [27,28], is necessary when deformation of the mean
field strongly breaks the axial symmetry. The infinitesimal
cranking for such a case was worked out in Ref. [15].

It should be mentioned that with this cranked HFB proce-
dure the pairing correlation vanishes suddenly at some critical
frequency. However, for the finite system like a nucleus, the
pairing phase transition takes place gradually and the effect of
pairing fluctuations plays non-negligible roles near and after
the critical frequency; see, e.g., Ref. [29]. In this reference, the
pairing fluctuations calculated by the random-phase approxi-
mation (RPA) method have been investigated at the high-spin
states, and shown to systematically improve the agreement of
the Routhians and alignments with experimental data; see also
Refs. [30,31].

The same methodology has been successfully applied to
investigate the J (1) and J (2) moments of inertia of the
superdeformed bands in the A ≈ 150 region [32], where the
Nilsson-Strutinsky method with the schematic monopole pair-
ing interaction has been utilized. It is, however, noted that
the angular-momentum projection from the RPA-correlated
state is difficult to perform, though not impossible; see, e.g.,
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Ref. [33]. An alternative method to incorporate the pairing
fluctuations into the mean field is the method of variation
after (particle-)number projection (VANP); see, e.g., Ref. [2].
The effect of pairing fluctuations calculated by the RPA
and the VANP methods was compared in Ref. [34], and
it was confirmed that the two methods give very similar
results for observable quantities; see also the discussion in
Ref. [35]. In Ref. [36] the effect of pairing correlation was
studied for the superdeformed bands in the A ≈ 150 region us-
ing the number-projection method, where the Woods-Saxon-
Strutinsky calculation with the schematic monopole pairing
interaction was employed, and the pairing-gap parameter
was taken as a variational parameter. Similar improvement
over the simple mean-field approximation was obtained in
Refs. [32,36].

In relation to these developments, it may be worth men-
tioning that microscopic mean-field calculations employing
the Skyrme force with various density-dependent zero-range
pairing interactions have been performed for superdeformed
nuclei in the A ≈ 190 region [37] and in the A ≈ 150 region
[38] with good agreements. The same line of investigation
but by using the Gogny force has been reported; see, e.g.,
Refs. [39,40]; in the latter reference [40] the effect of approxi-
mate number projection on the superdeformed states was also
investigated. The relativistic mean-field method has been also
successfully applied to the high-spin superdeformed rotational
bands in the A ≈ 140–150 mass region; see, e.g., Ref. [41].

To incorporate the effect of pairing fluctuations, we also
present the results of calculations where the mean-field state
|�(ωrot )〉 is determined by the VANP method instead of the
cranked HFB method in Eq. (6), i.e., by the variation

δ
〈�(ωrot )|(H − ωrotJy)P̂N0 P̂Z0 |�(ωrot )〉

〈�(ωrot )|P̂N0 P̂Z0 |�(ωrot )〉
= 0. (7)

In the present work the Gogny D1S effective interaction is
used and the variation with respect to the full-HFB amplitudes
should be performed. One of the common methods is the gra-
dient method (see, e.g., Ref. [2]), but it takes a lot of iterations
to achieve precise convergence. An efficient method by uti-
lizing diagonalization of the number-projected quasiparticle
Hamiltonian was developed in Ref. [42]; we make full use of
it to obtain the cranked VANP mean-field state in Eq. (7). With
the VANP method, the particle-number projection should be
performed on top of the angular-momentum projection for
multicranked configuration mixing; see Eq. (5).

Since the deformation is axially symmetric in a good
approximation, we define the λ-pole deformation parameter
of the calculated mean field defined as usual by [43]

βλ ≡ 4π

3

〈 ∑A
i=1(rλYλ0)i

〉
A R̄λ

with R̄ =
√√√√ 5

3A

〈 A∑
i=1

r2
i

〉
,

(8)
and the average pairing gap by [44]

� ≡ −∑
a>b �abκ

∗
ab∑

a>b κ∗
ab

with �ab =
∑
c>d

v̄ab,cd κcd , (9)

where the quantity κab is the abnormal density matrix (the
pairing tensor) and �ab is the matrix element of the pairing

potential with the antisymmetrized matrix element v̄ab,cd of
the general two-body interaction; see, e.g., Ref. [2].

C. Two moments of inertia

Although it is a textbook matter, we here summarize the
expressions of the two moments of inertia, that is, the kine-
matic and dynamic ones [21], for completeness. For the spec-
trum of simple one-dimensional rotation E (I ), the rotational
frequency ωrot is defined by

ωrot = dE

dI
, (10)

which determine the ωrot − I relation I (ωrot ). Then, the
Routhian, i.e., the energy in the rotating frame E ′(ωrot ), is
given by the Legendre transformation,

E ′(ωrot ) = E (I (ωrot )) − ωrotI (ωrot ). (11)

With these definitions, the two moments of inertia, J (2) and
J (1), are expressed in various equivalent ways by

J (1) = I

(
dE

dI

)−1

= I

ωrot
= − 1

ωrot

dE ′

dωrot
, (12)

J (2) =
(

d2E

dI2

)−1

= dI

dωrot
= − d2E ′

dω2
rot

. (13)

III. RESULTS OF THE CALCULATION

A. Details of the calculation

In a mean-field calculation such as the cranked HFB or
VANP and the subsequent angular-momentum-projection cal-
culation, the isotropic harmonic oscillator basis expansion is
employed, where all the basis states with the oscillator quan-
tum numbers (nx, ny, nz ) satisfying nx + ny + nz � Nmax

osc =
12 are retained. The value of canonical basis cutoff factor to
define the effective quasiparticle space is taken to be 10−6,
in the same way as in Ref. [22]. The value of the norm
cutoff factor for solving the Hill-Wheeler equation (see, e.g.,
Ref. [2]) is chosen to be 10−12–10−9 in order to obtain as
many continuous rotational bands as possible [9,10].

The maximum values of the angular momentum and its
projection to the (approximate) symmetry axis are taken to
be Imax = 62 and Kmax = 22 for 152Dy, and Imax = 52 and
Kmax = 22 for 194Hg. Note that the cranking procedure with
high rotational frequency causes considerable K mixing, al-
though the deformation is approximately axially symmetric,
and, therefore, Kmax should not be very small. We have
confirmed that the selected values above are enough for
the present calculation. For the numbers of integration-mesh
points for the Euler angles (α, β, γ ) in the calculation of
angular-momentum projector, rather large values, especially
for the β integration, are necessary to obtain a precise energy
spectrum up to high-spin states like I ≈ 60. We have used
Nβ = 130 and Nα = Nγ = 60 after confirming accuracy of
the results. To perform the VANP calculation in Eq. (7) the
particle-number projector should be applied, for which the
number of integration-mesh points for the gauge angle φ has
been taken to be Nφ = 7.
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For the number of mean-field states of multicranked con-
figuration mixing in Eq. (2), we use nmax = 4 in the present
work. A larger value of nmax is preferable, but the numerical
efforts to perform the angular-momentum projection are too
high, with relatively large numbers of integration-mesh points
for the Euler angles being employed in the present calculation;
note that the numerical cost increases in proportion to n2

max.
With the mean-field states obtained by the VANP method,
we carry out the particle-number projection on top of the
angular-momentum projection as is explained in Sec. II B;
then the numerical cost is Nφ (= 7) times larger.

The discretized points of the rotational frequency, ω
(n)
rot

(n = 1, . . . , nmax = 4), can be chosen rather arbitrarily; in
Ref. [9] it is discussed that the final results of configuration
mixing do not depend on this choice when enough points are
employed. We select the first and last points, ω

(1)
rot and ω

(4)
rot ,

and other points are determined to form the equidistant mesh.
Some trial-and-error effort was made to obtain the smooth
rotational band, which is necessary to calculate kinematic
and dynamic moments of inertia. In the following, we mainly
discuss the J (2) moment of inertia evaluated with the discrete
�I = ±2 rotational spectrum E (I ),

J (2)(I ) = 4h̄2

E (I + 2) + E (I − 2) − 2E (I )

= 4h̄2

Eγ (I + 1) − Eγ (I − 1)
, (14)

for the experimental data and for the calculated results of
projection, where Eγ (I ) ≡ E (I + 1) − E (I − 1) is the γ -ray
energy of the I + 1 → I − 1 transition. Note that these quan-
tities can be evaluated only with γ -ray energies without
spin assignment, which is often missing for superdeformed
rotational bands. We also discuss the J (1) moment of inertia,

J (1)(I ) = (2I + 1)h̄2

E (I + 1) − E (I − 1)
= (2I + 1)h̄2

Eγ (I )
, (15)

which requires the spin assignment to calculate. The J (2)

moment of inertia calculated within the cranked HFB approx-
imation,

J (2)(ωrot ) = d

dωrot
〈�(ωrot )|Jy|�(ωrot )〉, (16)

as a function of semiclassical spin value defined by

I (ωrot ) ≡ 〈�(ωrot )|Jy|�(ωrot )〉 − 1
2 h̄, (17)

or within the cranked VANP approximation,

J (2)(ωrot ) = d

dωrot

〈�(ωrot )|Jy P̂N0 P̂Z0 |�(ωrot )〉
〈�(ωrot )|P̂N0 P̂Z0 |�(ωrot )〉

, (18)

as a function of

I (ωrot ) ≡ 〈�(ωrot )|Jy P̂N0 P̂Z0 |�(ωrot )〉
〈�(ωrot )|P̂N0 P̂Z0 |�(ωrot )〉

− 1

2
h̄, (19)

is also compared with the result of projected configuration
mixing in the following discussion.

The experimental data are taken from Ref. [45]. For the
deformation parameter for superdeformed bands, see, e.g.,
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ℑ
(2

)  [− h2 /M
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]

I [−h]

HFB
projected

exp

FIG. 1. Calculated J (2) moment of inertia as a function of angu-
lar momentum for 152Dy, where the result of projected multicranked
configuration mixing is drawn with symbols and that of cranked HFB
calculated with Eq. (16) is the solid line. The experimental one is also
included.

Refs. [46,47]. Note, however, that the deformation parameter
studied in these references is that of the mean-field potential
with Woods-Saxon shape. Their values are systematically
smaller than those of the deformation parameter determined
according to the density distribution in Eq. (8); see; e.g.;
Ref. [48].

B. Superdeformed band in 152Dy

We first investigate the yrast superdeformed band of
the 152Dy nucleus, which ws identified as a first high-spin
superdeformed band [17] in the A ≈ 150 region, and the
spin-assignment was given afterward [49]. In the present
work, we generate the cranked mean-field states employed
for the projected configuration mixing by choosing four
rotational frequencies, h̄ωrot = 0.30, 0.45, 0.60, 0.75 MeV,
which roughly cover the range of the observed rotational band
in 152Dy.

1. Projection from the mean field determined
by cranked HFB method

Our Gogny HFB calculation gives a superdeformed min-
imum with deformation β2 = 0.715 at zero rotational fre-
quency with very weak pairing correlations in 152Dy. The pair-
ing correlations quickly vanish and the mean-field states—
with which the multicranked configuration mixing is per-
formed after projection—are nonsuperconducting at h̄ωrot �
0.3 MeV. The deformation is almost constant, keeping the
axial symmetry very well up to high rotational frequency;
the calculated values of the deformation parameter are β2 =
0.713 and 0.696 at h̄ωrot = 0.30 and 0.75 MeV, respectively.
Note that this deformation reproduces the observed B(E2)
values in 152Dy very well, as confirmed in our previous
work [9]. In Fig. 1 the calculated J (2) moment of iner-
tia is compared with the experimental one. Both the cal-
culated and experimental J (2) moments of inertia are al-
most constant or only gradually decrease as functions of
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]
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FIG. 2. J (2) moments of inertia of projected spectra from a
single cranked HFB state at each rotational frequency for 152Dy. The
result of configuration mixing is also included.

angular momentum, and the calculated one slightly over-
estimates the experimental one. The result of configuration
mixing is very similar to that of Ref. [9], where the four
cranked mean-field states with different frequency points,
h̄ωrot = 0.01, 0.24, 0.47, 0.70 MeV, were utilized instead.
This shows, again, that the result is almost independent of
the choice of actual mesh points of the cranking frequency
in Eqs. (1) or (2), with a relatively small number of them
(nmax = 4 in the present case). The small norm cutoff factor
10−12 can be used in this calculation.

The results of multicranked configuration mixing after pro-
jection and of the simple cranked HFB mean-field approxima-
tion shown in Fig. 1 are very similar. One may think that it is
natural, but this is totally nontrivial and a consequence of the
multicranked configuration mixing, as shown in Fig. 2, where
four J (2) moments of inertia calculated from the spectra
projected from a single mean-field state at each rotational
frequency are depicted in addition to the final result of con-
figuration mixing. It can be seen that the values of these J (2)

moments of inertia are very similar and about 20–25% smaller
than the one obtained by the result of configuration mixing,
and, furthermore, they decrease more rapidly as functions of
angular momentum. It seems that this is a general trend for the
projected spectrum from a single HFB mean-field state [9,10],
and indicates the importance of multicranked configuration
mixing for the proper description of the moment of inertia
of the rotational band by the angular-momentum-projection
method, especially for high-spin states.

It may be worthwhile mentioning that the J (2) moment of
inertia calculated by the projection from a single mean-field
state shown in Fig. 2 corresponds to the so-called Yoccoz
inertia, while the one calculated within the cranked HFB
mean-field approximation, cf. Eq. (16), which agrees with
the final result of projected configuration mixing as shown
in Fig. 1, corresponds to the Thouless-Valatin inertia; see
Ref. [2]. Thus, this result shows that the Yoccoz inertia is
considerably smaller than the Thouless-Valatin inertia at least
for the superdeformed rotational band at high-spin states; it is

-1239

-1238

-1237

-1236

-1235

-1234

-1233

-1232

-1231

-1230

0  10  20  30  40  50  60

152Dy

E(
I)

− 
I(

I+
1)

/1
90

[M
eV

]

I [−h]

Mixed
ωrot=0.30
ωrot=0.45
ωrot=0.60
ωrot=0.75

FIG. 3. Energy spectra of simple projections from a single
cranked HFB state at each rotational frequency and that of the
resultant configuration mixing for 152Dy. The reference energy, I (I +
1)/190 MeV, is subtracted.

true not only for 152Dy but also for 194Hg, as will be shown in
Figs. 11 and 12 below.

In order to see why the result of configuration mix-
ing gives a considerably larger value for J (2) moment of
inertia, the calculated spectra obtained by the projection from
a single cranked HFB state at each rotational frequency as well
as the result of the configuration mixing are shown in Fig. 3,
where the reference energy, I (I + 1)/190 MeV, is subtracted.
The J (2) moment of inertia is the reciprocal of curvature of
the spectral curve as a function of angular momentum, cf.
Eq. (13). The result of configuration mixing looks naturally
like the envelope curve of a family of four spectral curves
corresponding to those obtained with different frequencies,
and consequently the curvature reduces from those of a
family of curves. Note that each spectral curve obtained by
projection from a single cranked HFB state with ωrot = ω

(n)
rot

(n = 1, . . . , 4) comes in contact with this envelope-like curve
at the spin value close to the cranked angular-momentum I ≈
〈�(ω(n)

rot )|Jy|�(ω(n)
rot )〉. The resultant spectrum of configuration

mixing is very similar to the one calculated by the cranked
HFB, as in the case of J (2) moments of inertia shown in Fig. 1.
In this way, the considerable increase of the J (2) moment of
inertia caused by the multicranked configuration mixing can
be naturally understood.

In addition to the J (2) moment of inertia in Fig. 1, the J (1)

moment of inertia is also useful for studying the properties of
high-spin rotational bands. The calculated J (1) moments of
inertia corresponding to Fig. 3 are shown in Fig. 4, where the
experimental one is also included. As seen from the figure, the
value of the J (1) moment of inertia is larger for the spectrum
obtained by the projection from the mean-field state with
higher rotational frequency. Those calculated by the projec-
tion from a single mean-field state are larger and decrease
more rapidly than the corresponding J (2) moments of inertia
in Fig. 2. However, the value of the result of configuration
mixing is almost constant in agreement with the trend of
the experimental data, although the calculated value of J (1)
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FIG. 4. J (1) moments of inertia corresponding to the spectra in
Fig. 3 for 152Dy. The experimental one is also included.

is considerably (about 10%) overestimated. In this way, the
projected spectrum from a single mean-field state does not
give good description of the high-spin rotational band, and
the multicranked configuration mixing is crucial to obtain the
correct magnitudes of both dynamic and kinematic moments
of inertia for the superdeformed band in 152Dy.

2. Projection from the mean-field determined by cranked
VANP method

As it is discussed in Sec. II B, the pairing phase-transition
occurs suddenly at low spins with the static mean-field ap-
proximation like the HFB method. However, the effect of
pairing fluctuations remains at rather high-spin states [29,35].
An efficient method to take it into account is the VANP
method, which determines the mean-field state according to
Eq. (7). With the cranked VANP method, the obtained mean-
field states have almost the same deformation as in the case
of the cranked HFB method, β2 = 0.713 and 0.698 at h̄ωrot =
0.30 and 0.75 MeV, respectively. They are, however, in the
superconducting phase with relatively weak pairing correla-
tions, as shown in Fig. 5, where the calculated average pairing
gaps by Eq. (9) are depicted. The average pairing gaps for the
neutron and proton obtained by the VANP method gradually
decrease as functions of the rotational frequency and never
vanish within the frequency range under consideration. These
results are consistent with those in Ref. [40].

Utilizing four mean-field states obtained by this VANP
method at the same cranking frequencies as in the case of
the HFB method, h̄ωrot = 0.30, 0.45, 0.60, 0.75 MeV, the
projected multicranked configuration mixing has been carried
out, where the particle number is also projected out to the
desired number for both the neutron and proton; see Eq. (5).
A larger norm cutoff factor 10−9 is necessary to obtain a
smooth rotational band. The resultant J (2) moment of inertia
is depicted in Fig. 6. Apparently, the result does not change
very much from that with the cranked HFB method shown
in Fig. 1, although it is almost constant as a function of
angular momentum in contrast to the experimental data, and
the discrepancy slightly increases at higher frequency. The
result of the simple cranked VANP approximation (the solid
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FIG. 5. Average pairing gaps as functions of the rotational fre-
quency for 152Dy, defined by Eq. (9) and calculated by the cranked
HFB and VANP methods. Both neutron and proton gaps obtained by
the HFB method vanish in the frequency range shown.

line) in Eq. (18) is again very similar to that of projected
multicranked configuration mixing as in the case of the HFB
mean-field states being employed.

The calculated J (2) moment of inertia by the projected
configuration mixing in Fig. 6 shows some small irregulari-
ties. This and other irregularities in the calculations seen in
the present work are due to the fact that a small norm state
in the Hill-Wheeler equation unfortunately comes in and/or
goes out in the calculated spin range even though a relatively
small value of norm cutoff parameter has been employed, in
this case 10−9; usually its effect is small, but it can be visible,
especially for the J (2) moment of inertia that is the quantity
of second derivative; see Eq. (13).

We show four J (2) moments of inertia calculated from
spectra projected from a single mean-field state at each ro-
tational frequency in Fig. 7 with the result of configuration
mixing. They are rather similar to those obtained from the
HFB mean-field states shown in Fig. 2, even though the
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FIG. 6. Similar to Fig. 1 but the mean-field states obtained by the
VANP method are utilized and the particle-number projection is also
performed, cf. Eq. (5). Here the solid line is calculated by Eq. (18).
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FIG. 7. Similar to Fig. 2 but the mean-field states obtained by the
VANP method are utilized and the particle-number projection is also
performed, cf. Eq. (5).

average pairing gaps remain finite in the VANP mean-field
states, in contrast to the vanishing pairing gaps in the HFB
states. Thus, the effect of pairing fluctuations is not large for
this nucleus. The calculated spectra of projection from a single
cranked VANP state at each rotational frequency are displayed
in Fig. 8 with the resultant spectrum of configuration mixing.
Note that the absolute energy of the projected configuration-
mixing spectrum using the VANP states is about 3.7 MeV
smaller at I ≈ 0 because the particle-number projection is
performed for both neutron and proton. The J (1) moments of
inertia corresponding to the spectra in Fig. 8 are also displayed
in Fig. 9, where the experimental one is also included. The
main features in Figs. 7–9 are not very different from the case
utilizing the HFB mean fields in Figs. 2–4.

The difference between the results using the HFB and
VANP mean-field states is that the values of cranked angular
momentum [see Eqs. (17) and (19)] are systematically smaller
in the results of the VANP states. In fact the resultant J (1)

moment of inertia by the configuration mixing with the VANP
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FIG. 8. Similar to Fig. 3 but the mean-field states obtained by the
VANP method are utilized and the particle-number projection is also
performed, cf. Eq. (5).
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FIG. 9. Similar to Fig. 4 but the mean-field states obtained by the
VANP method are utilized and the particle-number projection is also
performed, cf. Eq. (5).

method is reduced from that with the HFB method, and the
agreement between the experimental data is improved, as
it can be seen by comparing the J (1) moments of inertia
in Figs. 4 and 9. The importance of this “dealignment” ef-
fect and the reduction of J (1) moment of inertia caused by
the pairing fluctuations was systematically investigated for
normal deformed nuclei in Ref. [29] and for superdeformed
nuclei in Refs. [32,36]. It can be easily understood by the
fact that the correlation Routhian induced by the pairing
fluctuations, which is always negative, is increasing as a
function of the rotational frequency and vanishes at infinite
frequency. Then the correction due to the pairing fluctuations
for J (1) is always negative, cf. Eq. (12), in agreement with
the analysis of Refs. [32,36]. For the J (2) moment of inertia,
the sign of the correction term changes at the inflection point
of the correlation Routhian, because the J (2) moment of
inertia is defined by the second derivative; see, e.g., Fig. 9
of Ref. [32]. Comparing the results of configuration-mixed
spectra employing the HFB and VANP mean-field states,
the inflection point of the correlation Routhian exists at a
rather high rotational frequency like h̄ωrot ≈ 0.5 MeV, and
the correction to J (2) is negative before this frequency and
positive after it, although the magnitude of correction to J (2)

is rather small; this result is slightly different from that in
Ref. [32].

C. Superdeformed band in 194Hg

As an example of superdeformed bands in the A ≈ 190
mass region, we take the yrast superdeformed band of the
194Hg nucleus, which was observed in an early stage of
superdeformation hunting in this region [50], and the spin-
assignment was given afterward [51]. We have performed
the multicranked configuration-mixing calculation using four
cranked mean-field states at the rotational frequencies h̄ωrot =
0.10, 0.23, 0.36, 0.49 MeV, which cover the spin range of
the measured rotational band in 194Hg.

Generally speaking, the pairing correlations are weak
due to the relatively large shell gaps resulting from the
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FIG. 10. Average pairing gaps as functions of the rotational
frequency for 194Hg, defined by Eq. (9) and calculated by the cranked
HFB and VANP methods. The proton gap obtained by the HFB
method vanishes in the frequency range shown.

(approximate) rational axis ratio 2:1 for the long to short axes
in the superdeformed states [1]. The values of deformation for
the superdeformed states in the A ≈ 190 region are smaller
than those in the A ≈ 150 region (see, e.g., Ref. [52]), and
the shell gaps in the A ≈ 190 region are suggested to be
slightly smaller. Because of this, the pairing correlations are
expected to be relatively stronger for nuclei in the A ≈ 190
region than those in the A ≈ 150 region; see, e.g., Ref. [53].
The calculated average pairing gaps for 194Hg are shown in
Fig. 10 as functions of the rotational frequency. The proton
gap obtained by the HFB method vanishes already at h̄ωrot =
0.10 MeV, while the neutron gap remains at higher frequency.
As in the case of 152Dy shown in Fig. 5, pairing gaps for
both neutron and proton obtained by the VANP method are
finite and gradually decrease as functions of the rotational
frequency. These results are very similar to those in Ref. [40].
The neutron gap with the HFB method decreases more rapidly
than that with the VANP method. The values of the average
gaps in 194Hg and 152Dy calculated with the VANP method
are similar for protons, and the value in 194Hg is larger for
neutrons. Considering the general mass dependence of the
pairing gap, ∝ 1/

√
A, the pairing correlations deduced from

the calculated pairing gaps are stronger in 194Hg than in 152Dy,
especially for neutrons.

1. Projection from the mean-field determined by cranked
HFB method

Our Gogny HFB calculation gives a superdeformed min-
imum in 194Hg with β2 = 0.548 and 0.529 at h̄ωrot = 0.10
and 0.49 MeV, respectively. Again, the axial symmetry is
kept very well up to high rotational frequency. The calculated
J (2) moment of inertia by the configuration mixing using
the four cranked HFB mean-fields states is shown in Fig. 11,
where the result of simple HFB approximation, cf. Eq. (16),
and the experimental one are also included. The small norm
cutoff factor 10−12 works in this calculation. In contrast to
the case of 152Dy, where the J (2) moment of inertia is almost
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FIG. 11. Calculated J (2) moment of inertia as a function of
angular momentum for 194Hg, where the result of projected mult-
icranked configuration mixing is drawn with symbols and that of
cranked HFB mean field with Eq. (16) is shown by the solid line.
The experimental one is also included.

constant or even gradually decreases, the calculated J (2)

moment of inertia for 194Hg increases as a function of angular
momentum, which clearly shows the importance of the pairing
correlation. However, the amount of increase is considerably
smaller in comparison with the experimental data. It should
be mentioned that the result of the HFB mean-field approxi-
mation (the solid line) is very similar to that calculated by the
multicranked configuration mixing, just like the case of 152Dy.

In order to see the effect of configuration mixing, four
J (2) moments of inertia calculated from the spectra obtained
by the projection from a single cranked HFB state at each
rotational frequency are displayed in Fig. 12, where the final
result of configuration mixing is also included. As in the
case of 152Dy in Fig. 2, they take similar values except for
at lower spin values I <∼ 20, and they gradually decrease as
functions of angular momentum. The average values of four
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FIG. 12. J (2) moments of inertia of projected spectra from a
single cranked HFB state at each rotational frequency for 194Hg. The
result of configuration mixing is also included.
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FIG. 13. Energy spectra of simple projections from a single
cranked HFB state at each rotational frequency and that of the
resultant configuration mixing for 194Hg. The reference energy, I (I +
1)/240 MeV, is subtracted.

J (2) moments of inertia at high-spin states calculated by the
projection from a single cranked mean-field state are consider-
ably smaller than the value obtained by the final configuration
mixing. Moreover, the dependence on the angular momentum
completely changes as a result of configuration mixing for
194Hg, which leads to the increase in accordance with the
experimental data.

Furthermore, the calculated spectra from a single cranked
HFB state at each rotational frequency are depicted in Fig. 13
with the result of final configuration mixing; the reference
energy, I (I + 1)/240 MeV, is subtracted for 194Hg. The re-
sultant spectral curve after the configuration mixing follows
the envelope curve of the four spectral curves obtained by
the projection from a single mean-field state with ωrot = ω

(n)
rot

(n = 1, . . . , 4), and comes in contact with each spectral curve
at I ≈ 〈�(ω(n)

rot )|Jy|�(ω(n)
rot )〉. Consequently, its curvature is

becoming smaller, or the J (2) moment of inertia is becoming
larger, as a result of configuration mixing. In Fig. 14 the
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FIG. 14. J (1) moments of inertia corresponding to the spectra in
Fig. 13 for 194Hg. The experimental one is also included.
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FIG. 15. Similar to Fig. 11 but the mean-field states obtained by
the VANP method are utilized and the particle-number projection
is also performed, cf. Eq. (5). Here the solid line is calculated by
Eq. (18).

J (1) moments of inertia calculated by the projection from
a single mean-field state are compared with those by the
final configuration mixing and by the experimental data. As
in the case of 152Dy, the four calculated J (1) moments of
inertia obtained by the projection from a single mean-field
state quickly decrease as spin increases. The spin dependence
of the result of final configuration mixing changes, i.e., the
resultant J (1) moment of inertia increases as spin, which cor-
responds well to the trend of the experimental data, although
the absolute value is considerably overestimated compared to
the experimental data. Thus, the J (1) and J (2) moments of
inertia calculated by the projection from a single mean-field
state with each rotational frequency are very different from
the experimentally measured moments of inertia for both the
absolute value and the spin dependence. Again, the effect of
multicranked configuration mixing is essential to understand
the observed behavior of the rotational spectrum and two
moments of inertia.

2. Projection from the mean-field determined by cranked
VANP method

In order to see the effect of dynamic pairing correla-
tions, we performed the angular-momentum-projection cal-
culations employing the mean-field states obtained by the
VANP method for 194Hg; the particle-number projection is
also performed in this case, cf. Eq. (5). The calculated val-
ues of deformation parameter for superdeformed minimum
are β2 = 0.545 and 0.530 at h̄ωrot = 0.10 and 0.49 MeV,
respectively, which are essentially the same as those calcu-
lated with the HFB method. With the four mean-field states
obtained by the cranked VANP method at the same cranking
frequencies as those by the cranked HFB method, h̄ωrot =
0.10, 0.23, 0.36, 0.49 MeV, the multicranked configuration-
mixing calculation was carried out, with the result shown in
Fig. 15. A larger norm cutoff factor 10−10 is necessary to
obtain a smooth rotational band. As is clearly seen, the result
employing the VANP mean-field states is slightly changed
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FIG. 16. Similar to Fig. 12 but the mean-field states obtained by
the VANP method are utilized and the particle-number projection is
also performed, cf. Eq. (5).

from the one employing the HFB mean-field states shown
in Fig. 11: The calculated J (2) moment of inertia is reduced
at lower spin and is increased at higher spin in comparison
with the one obtained with the HFB mean-field states, and
the agreement with the experimental data is better. Again, the
results of projected configuration mixing and of the cranked
VANP approximation (the solid line) calculated by Eq. (18)
are very similar.

Figure 16 shows four J (2) moments of inertia calculated
from the projected spectra obtained by a single cranked
VANP mean-field state at each rotational frequency in ad-
dition to the result of final configuration mixing. The J (2)

moments of inertia calculated by the projection from a
single mean-field state with the VANP method are not
so different from those with the HFB method shown in
Fig. 12, although the result of configuration mixing more
rapidly increases as a function of angular momentum; this
also suggests the importance of multicranked configuration
mixing.

To see the effect of configuration mixing, we show in
Fig. 17 the four calculated spectra from a single VANP mean-
field state at each rotational frequency in addition to the result
of configuration mixing. The absolute energy of the projected
configuration-mixing spectrum from the VANP states is about
3.4 MeV smaller at I ≈ 0 due to the particle-number projec-
tion on top of the angular-momentum projection. Again, the
result of configuration mixing follows the envelope curve of
a family of four spectral curves obtained by the projection
from a single cranked VANP mean-field state. Compared to
the results with the HFB mean-field states, the spin and the
energy values at their contacting points are smaller and larger,
respectively, for the VANP method, and consequently the
curvature of the parabolic spectrum of the final configuration
mixing is larger at lower spin, while it is smaller at higher
spin. This leads to reduction of the J (2) moment of inertia
at lower spin and increase at higher spin as a result of mul-
ticranked configuration mixing using the VANP mean-field
states.
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FIG. 17. Similar to Fig. 13 but the mean-field states obtained by
the VANP method are utilized and the particle-number projection is
also performed, cf. Eq. (5).

In the same way, the J (1) moments of inertia calculated
from the spectra obtained by a single VANP mean-field state
at each cranking frequency and the result of configuration
mixing are displayed in Fig. 18 corresponding to the spectra
in Fig. 17. The experimental J (1) moment of inertia is also
included. It is clearly seen that the resultant J (1) moment of
inertia by configuration mixing employing the VANP mean-
field states is reduced compared with the result using the
HFB mean-field states shown in Fig. 14. Consequently, the
agreement with the experimental data is better in the result
with the VANP mean-field states. This reduction of the J (1)

moment of inertia is in agreement with the general analysis
of the pairing fluctuations at high-spin states in Refs. [29,35],
where the systematic dealignment effect has been recognized.
Thus the effect of dynamic pairing correlations is not very
large also for 194Hg; these results are slightly different from
those in Ref. [40].
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FIG. 18. Similar to Fig. 14 but the mean-field states obtained by
the VANP method are utilized and the particle-number projection is
also performed, cf. Eq. (5).
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FIG. 19. Similar to Fig. 16 but no particle-number projection is
performed.

3. No number projection with cranked VANP method

The numerical cost to perform both the particle-number
and angular-momentum projections at the same time is very
large. On the other hand, the effect of the number projection
is usually not very large; see, e.g., Ref. [11]. We have also
confirmed it in the calculation of the spectrum for a tetra-
hedrally deformed nucleus [54]. Therefore, we try the mul-
ticranked configuration-mixing calculation with no particle-
number projection by employing the VANP mean-field states.
The result for the J (2) moment of inertia is depicted in
Fig. 19, where the four J (2) moments of inertia calculated
by the projection from a single VANP mean-field state at each
rotational frequency are also included. The norm cut-off factor
10−12 can be used in this calculation.

Compared with the corresponding result shown in Fig. 16,
the resultant J (2) moment of inertia of configuration mixing
is very different. The increase as a function of the rotational
frequency is much larger; even larger than that of the ex-
perimental data. In contrast, those calculated with a single
mean-field state are not very different from the case with
particle-number projection. In order to understand the reason
for it, the four spectra calculated from the projection from a
single mean-field state are displayed in Fig. 20 in addition to
the resultant spectra of configuration mixing. Note that the
absolute energies of the projected spectra are even larger than
those using the HFB states shown in Fig. 13, because the
particle-number projection is not performed with the VANP
mean-field states. It can be seen that the spectral curves ob-
tained by the projection from a single mean-field state are not
very different from those calculated with number projection
shown in Fig. 17, which is consistent with the observation
that the effect of number projection is not very important
in Ref. [54], where the projection was performed from a
single mean-filed state. However, the resultant spectrum of
configuration mixing is dramatically changed if no particle-
number projection is performed.

It is worth mentioning that the energy gain caused by
the configuration mixing seen in Fig. 20 is considerably
larger than those in Figs. 13 and 17, especially at low spin,
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FIG. 20. Similar to Fig. 17 but no particle-number projection is
performed.

I <∼ 20. This indicates that the coupling matrix elements in the
Hill-Wheeler equation in Eq. (3) are overestimated when the
number projection is not carried out for the VANP mean-field
states. If the HFB mean-field state with cranking frequency
ω

(n′ )
rot is represented by the quasiparticle states of the other

HFB state with ω
(n)
rot , their coupling matrix elements consists

of the terms between the zero quasiparticle state and the two,
four, six, . . . quasiparticle states. However, those between the
zero and two quasiparticle states, which are considered to con-
tribute most owing to the small energy denominators, vanish
because of the self-consistency condition of the HFB, i.e., they
are vanishing “dangerous terms”; see, e.g., Ref. [2]. A similar
result applies also for the VANP mean-field states but with
respect to “number projected” quasiparticle states. Therefore,
the coupling terms of configuration mixing are supposed to be
small if the mean-field states are determined self-consistently
as in the cases shown in Fig. 13 for the HFB method and in
Fig. 17 for the VANP method. This is not the case, however,
if the number projection is neglected for the configuration
mixing using the VANP mean-field states in Fig. 20. In this
way, although the effect of number projection is not very
important for the projection from a single VANP mean-field
state, its effect can be rather large for the configuration
mixing, like in the present case. Thus, we should be careful
about employing any kind of approximations which break
the self-consistently of mean-field states if the multicranked
configuration mixing is performed. Although the effect of
breaking the self-consistency is found to be not so large for
the case of another nucleus 152Dy (not shown) as in the case of
194Hg, the same caution should be applied. In fact, the results
of final configuration mixing do not agree with the cranked
VANP approximation in Eq. (18) in both 152Dy and 194Hg
cases, if the number projection is not performed for the VANP
states.

IV. CONCLUSION

The nuclear mean-field theory is one of the most successful
theories to describe nuclear properties from the microscopic
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viewpoint. The key concept is the spontaneous symmetry
breaking, where complicated correlations between the con-
stituent nucleons can be incorporated through the nuclear
mean field. To obtain the quantum mechanical eigenstates,
however, one has to restore the symmetry broken in the mean
field: The nuclear mean field is the intrinsic state from which a
series of symmetry-preserving eigenstates is generated by the
quantum-number-projection method. The collective rotation
is a good example: a sequence of eigenstates composing
the rotational band is obtained by the angular-momentum
projection from a single deformed mean-field state. Although
it is conceptually correct and appealing, the result of projec-
tion from a single mean-field state is not enough for precise
description of the rotational band, especially at high-spin
states, which is clearly indicated in the present work. It is
necessary to make multicranked configuration mixing, i.e.,
several mean-field states with different cranking frequen-
cies should be properly superposed after angular-momentum
projection.

Thus, we show how the approach of projected multi-
cranked configuration mixing works for a good description
of high-spin rotational bands. This approach, cf. Eq. (1) or
(2), was originally proposed by Peierls and Thouless [14]
and developed recently in our previous works [9,10]. In the
present work, it is applied to the investigation of superde-
formed bands in the 152Dy and 194Hg nuclei, where long
rotational sequences are observed and the spin assignments
have been provided. These two representative nuclei are cho-
sen to investigate the effect of pairing fluctuations on the
J (2) moment of inertia of the superdeformed band, for which
large difference has been known between the A ≈ 150 and
A ≈ 190 mass regions. The two methods to incorporate the
pairing correlations, i.e., the HFB and the VANP methods, are

employed to determine the mean-field states, with which the
angular-momentum projection (and the particle-number pro-
jection at the same time for the VANP method) and subsequent
configuration mixing is performed. The Gogny D1S force is
used as the effective interaction. The different behavior of the
J (2) moment of inertia in 152Dy and 194Hg is attributed to the
effect of pairing correlations, which is stronger in 194Hg than
in 152Dy. This is consistent with other previous works (see,
e.g., Ref. [40]), in which the angular-momentum projection is
not considered though.

It is demonstrated that the configuration mixing of several
mean-field states with different cranking frequencies are es-
sential to understand the J (1) and J (2) moments of inertia
of superdeformed nuclei by angular-momentum-projection
calculations. The projection calculation from a single mean-
field state obtained by either the HFB or VANP method
does not give any reasonable results; the calculated J (2)

moments of inertia are too small and decrease gradually as
functions of angular momentum. With configuration mixing
after projection, fair agreement with experimental data is
achieved for both the J (1) and J (2) moments of inertia,
although the agreement is not perfect in the present inves-
tigation. A self-consistent treatment is emphasized for the
configuration mixing; namely, both the particle-number and
angular-momentum projections are necessary if the VANP
mean-field states are employed. With proper self-consistency,
however, the results of the multicranked configuration mixing
for J (2) moments of inertia are found to be very similar to
those calculated with the semiclassical cranked HFB or VANP
approximation without angular-momentum projection. This
means that the mean-field approximation (or an extension like
VANP) gives a fairly good approximation for the description
of superdeformed high-spin rotational bands.
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