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Real-time evolution method and its application to the 3α cluster system
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A theoretical method is proposed to describe the ground and excited cluster states of atomic nuclei. The
method makes use of the equation of motion of the Gaussian wave packets to generate the basis wave functions
incorporating various cluster configurations. The generated basis wave functions are superposed to diagonalize
the Hamiltonian. This method is regarded as the generator coordinate method which uses the real time as the
generator coordinate. As a application of our proposed method, we present the benchmark calculation for the 3α

system. We show that our proposed method works efficiently and yields the results consistent with or better than
the other cluster models. We have also discussed briefly the structure of the excited 0+ and 1− states.
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I. INTRODUCTION

Since the last four decades, it has been known that the
Hoyle state (the 0+

2 state of 12C) is a dilute gas-like α cluster
state dominated by the s wave [1–8]. In the beginning of
this century, it was claimed that the Hoyle state can be
regarded as a Bose–Einstein condensate of α particles [9–11].
These findings triggered the initiation of many studies on
the structure of 12C. The idea of the α-particle condensate
has been extended to other excited states above the Hoyle
state. Namely, the 2+ state at 10.03 MeV [12–15] and the
4+ state at 13.3 MeV [16] are considered as the mem-
bers of the “Hoyle band” [11,17,18]. More recently, the 0+

3
state at 10.3 MeV [13,19] is suggested as the “breathing
mode” of the Hoyle state [18,20–24]. The possible formation
of the 3α linear chain (0+

4 state) has also been discussed
[18,23].

These ideas have been naturally extended to the conden-
sates of many α particles. The candidates of the 4α condensate
in 16O are under the intensive discussions [25–32]. However,
the theoretical and experimental information for the 5α, 6α,
. . . condensates [11,33–35] is rather scarce. The clustering of
the non-α nuclei is another possible extension of these ideas.
The Hoyle-analog states with a nucleon hole or particle are
discussed for 11B [36–39] and 13C [40,41]. The 3α linear
chains accompanied by the valence neutrons are expected in
neutron-rich C isotopes [42–53]. A research interest has now
been extended to the higher excited cluster states composing
multiclusters and nucleons.

However, with the increase in number of the constituent
clusters or nucleons, the description of the cluster states be-
comes difficult. As in the implementation of the generator co-
ordinate method (GCM) [54,55], it is easy to imagine that the
number of basis wave functions required for the description
of the cluster states increases very quickly as the number of
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constituent particles increases or the system becomes dilute.
As a result, much computational power is demanded and the
practical calculation becomes difficult. This may be one of
the reason why the condensates of many α particles are rarely
studied based on the microscopic models. Therefore, a new
method which efficiently generates the basis wave functions is
highly desirable and indispensable. For this purpose, several
methods have been developed such as the stochastic sampling
of the basis wave functions [56–58] and the imaginary-time
development method [59].

In this study, we propose an alternative method which
makes use of the equation of motion (EOM) of the Gaussian
wave packets. The basis wave functions are generated by
the real-time evolution of the system governed by the EOM,
and they are superposed to diagonalize the Hamiltonian. The
beauty of our method is that it makes use of the real time as the
generator coordinate. As a benchmark of the methodology, we
applied it to the 3α system (12C). It is shown that the proposed
method works efficiently and yields the results consistent with
or better than the other cluster models. Furthermore, based on
the isoscalar (IS) monopole and dipole transition strengths,
we briefly discuss the structure of the excited 0+ and 1−
states.

This paper is organized as follows: Section II explains
the framework of the proposed method, which we call the
real-time evolution method (REM). Our benchmark results are
presented and discussed in Sec. III. The conclusion is drawn
in Sec. IV.

II. THEORETICAL FRAMEWORK

Here, we explain the framework of the REM. For simplic-
ity, we assume its application to the α cluster wave functions
(4N nuclei). However, it is noted that the method is also
applicable to more general cases such as non-α cluster wave
functions, antisymmetrized molecular dynamics (AMD) and
fermionic molecular dynamics (FMD) wave functions.
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A. Hamiltonian and generator coordinate method wave function

The Hamiltonian for the Nα systems composed of 4N
nucleons is given as

Ĥ =
4N∑
i=1

t̂i +
4N∑
i< j

v̂N (ri j ) +
4N∑
i< j

v̂C (ri j ) − t̂cm, (1)

where t̂i and t̂cm respectively denote the kinetic energies of the
nucleons and the center of mass. The v̂N and v̂C denote the
effective nucleon-nucleon interaction and Coulomb interac-
tions, respectively. The parameter set of v̂N is explained later.

As for the intrinsic wave function of Nα system, we em-
ploy the Brink–Bloch wave function [60] which is composed
of α clusters having (0s)4 configurations,

�(Z1, . . . , ZN ) = A{�α (Z1) · · · �α (ZN )}, (2)

�α (Z) = A{φ(r1, Z)χp↑ · · · φ(r4, Z)χn↓}, (3)

φ(r, Z) =
(

2ν

π

)3/4

exp

{
−ν

(
r − Z√

ν

)2

+ 1

2
Z2

}
,

(4)

where �α (Z) denotes the wave packet describing the α cluster
located at Z. The set of three-dimensional vectors Z1, . . . , ZN

is complex numbered and describes the α-cluster positions
in the phase space. The size parameter ν of α particle is so
chosen to reproduce the observed radius of 4He (ν = 0.275)
which is same with the preceding works [3,18,23,24,61].

Like other cluster models, we superpose the intrinsic wave
function having different configurations (different sets of the
complex vectors Z1, . . . , ZN ) after the parity and the angular-
momentum projection (GCM). The most general form of the
GCM wave function may be written as

�Jπ
M =

∑
K

∫
d3Z1 · · · d3ZN

× fK (Z1, . . . , ZN )P̂Jπ
MK�(Z1, . . . , ZN ), (5)

where P̂Jπ
MK is the parity and the angular-momentum projector.

The amplitude of the superposition fK (Z1, . . . , ZN ) must be
determined in some ways. As the original Tohsaki–Horiuchi–
Schuck–Röpke (THSR) wave function (J = M = K = 0) [9]
asserts that the amplitude can be written as

f0(R1, . . . , RN ) =
N∏

i=1

exp

{
− 1

2β2
R2

i

}
, (6)

where the vectors Z1, . . . , ZN are reduced to the real-valued
vectors R1, . . . , RN , and the parameter β controls the size of
the α-particle condensate. It is known that this THSR ansatz
works surprisingly well for the ground and excited 0+ states
of 12C [9–11,61].

In other ordinary cluster models, Eq. (5) is often discretized
and approximated by a sum of the finite number of the basis
wave functions,

�Jπ
M =

pmax∑
p=1

J∑
K=−J

fpK P̂Jπ
MK�

(
Z(p)

1 , . . . , Z(p)
N

)
, (7)

and the amplitude fpK is calculated by the Griffin–Hill–
Wheeler equation [54,55]. Here, Z(p)

1 , . . . , Z(p)
N denotes the

pth set of the vectors Z1, . . . , ZN and the number of the
superposed basis wave function is equal to pmax. If pmax is
sufficiently large and the set of the vectors Z(p)

1 , . . . , Z(p)
N

covers various configurations of α clusters, Eq. (7) will be a
good approximation, but the increase of pmax requires much
computational cost. It is easy to imagine that the number of
basis wave functions, pmax, required for a reasonable descrip-
tion of Nα systems will be greatly increased, when the number
of α particles is increased. This is one of the reasons why the
condensates of many α particles are rarely studied with the
microscopic models.

Therefore, if one employs the approximation given by
Eq. (7), it is essentially important to find a way which effi-
ciently generates the set of the vectors Z(p)

1 , . . . , Z(p)
N to reduce

the computational cost. For this purpose, several methods
such as the stochastic method [56–58] and the imaginary time
evolution methods [59] have been proposed, and in this study,
we introduce a new method which uses the real-time evolution
of the α-particle wave packets.

B. Real-time evolution method

In the present study, the EOM of the α-particle wave pack-
ets is used to generate the sets of the vectors Z(p)

1 , . . . , Z(p)
N .

By applying the time-dependent variational principle to the
intrinsic wave function given by Eq. (2),

δ

∫
dt

〈�(Z1, . . . , ZN )|ih̄ d/dt − Ĥ |�(Z1, . . . , ZN )〉
〈�(Z1, . . . , ZN )|�(Z1, . . . , ZN )〉 = 0,

(8)

one obtains the EOM for the α particle centroids Z1, . . . , ZN ,

ih̄
N∑

j=1

∑
σ=x,y,z

Ciρ jσ
dZjσ

dt
= ∂Hint

∂Z∗
iρ

, (9)

Hint ≡ 〈�(Z1, . . . , ZN )|Ĥ |�(Z1, . . . , ZN )〉
〈�(Z1, . . . , ZN )|�(Z1, . . . , ZN )〉 , (10)

Ciρ jσ ≡ ∂2 ln 〈�(Z1, . . . , ZN )|�(Z1, . . . , ZN )〉
∂Z∗

iρ∂Zjσ
. (11)

Note that Z1, . . . , ZA in the bra vector are conjugated in
Eqs. (10) and (11). Therefore, Hint and Ciρ jσ are the functions
of Z1, . . . , ZA and Z∗

1, . . . , Z∗
A.

Starting from an arbitrary initial wave function at t = 0, we
solve the time evolution of Z1, . . . , ZN . As a result, the EOS
yields the set of the vectors Z1(t ), . . . , ZN (t ) as a function of
time t , which defines the wave function �(Z1(t ), . . . , ZN (t ))
at each time. Despite of its classical form, this EOM still holds
the information of the quantum system. For example, it was
shown that the nuclear phase shift of the α-α scattering can be
obtained from the classical trajectory of the wave-packet cen-
troids [62]. In addition to this, it was shown that the ensemble
of the wave functions �(Z1(t ), . . . , ZN (t )) possess the follow-
ing good properties [63–65] if the nucleon-nucleon collisions
and nucleon emission processes are properly treated:
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(1) The ensemble of the time-dependent wave functions
�(Z1(t ), . . . , ZN (t )) has an ergodic nature.

(2) It follows the quantum statistics.

Indeed, on the basis of these EOM properties, the nu-
clear liquid-gas phase transition during the heavy-ion col-
lisions and the caloric curve for the finite nuclei have
been studied [66–69]. Therefore, we expect that, if time is
evolved long enough, the ensemble of the wave functions
�(Z1(t ), . . . , ZN (t )) spans a good model space for Nα sys-
tems. In other words, we expect that the bound and resonant
states of Nα systems are reasonably described by the super-
position of the basis wave functions as follows:

�Jπ
M (T ) =

∫ T

0
dt

J∑
K=−J

P̂Jπ
MK{ fK (t )�(Z1(t ), . . . , ZN (t ))

+ gK (t )�(Z∗
1(t ), . . . , Z∗

N (t ))}. (12)

Here, the complex-conjugated basis wave functions are also
superposed to properly describe the time-even states. The
coefficients fK (t ) and gK (t ) should be determined by the
diagonalization of the Hamiltonian. Eq. (12) can be regarded
as the GCM wave function which employs the real-time t as
the generator coordinate.

C. Numerical calculation

In this study, the REM calculation is performed for the
3α cluster system (12C). For the sake of the comparison, we
used the Volkoff No. 2 effective nucleon-nucleon interaction
[70] with a slight modification [2,3], which is common to
the other studies using resonating group method (RGM) [2,3]
and Tohsaki–Horiuchi–Schuck–Röpke (THSR) wave function
[18,23,61]. The numerical calculation was performed in the
following steps.

(1) In the first step, we randomly generate the 3α cluster
wave function and calculate the imaginary-time evolu-
tion of the system,

ih̄
dZi

dτ
= μ

∂Hint

∂Z∗
i

, (13)

where μ is an arbitrary negative number. Equation (13)
decreases the intrinsic energy Hint, as the imaginary
time τ is evolved. The imaginary-time evolution is
continued until the intrinsic excitation energy,

E∗
int = Hint − Hmin

int , (14)

equals a certain value. Here, Hmin
int is the minimum

intrinsic energy obtained by the very long imaginary-
time evolution, which is −74.5 MeV in the present
Hamiltonian. In the practical calculation, we tested
several values of E∗

int (10, 20, 25, and 30 MeV) and
found that E∗

int = 25 MeV results in the best conver-
gence.

(2) In the second step, we calculate the real-time evolu-
tion [Eq. (9)] starting from the initial wave function
obtained in the first step. For the numerical calculation,
the time is discretized with an interval of �t = 0.02

FIG. 1. The rebound of α clusters described by Eqs. (17)–(19).
Open circles represent the real part of Z, and the solid (dotted) arrows
represent the imaginary part of Z before (after) the rebound. The
rebound does not change the real parts of Zi, Z j , and Zk (positions of
α clusters), but changes the imaginary parts (momenta). It reverts the
momentum of Zi and the center-of-mass momentum between Z j and
Zk but conserves the relative momentum between Z j and Zk .

fm/c,

tp = (p − 1)�t, p = 1, 2, . . . , pmax, (15)

and the maximal propagation time is Tmax = (pmax −
1)�t = 6000 fm/c (pmax = 300 000). Note that the
intrinsic energy Hint, and hence E∗

int, is conserved
by the EOM. As a result, the time-evolution calcula-
tion yields a set of the Brink–Bloch wave functions
�(Z1(tp), . . . , ZN (tp)), p = 1, . . . , pmax having the
same E∗

int. And it is used as the basis wave function of
the GCM calculation in the next step.
If E∗

int is large enough, α clusters occasionally escape
out to infinite distance during the time evolution. This
yields basis wave functions having unphysically large
radii, which are useless for the description of the bound
or resonant states. To avoid this problem, we impose
an additional condition on the calculation. When the
condition

max
i

Re(|Zi(t )|/√ν) > Rmax (16)

is satisfied, i.e., if any of α clusters is distant more
than Rmax, we interchange their momentum by hand
as follows:

Zi(t + �t ) = Re(Zi(t )) − iIm(Zi(t )), (17)

Z j (t + �t ) = Re(Z j (t )) − iIm(Zk (t )), (18)

Zk (t + �t ) = Re(Zk (t )) − iIm(Z j (t )), (19)

where we assume that |Zi(t )| > Rmax. It is noted that
the real part of Z(t ) corresponds to the coordinate of
the α cluster, while the imaginary part corresponds
to the momentum. As a result, α clusters rebound as
illustrated in Fig. 1. In the present calculation, the
maximum distance is chosen as Rmax = 10.0 fm.

(3) The thus-obtained basis wave functions are superposed
by using the real-time t as a generator coordinate. In
the following we call this step the GCM calculation.
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Since time is discretized, Eq. (12) should read

�Jπ
M =

pmax∑
p=1

J∑
K=−J

P̂Jπ
MK{ fK (tp)�(tp) + gK (tp)�∗(tp)},

(20)

where the basis wave function �(Z1(tp), . . . , ZN (tp))
is abbreviated as �(tp). The set of the coefficient
fK (tp), gK (tp) and the eigenenergy are determined by
solving the Griffin–Hill–Wheeler equation to diago-
nalize the Hamiltonian.
In the practical calculation, a set of the basis wave
functions �(tp) obtained by the time evolution is
severely redundant. This makes it difficult to solve the
Griffin–Hill–Wheeler equation accurately. To avoid
this problem, we remove the basis wave functions
which have large overlap with others. When a basis
wave function �(tp) satisfies the following condition,

max
t<tp

| 〈�(t )|�(tp)〉 |2
〈�(t )|�(t )〉 〈�(tp)|�(tp)〉 > Omax, (21)

it is removed from the ensemble. Namely, we do not
use the basis wave functions which have the overlap
with the previous wave functions larger than Omax. In
the present calculation Omax is chosen as 0.75. The
typical number of basis wave functions selected by
Eq. (21) will be discussed in the next section.

(4) As discussed later, the GCM calculation has difficulty
describing highly excited broad resonances because
of contamination of the nonresonant wave functions.
To overcome this problem, we apply the r2-constraint
method proposed by Funaki et al. [71]. Following this
method, we first diagonalize the radius operator,∑

K ′q

〈
P̂Jπ

MK�(tp)
∣∣r̂2 − r2

a

∣∣P̂Jπ
MK ′�(tq)

〉
eK ′qa = 0,(22)

r̂2 =
4N∑
i=1

(ri − rcm)2/(4N ), (23)

which defines a new set of the basis wave functions,

�̃Jπ
Ma =

∑
K p

eK paPJπ
MK�(tp), (24)

corresponding to the eigenvalue r2
a . Superposing these

new basis, we construct the r2-constrained GCM wave
function,

�Jπ
M =

∑ ′
a(r2

a <r2
cut )

{
f̃a�̃

Jπ
Ma + g̃a�̃

Jπ∗
Ma

}
. (25)

Here
∑′ denotes the conditional summation run-

ning over all a which satisfy the condition r2
a < r2

cut.
Namely, the basis wave functions which have too-large
eigenvalues of the radius operator are excluded. The
coefficients f̃a, g̃a and the eigenenergies are deter-
mined by solving the Griffin–Hill–Wheeler equation.
It has been shown that this method effectively sepa-
rates the resonant states from the nonresonant states. In
the present calculation, the cutoff radius r2

cut is varied

0

0

 [fm]

 [f
m

]

4

-4

-8

4

8

0

 [f
m

]

-4

-8

4

8

0
 [fm]

4-4-4 0
 [fm]

4-4 0
 [fm]

4-4 0
 [fm]

4-4
t = 0 fm/c 500 fm/c 1200 fm/c 2000 fm/c 4000 fm/c

t = 0 fm/c 500 fm/c 1200 fm/c 2000 fm/c 4000 fm/c

set 2

set 1

FIG. 2. Intrinsic density snapshots at the propagation time t =
0, 500, 1200, 2000, and 4000 fm/c. Upper (lower) panels show the
ensemble of the wave functions obtained by the EOM starting from
the wave function at t = 0 fm/c.

ranging from (5.0 fm)2 to (7.0 fm)2 to check the
convergence.

III. NUMERICAL RESULTS

In this section, we discuss our benchmark results obtained
with the proposed method (REM) and compare the results
obtained with other models to check the validity and efficiency
of the REM. The detailed discussion on the structures of
cluster states in 12C will be made in our forthcoming work.

A. Real-time evolution

As explained in the previous section, the REM relies on
the ergodic nature of the EOM. Therefore, if the time is prop-
agated long enough, the results should converge and should
not depend on the initial wave functions. To check these
points, we tested two different initial wave functions which
were generated as follows: First, we set the initial position
of the Gaussian wave packets by random numbers. Then,
we performed the imaginary-time evolution to change the
intrinsic energy E∗

int so that it equals 25 MeV. Thus, two initial
wave functions were generated independently and randomly
without any additional input. From these two initial wave
functions, we calculated the EOM to yield two independent
ensembles of wave functions which are denoted by sets 1 and
2 in the following.

To illustrate how the 3α system is evolved by the EOM,
Fig. 2 shows the several wave functions of sets 1 and 2 at
particular times. At time t = 0 fm/c, the wave function of
set 1 has a larger radius but smaller momenta between the α

particles compared with set 2. In both ensembles, disregarding
the different initial condition, the α clusters are distributed
in various ways: they are close to each other at some time
and far distant at another time. Actually, the system repeats a
spatial expansion and contraction as time evolves, which can
be confirmed from the radius of the system as a function of
time as shown in Fig. 3(a). Note that the unphysical change of
the expansion velocity at the maximum radius around 9 fm is
because of the artificial rebound of the α clusters described
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FIG. 3. (a) Radius of the intrinsic wave function as function of
time. (b) Overlap between the wave functions at t = 0 and t after the
projection to the Jπ = 0+.

by Eqs. (17)–(19). Figure 3(b) shows the squared overlap
between the wave function �(t ) and initial wave function
�(0) after the projection to Jπ = 0+ state, which is defined as

O(t ) = |〈P̂0+
�(0)|P̂0+

�(t )〉|2
〈P̂0+

�(0)|P̂0+
�(0)〉 〈P̂0+

�(t )|P̂0+
�(t )〉 . (26)

We see that the overlap is rather small, and hence the wave
function is almost orthogonal to the initial wave function for
most of the time. Thus, the EOM generates various α-cluster
configurations automatically.

The thus-generated wave functions are selected by the
overlap condition represented by Eq. (21). The number of
the selected wave functions as function of Tmax is shown in
Fig. 4. It can be seen that the number is greatly reduced after
the selection, because wave functions are heavily redundant.
At Tmax = 6000 fm/c, approximately 250 wave functions are
selected out of 300 000 in both sets 1 and 2. In the next
section, these selected basis wave functions are superposed to
describe the 3α system. It can also be seen that the number is
almost saturated at Tmax = 5000 ∼ 6000 fm/c. This indicates

2000 4000 6000
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f w
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e 
fu

nc
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n
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set 2
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FIG. 4. The number of basis wave functions selected by the
overlap condition (21). The black dotted line shows the number of
the basis wave functions without the selection.
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FIG. 5. The eigenenergies of the 0+ states measured from the
3α threshold as a function of the propagation time T obtained by
the REM without the r2 constraint. Open and filled symbols show
the results obtained by using the different initial wave functions at
t = 0 fm/c.

that almost all possible quantum states are generated after
the long-time propagation owing to the ergodic nature of the
EOM.

B. Convergence without and with r2 constraint

We first discuss the GCM results obtained without the r2

constraint. Figure 5 shows the energies of the 0+ states as a
function of the maximum propagation time Tmax. We see that
the energies of the 0+ states converge and are independent
of the initial wave functions, if the propagation time is long
enough. In particular, the energy of the ground state converges
very quickly, despite the rather high intrinsic excitation energy
(E∗

int = 25 MeV) of the basis wave functions generated by the
EOM. We also found that the quick convergence is common
to another bound state (2+

1 state).
On the other hand, the energy convergence of the excited

0+ states is not as fast as that of the ground state. In particular,
it is interesting to note that the convergence of the 0+

3 state
looks much slower than others. This is related to the fact that
the 0+

3 state is a very broad resonance [13,19]. Furthermore,
if we observe the figure carefully, we find that the energies
of these unbound states still go down even at large Tmax.
This is because of the contamination of the nonresonant wave
functions to these excited 0+ states, which can be seen more
clearly in the Tmax dependence of the radius shown in Fig. 6.
Here again we see that the convergence of the ground state
is surprisingly fast as compared with other unbound states. In
this figure, we clearly observe that the radii of the unbound
states continuously increase, showing the contamination of
the nonresonant wave functions.

To avoid the contamination of the nonresonant wave func-
tions, we applied the r2 constraint [71]. This prescription
excludes the basis wave functions with huge radii and makes
it possible to obtain the approximate energies and the wave
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FIG. 6. Same as Fig. 5 but for radii.

functions of the resonant states. Since the r2 constraint was
already applied to the THSR wave function [18,18,24], it is
worthwhile to compare the results of THSR and REM. In the
following calculations, the total propagation time Tmax is fixed
to 6000 fm/c.

The top panel of Fig. 7 shows the number of the basis wave
functions whose radii are smaller than the cutoff radius rcut

[see Eqs. (22)–(25)]. It is approximately 130 and 220 at rcut =
5.0 and 7.0 fm, respectively. As seen in the middle and bottom
panels of Fig. 7, the energies of the 0+

2 and 0+
4 states are ap-

proximately constant in the region of the rcut � 6 fm, and the
radii increase very slowly as a function of the rcut. This implies
that the most of the resonant wave functions in the interaction
region is already described by the basis wave functions with
rcut < 6 fm, and the choice of the 6 � rcut � 7 fm may give
reasonable approximation for the 0+

2 and 0+
4 states. We also

note the results for the 0+
2 and 0+

4 look almost consistent with
the THSR results. On the other hand, we have not obtained
the reasonable convergence for the 0+

3 state. In particular, the
radius continues to increase as function of rcut not only in
the REM calculation but also in the THSR calculation, which
implies the contamination of the nonresonant wave functions.
This requires more sophisticated method such as the complex
scaling for more precise discussion of this state [20–22].

Finally, Fig. 8 shows the electric monopole transition
matrix element between the ground and excited 0+ states.
Again we see that the Hoyle state is quite stable, while the
0+

3 and 0+
4 are dependent on rcut. Since the monopole matrix

element is very sensitive to the tail of the wave functions, this
behavior also indicates the non-negligible contamination of
the continuum states with large radii.

C. Excitation spectrum of 12C

Here, we discuss the excitation spectrum of 12C and make
brief comments on the structure of several states. Figure 9
shows the excitation spectrum of 12C calculated by the REM
with the ensemble set 1 and rcut = 6.4 fm together with the
results calculated by the RGM [2,3] and THSR [18,23]. Their
energies and radii are also listed in Table I. Note that all of
these calculations use the same Hamiltonian, and hence they
should be consistent to each other, and the deeper binding

TABLE I. Calculated and observed energies measured from 3α threshold in MeV and radii in fm. Experimental data are taken from
Refs. [13–16,19,72–76].

Jπ REM THSR [11,18,23] RGM [2,3] EXPT

E
√

〈r2〉 E
√

〈r2〉 E
√

〈r2〉 E
√

〈r2〉
0+

1 −7.6 2.4 −7.5 2.4 −7.4 2.4 −7.3 2.4
2+

1 −5.1 2.4 −4.8 2.4 −4.6 2.4 −2.8
4+

2 1.0 2.3 2.2 2.3 2.0 2.3 6.8
0+

2 0.3 3.7 0.2 3.7 0.4 3.5 0.4
2+

2 1.7 3.9 1.6 3.9 2.1 4.0 2.8
4+

1 3.8 4.5 3.7 4.5 6.0
0+

3 2.8 4.6 2.7 4.7 1.8
2+

3 3.9 4.6 4.0 4.5 3.9
4+

3 5.4 4.8 5.6 4.7
0+

4 4.0 4.2 3.9 4.2
2+

4 4.6 3.7 4.3 4.1
4+

4 6.6 5.0 6.8 4.7

3−
1 0.4 2.8 0.8 2.8 2.4

4−
1 4.1 2.9 6.1

5−
1 12 3.6 15

1−
1 2.8 4.3 3.4 3.4 3.6

2−
1 4.0 3.5 4.6

3−
2 5.4 4.5

4−
2 6.4 4.7

5−
2 9.3 4.5
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FIG. 7. The number of the basis wave functions (top), the en-
ergies (middle) and radius (bottom) of the excited 0+ states as the
functions of the cutoff radius rcut . THSR results are taken from
Ref. [18].

energy means a better wave function for the bound states.
We see that all of the theoretical results are qualitatively
consistent with each other. In particular, REM and THSR
results agre reasonably for all positive-parity states which
include the compact shell-model-like ground band and highly
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FIG. 8. Electric monopole transition matrix element from the
ground state to the excited 0+ states obtained by the r2 constraint.

excited cluster states. As for the negative-parity states, REM
and RGM reasonably agree for the 1−

1 and 3−
1 states, and REM

additionally produces the 2−
1 , 3−

2 , and 4−
1 states, which are

also described by AMD [5,8] and FMD [7]. In short, REM
can describe all of the states reported by THSR and RGM
reasonably. It must be emphasized that not only the 0+ states
but all of the states shown in Fig. 9 were obtained from a
single ensemble set 1, which means that the EOM effectively
generates the basis wave functions.

Now, we discuss the energies and radii listed in Table I.
First, for the bound states (0+

1 and 2+
1 states), we see that

REM yields deeper binding energies than THSR and RGM.
This may be due to the limitation of the model space of the
THSR and RGM calculations. Namely, the THSR calculation
assumes the axially symmetric intrinsic state and RGM calcu-
lation limits the relative angular momentum between clusters
up to 2, while REM has no such assumptions. Second, the
REM and THSR results for the highly excited resonances,
in particular the 2+

4 and 4+
4 states, do not agree perfectly,

despite of the use of the same r2-constraint method. This
shows the difficulty in describing the broad resonances within
the bound-state approximation. In particular, since the radius
cannot be defined for resonances, we need other measure to
discuss the size of these broad resonances.
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2 , 5−

1 , and 5−
2 states are labeled according to the observed counterparts.
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TABLE II. Calculated and observed electric monopole and
isoscalar dipole transition matrix elements in the units of e fm2 and
fm3.

Transition REM THSR [11,18,23] RGM [2,3] EXPT [77]

0+
1 → 0+

2 6.4 6.3 6.7 5.4 ± 2
0+

1 → 0+
3 3.8 3.9

0+
1 → 0+

4 3.3 3.5
0+

2 → 0+
3 28 34

0+
2 → 0+

4 0.7 0.5
0+

1 → 1−
1 3.7

0+
2 → 1−

1 45

Finally, we discuss the characteristics of the excited 0+
and 1− states referring their electric monopole and isoscalar
dipole transition strengths. The transition matrix elements are
defined as

M(E0; 0+
m → 0+

n ) = 〈0+
n ||

A∑
i=1

r′2
i

1 + τzi

2
||0+

m〉 , (27)

M(IS1; 0+
m → 1−

n ) = 〈1−
n ||

A∑
i=1

r′3
i Y1(r̂′

i )||0+
m〉 , (28)

where r′
i denotes the single-particle coordinate measured from

the center of mass. The results are summarized in Table II.
Since the monopole transition operator is nothing but

the radius operator, the matrix element should be large
for the dilute gas-like states [78]. Indeed, it is well known
that the Hoyle state has the enhanced monopole transition
strength from the ground state because of its dilute gas-like
nature. The present calculation yields 6.4 e fm2 (1.5 WU),
which is consistent with the other cluster models but slightly
overestimates the observation. The monopole transition from
the ground state to the more dilute 0+

3 state is also large and
comparable with the Weisskopf unit (WU), but not as large as
that of the Hoyle state. The reason of the reduction is that the
0+

3 state is dominantly composed of the 4h̄ω configurations
which cannot be excited by the monopole operator (2h̄ω

excitation). However, it must be noted that the transition from
the Hoyle state to the 0+

3 state is greatly enhanced (6.2 WU).
From this result and from the analysis of the wave function,
it was concluded that the 0+

3 state is a 2h̄ω excited state built
on the Hoyle state [18,23]. In other words, it is the breathing
mode of the Hoyle state [24]. This relationship between the
ground, Hoyle, and 0+

3 states is schematically illustrated in
Fig. 10. On the contrary, the monopole transition between the
Hoyle state and the 0+

4 state is rather weak. This is due to the
structural mismatch between these states. In Ref. [23], it was
concluded that the α clusters are linearly aligned in the 0+

4
state (linear-chain state), which naturally reduces the overlap
with the Hoyle state.

A finding in the present study suggests that not only the 0+
3

state but also the 1−
1 state may be an excited state of the Hoyle

state. As discussed in Ref. [79], the 1− states with pronounced
clustering should have the strong isoscalar dipole transition
strength from the ground state. The present calculation yields

02
+

1.
5 

W
U

0.
7 

W
U

6.
2 

W
U

8.
8 

W
U

Hoyle state

from the Hoyle state

monopole and dipole
excitations

FIG. 10. Excitation modes of the Hoyle state are schematically
shown. Arrows show the monopole and dipole transitions.

M(IS1; 0+
1 → 1−

1 ) = 3.7 fm3, which is comparable to the
Weisskopf unit (0.7 WU). A similar strength was also ob-
tained by an AMD calculation [80]. Furthermore, note that
the isoscalar dipole transition between the Hoyle state and the
1−

1 state is extraordinary strong (8.8 WU). From this result,
we are tempted to conclude that the 1−

1 state is the 1h̄ω (or
3h̄ω) excitation of the Hoyle state. Indeed, the 1−

1 state has a
huge radius comparable to the 0+

3 state. It is also interesting
to note that the 1−

1 state is energetically very close to the 0+
3

state. This conjecture is also illustrated in Fig. 10.

IV. SUMMARY

In summary, we developed a theoretical model which
makes use of the classical EOM of the Gaussian centroids to
generate the ergodic ensemble of the basis wave functions.
The generated basis wave functions are superposed to diago-
nalize the Hamiltonian. Thus, the method named REM can be
regarded as a generator coordinate method which employs the
real time t as the generator coordinate.

As a benchmark of REM, we applied it to the 3α system
(12C) and found that the results are consistent with or even
better than the other cluster models. It was shown that, when
the propagation time is long enough, the energies and the
radii of the ground and many excited states converge and
are independent of the initial condition. As a result, REM
successfully described all of the states reported by THSR
and RGM. It must be emphasized that all of the states are
obtained from a single ensemble of the basis wave function,
which indicates that the EOM effectively generates the basis
wave functions. However, even if we apply the r2 constraint,
several excited states were not well converged because of the
contamination of the nonresonant wave function. A particular
case is the 0+

3 state which has broad width and is regarded
as the breathing mode of the Hoyle state. A more accurate
description of these states requires further development of the
method.

Based on the electric monopole and isoscalar dipole tran-
sition strengths, the characteristics of the excited 0+ and 1−
states are discussed. We confirmed that the properties of the
Hoyle state and the 0+

3 states are consistent with those dis-
cussed in the preceding studies. They have dilute structure and
the enhanced monopole transition strengths from the ground
state. The huge monopole transition strength between the
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Hoyle state and the 0+
3 state was also confirmed. In addition

to this, we found that the 1−
1 state has properties analogous

to those of the 0+
3 state. Namely, the 1−

1 state has dilute
structure and the enhanced dipole transition strengths from
the ground state. It also has the extraordinary large isoscalar
dipole strength from the Hoyle state. From these results,
we conjecture that the 1−

1 state can be also regarded as an
excitation mode of the Hoyle state. Although this conjecture
is based on only the transition strengths and the overlaps, a
more detailed quantitative discussion based on the reduced
width amplitudes, transition form factors, and occupation
probabilities will be made in our forthcoming presentations.
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