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Superheavy nuclei in a microscopic collective Hamiltonian approach: The impact
of beyond-mean-field correlations on ground state and fission properties
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The impact of beyond-mean-field effects on the ground state and fission properties of superheavy nuclei has
been investigated in a five-dimensional collective Hamiltonian based on covariant density functional theory. The
inclusion of dynamical correlations reduces the impact of the Z = 120 shell closure and induces substantial
collectivity for the majority of the Z = 120 nuclei which otherwise are spherical at the mean-field level (as seen
in the calculations with the PC-PK1 functional). Thus, they lead to a substantial convergence of the predictions of
the functionals DD-PC1 and PC-PK1 which are different at the mean-field level. On the contrary, the predictions
of these two functionals remain distinctly different for the N = 184 nuclei even when dynamical correlations are
included. These nuclei are mostly spherical (oblate) in the calculations with PC-PK1 (DD-PC1). Our calculations
for the first time reveal significant impact of dynamical correlations on the heights of inner fission barriers of
superheavy nuclei with soft potential energy surfaces, the minimum of which at the mean-field level is located
at spherical shape. These correlations affect the fission barriers of the nuclei, which are deformed in the ground
state at the mean-field level, to a lesser degree.
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I. INTRODUCTION

One of the most active subfields of low-energy nuclear
physics is the investigation of superheavy elements (SHE)
[1]. At present, the nuclear chart extends up to the element Og
with proton number Z = 118 [2]. However, the experimental
difficulties in the studies of SHEs at this extreme of the proton
number are enormous: the experiments lasting several months
typically provide only few events [1]. New facilities such as
Superheavy Element Factory in Dubna, Russia [3] will allow
to observe substantially more events at presently available Z
values and hopefully to extend the nuclear chart to higher Z
values.

In addition to experimental challenges, there are substan-
tial theoretical uncertainties related to the predictions of the
position of the center of the island of stability of superheavy
elements [4–7] and their fission properties [8,9]. Different
models locate this center at different particle numbers. For
example, the microscopic+macroscopic (MM) models put it
at Z = 114, N = 184 [4,10,11]. Most of the Skyrme energy
density functionals (SEDF) place it at Z = 126, N = 184
[5,6]. However, there are also some SEDFs which predict
large shell gap at Z = 120 [5].

Note that the number of these predictions was obtained
in the calculations restricted to spherical shape. The danger
of this restriction has recently been illustrated in the covari-
ant density functional theoretical (CDFT [12–14]) study of
Ref. [7] based on axial relativistic Hartree-Bogoliubov (RHB)
calculations. Earlier CDFT studies [5,6,15–17] restricted to

spherical shape almost always indicated Z = 120, N = 172
as the center of the island of stability of SHEs. However, the
inclusion of deformation has drastically changed this situa-
tion: it was found that the impact of the N = 172 spherical
shell gap on the structure of SHE is very limited. Similar to
nonrelativistic functionals, some covariant functionals predict
the important role played by the spherical N = 184 gap. For
these functionals (NL3* [18], DD-ME2 [19], and PC-PK1
[20]) there is a band of spherical nuclei along and near the
Z = 120 and N = 184 lines. However, for other functionals
(DD-PC1 [22] and DD-MEδ [21]) oblate shapes dominate at
and in the vicinity of these lines. Available experimental data
(which do not extend up to the Z = 120 and N = 184 lines)
are described with comparable accuracy in the calculations
with these functionals which does not allow to discriminate
between these predictions. Note that all these functionals are
globally tested [7,9,23] and only DD-MEδ is not recom-
mended for the nuclei beyond lead region based on the studies
of inner fission barriers [9] and octupole deformed nuclei [24].

The results obtained in Ref. [7] on the structure of the
ground states of superheavy nuclei could be further modified.
This is because the potential energy surfaces of many nuclei
along the Z = 120 and N = 184 lines are soft in quadrupole
deformation (see Figs. 3 and 4 of Ref. [7] and Fig. 1 in the
present manuscript). For such transitional nuclei the correla-
tions beyond mean field may substantially modify the physical
situation, for example, by creating deformed ground state
instead of spherical one at the mean-field level. However, this
issue has not been investigated before since the studies of
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FIG. 1. Potential energy surfaces (top panels), collective energy surfaces (CES) with zero-point-energy (ZPE) taken into account (middle
panels), and probability density distributions (in arbitrary units) in the β-γ plane for the 0+

1 states (bottom panels) of selected nuclei in Z = 120
isotopic chain. The results are obtained with PC-PK1 CEDF. The energy difference between two neighboring equipotential lines is equal to
0.5 MeV. The minima and saddles in top and middle panels are shown by circles and squares, respectively.

SHEs are almost always done on the mean-field level. Only
in Ref. [25] the beyond-mean-field effects have been taken
into account for the ground states of several SHE located in
the α-decay chains of the 298,300120 nuclei in the relativistic
calculations based on the DD-PC1 functional.

Another question of interest is the impact of dynamical
correlations on the fission barrier heights. So far the majority
of the fission barrier calculations have been performed at
the mean-field level (see Refs. [8,9,26–29] and references
therein). Substantial differences in the predictions of inner
fission barrier heights for SHE existing between different
nonrelativistic and relativistic models and between different
covariant energy density functionals in the CDFT calculations
are summarized in Figs. 12 and 10 of Ref. [9], respec-
tively. The CDFT predictions for the inner fission barrier
heights of SHE are located at the lower end of the range
of predictions of all considered models/functionals in these
figures.

The importance of dynamical correlations in triaxial cal-
culations has been studied only for few actinide [30–33]
and light superheavy [34] nuclei. However, the impact of
dynamical correlations on fission barriers of SHE has not been
studied in a relativistic framework. Contrary to the actinides
in which the ground state is prolate deformed, the situation for
superheavy nuclei in the vicinity of the Z = 120 and N = 184

lines is different since such nuclei have either spherical or
oblate deformation in the ground state and are transitional
in nature [7]. Considering significant impact of the fission
barriers on the stability of superheavy nuclei, it is necessary to
evaluate the impact of dynamical correlations on their heights.

The present manuscript aims at the investigation of the
impact of dynamical correlations on the ground state and
fission properties of superheavy nuclei along the Z = 120 iso-
topic chain (with N = 172 − 190), N = 174 (with Z = 108 −
124), and N = 184 (with Z = 112 − 122) isotonic chains.
The calculations are performed within five-dimensional col-
lective Hamiltonian (5DCH) approach [35–37] based on
CDFT which has been extremely successful in the description
of many physical phenomena [39–46].

They are carried out with two covariant energy den-
sity functionals (CEDFs), namely, PC-PK1 [20] and DD-
PC1 [22], representing two extremes of the predictions for
superheavy nuclei in the CDFT. PC-PK1 predicts the bands of
spherical nuclei along Z = 120 and N = 184 [7] suggesting
that the 304120 nucleus may be considered as doubly magic.
On the contrary, the nuclei along these lines and beyond are
oblate in the calculations with DD-PC1 [7]. Note that these
two functionals provide the best description of experimental
data in actinides and superheavy nuclei among five employed
in Ref. [7] state-of-the-art CEDFs.
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In Sec. II we present a short outline of theoretical frame-
work for the 5DCH approach based on CDFT. The systematics
of collective potential energy surfaces, deformations, low-
energy spectra, and fission barriers are discussed in Sec. III.
Section IV summarizes the principal results.

II. THEORETICAL FRAMEWORK

The 5DCH that describes the nuclear excitations of
quadrupole vibration and rotation is expressed in terms of
two deformation parameters β and γ and three Euler angles
(φ, θ, ψ ) ≡ 	 [35–37],

Ĥcoll(β, γ ,	) = T̂vib(β, γ ) + T̂rot (β, γ ,	) + Vcoll(β, γ ).

(1)

The three terms in Ĥcoll(β, γ ,	) are the vibrational kinetic
energy
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the rotational kinetic energy

T̂rot = 1

2

3∑
k=1

Ĵ2
k

Ik
, (3)

and the collective potential Vcoll, respectively. Here, Ĵk denote
the components of the total angular momentum in the body-
fixed frame, and both the mass parameters Bββ , Bβγ , Bγ γ

and the moments of inertia Ik depend on the quadrupole
deformation variables β and γ . Two additional quantities that
appear in the T̂vib term, r = B1B2B3 and w = BββBγ γ − B2

βγ ,
determine the volume element in the collective space.

The eigenvalue problem of the Hamiltonian Eq. (1) is
solved using an expansion of eigenfunctions in terms of a
complete set of basis functions that depend on five collective
coordinates β, γ and 	(φ, θ, ψ ) [36]. The eigenfunctions of
the collective Hamiltonian read as

�IM
α (β, γ ,	) =

∑
K∈�I

ψ I
αK (β, γ )I

MK (	), (4)

For a given collective state, the probability density distribution
in the (β, γ ) plane is defined as

ρIα (β, γ ) =
∑

K∈�I

∣∣ψ I
αK (β, γ )

∣∣2
β3, (5)

with the summation over the allowed set of values of the
projection K of the angular momentum I on the body-fixed
symmetry axis, and with the normalization∫ ∞

0
βdβ

∫ 2π

0
ρIα (β, γ )| sin 3γ |dγ = 1. (6)

The reduced E2 transition probabilities are calculated by

B(E2; αI → α′I ′) =
∑

μ,M ′,M

|〈α′I ′M ′|M̂(E2, μ)|αIM〉|2

= 1

2I + 1
|〈α′I ′||M̂(E2)||αI〉|2, (7)

where M̂(E2, μ) is the electric quadrupole operator which can
be expressed in the following form [38]:

M̂(E2, μ) = D2
μ0qp
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2

(
D2
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(8)
where

qp
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p

epr2
pY2κ

〉
(9)

are the quadrupole moments for protons at the deformation
point (β, γ ) calculated in a fully self-consistent manner, the
indices k equal to 0 and 2 and ep are the bare charges.

In the framework of 5DCH-CDFT, the collective parame-
ters of 5DCH, including the mass parameters Bββ , Bβγ , Bγ γ ,
the moments of inertia Ik , and the collective potential Vcoll,
are all determined microscopically from constrained triaxial
CDFT calculations. The moments of inertia are calculated
with Inglis-Belyaev formula [47,48] and the mass parameters
with the cranking approximation [36,49]. The collective po-
tential Vcoll is calculated by

Vcoll(β, γ ) = Etot (β, γ ) − �Vvib(β, γ ) − �Vrot (β, γ ), (10)

where Etot (β, γ ) is the mean field total energy. �Vvib(β, γ )
and �Vrot (β, γ ) are zero-point-energy (ZPE) values of vibra-
tional and rotational motions. The collective ZPE corresponds
to a superposition of zero-point motion of individual nucleons
in the single-nucleon potential. Here, the ZPE corrections are
calculated in the cranking approximation [36,49].

The energy surfaces Etot (β, γ ) defined as a function of
deformation parameters β and γ are described as poten-
tial energy surfaces (PES). In the present manuscript, they
are extracted from the triaxial relativistic mean field +BCS
(RMF+BCS) calculations. The energy surfaces Vcoll(β, γ ) are
labeled here as collective energy surfaces (CES); in addition
to Etot (β, γ ) they contain zero-point-energies of vibrational
and rotational motion. The CES enter into the action inte-
gral describing the fission dynamics (see Refs. [29,50] and
Eq. (13) and its discussion below). Thus, the calculations of
fission fragment distributions, spontaneous fission half-lives
etc depend sensitively on CES (see, for example, Refs. [51,52]
and references quoted therein). In addition, the height of the
fission barrier is defined as an energy difference between the
saddle point and minimum of CES, namely, as Vcoll(saddle) −
Vcoll(min) (see, for example, Refs. [53–55]). Note that differ-
ent approaches exist for the calculations of ZPE contributions
to CES and in a number of publications zero-point-energies
of vibrational motion are neglected since their variation with
deformation is rather modest (see, for example, Ref. [54]).
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III. RESULTS AND DISCUSSION

The starting point is triaxial RMF+BCS calculations.
These calculations are performed imposing constraints on the
axial Q20 and triaxial Q22 mass quadrupole moments. Note,
that full-scale calculations are performed on the grid that
covers the quadrupole deformation range β2 = 0–0.6 in steps
of �β2 = 0.05 and γ deformation range γ = 0◦–60◦ in steps
of �γ = 6◦.

To avoid the uncertainties connected with the definition of
the size of the pairing window [56], we use the separable form
of the finite range Gogny pairing interaction introduced by
Tian et al. in Ref. [57] which, in addition, is multiplied by
scaling factor f (see Eq. (25) in Ref. [23]). The systematic
investigation of pairing properties in the actinides [23,58]
indicates that scaling factor f = 1.0 is appropriate for the rel-
ativistic Hartree-Bogoliubov (RHB) description of actinides
and superheavy nuclei and different physical observables in
these mass regions are well reproduced with such a factor
[7,16,23,24,58]. However, the experience shows that this fac-
tor has to be larger in the RMF+BCS framework as compared
with the RHB one [59]. Thus, for the RMF+BCS framework
this factor has been defined by matching the gain of binding
due to proton and neutron pairing (as compared with unpaired
solution) obtained in the axial RHB calculations with fν =
fπ = 1.0 for the −0.6 < β2 < 0.6 deformation range of the
308120 nucleus. This led to the following neutron and proton
scaling factors for the RMF+BCS calculations: fν = 1.066
and fπ = 1.052 for the DD-PC1 functional and fν = 1.073
and fπ = 1.058 for the PC-PK1 CEDF.

The truncation of the basis is performed in such a way
that all states belonging to the major shells up to NF = 18
fermionic shells are taken into account for the Dirac spinors.
This truncation of the basis provides excellent numerical ac-
curacy for the ground state properties and sufficient numerical
accuracy for the changes of fission barrier heights due to the
correlations beyond mean field. This basis is also sufficient for
the calculation of the E (2+

1 ) energies and B(E2; 2+
1 → 0+

1 )
transition probabilities. This was verified by comparing the
results of the 5DCH calculations with NF = 18 and NF = 20
for a few nuclei; the NF = 18 and NF = 20 results for these
observables differ marginally and cannot be discriminated on
the plots presented in Figs. 3 and 4 below.

However, numerically accurate calculations of absolute
values of fission barrier heights in this mass region require
the fermionic basis with NF = 20 (see Refs. [9,28]). How-
ever, the 5DCH calculations in such a basis are prohibitively
expensive and they have to be performed at all grid points.
To overcome this problem we use the fact that the dynamical
contributions to fission barrier height, defined as

EFB
dyn = [�Vvib(β, γ ) + �Vrot (β, γ )]saddle

− [�Vvib(β, γ ) + �Vrot (β, γ )]ground state, (11)

calculated with NF = 18 and NF = 20 differ by less than
20 keV. This clearly indicates that numerical errors in the
fission barriers are dominated by the truncation errors in the
mean-field part. This result is born in few detailed full-scale
calculations.

Note that the topologies1 of potential energy surfaces
(PES) [collective energy surfaces (CES)] are very similar in
the calculations with NF = 18 and NF = 20 with the deforma-
tions of the ground states and saddles being almost indepen-
dent of NF . This allows simplified approach discussed below
to the calculation of the fission barriers in the RMF+BCS
and RMF+BCS+ZPE calculations. First, based on PES and
CES obtained in the calculations with NF = 18, we define
the regions close to the saddle of fission barrier and ground
state. Second, for these regions, the RMF+BCS calculations
are repeated with NF = 20 and RMF+BCS fission barrier
EFB

RMF+BCS(NF = 20) is defined for NF = 20. Such procedure
has been used earlier in Ref. [9]. Third, the fission barrier in
CES is defined as

EFB
RMF+BCS+ZPE(NF = 20)

= EFB
RMF+BCS+ZPE(NF = 18) + [EFB

RMF+BCS(NF = 20)

− EFB
RMF+BCS(NF = 18)]. (12)

This procedure saves a lot of computational time since the
NF = 20 calculations are performed only on a limited part of
the grid space and they are performed only at the mean-field
level.

The potential energy surfaces for the Z = 120 isotopes
with N = 172, 178, 184, and 190 obtained in the RMF+BCS
calculations with the PC-PK1 functional are shown in Fig. 1.
The minima are located at spherical shape for N = 172,
178, and 184 and only the 310120 nucleus has an oblate
ground state with β2 ≈ −0.4. Note that PES are soft in
quadrupole deformation in the vicinity of the minima. As a
result, the inclusion of ZPE leads to substantial modifications
in a number of nuclei. For example, the N = 178 nucleus is
no longer spherical in its ground state since the minimum
in collective energy surface is located at β2 ≈ −0.25 (see
Fig. 1). In addition, the collective energy surfaces are very
soft in quadrupole deformation. As a consequence, the wave
function of the 292120 nucleus is localized at β2 ≈ −0.15
despite the fact the minimum in collective energy is located at
spherical shape. Thus, contrary to previous mean-field studies
this nucleus cannot be considered in the 5DCH calculations as
“doubly magic” spherical nucleus.

Figure 2 summarizes the results for the deformations of
the minima in potential and collective energy surfaces for the
Z = 120 isotopic and N = 174, 184 isotonic chains obtained
in the RMF+BCS and RMF+BCS+ZPE calculations with
the PC-PK1 and DD-PC1 CEDFs. These surfaces as well as
probability densities distributions for the 0+

1 collective wave
functions are presented in Figs. 1–18 of the Supplemental
Material [61]. One can see substantial changes in equilibrium
deformation of the nuclei located in transitional regions when
the correlations beyond mean field are included. For example,
the transition from prolate to oblate shape is triggered in the

1The topology of potential energy surface means the general shape
of multidimensional potential energy surface in terms of minima
and saddles and general connectivity that characterize such a surface
[60].
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FIG. 2. The quadrupole deformations of the minima in poten-
tial and collective energy surfaces obtained in the RMF+BCS and
RMF+BCS+ZPE calculations, respectively. The results obtained
with DD-PC1 and PC-PK1 CEDFs are presented for the N = 174
(a) and N = 184 (c) isotonic chains as well as for the Z = 120
isotopic chain (b).

N = 174 nuclei with Z = 108 and 110 when ZPE are included
in the calculations with DD-PC1 [Fig. 2(a)]. ZPE also triggers
the transition from spherical shape to deformed one in the N =
174 nuclei with Z = 118 and 120 in the calculations with PC-
PK1. The modifications are smaller in the N = 184 isotonic
chain [Fig. 2(c)]; the deformation of the energy minimum is
switched from highly deformed oblate to spherical one only in
the Z = 114 nucleus in the calculations with DD-PC1 when
ZPE are added. Otherwise, the DD-PC1 and PC-PK1 CEDF
give distinctly different predictions for the deformations of the
CES minima in the N = 184 nuclei. The former functional
predicts mostly oblate shapes in the ground state, while the
latter one only spherical shapes. The deformations of the
Z = 120 nuclei are very weakly affected by the ZPE’s in the
calculations with DD-PC1 (Fig. 2). On the contrary, they are
drastically affected by ZPE in the case of PC-PK1 CEDF; the
deformations of the minima of the N = 174–180 and N =
188 isotopes change from spherical to oblate ones when ZPE
is added. While the results of the RMF+BCS calculations for
Z = 120 nuclei are drastically different for the PC-PK1 and
DD-PC1, they mostly converge to the same deformed oblate
solution when ZPE are added. This points to reduced role
of the Z = 120 proton shell gap which in many earlier RMF
studies was interpreted as “magic” one.

Further information on the collectivity of the states of
interest can be obtained by analyzing E (2+

1 ) energies (Fig. 3)
and the B(E2; 2+

1 → 0+
1 ) transition rates (Fig. 4). The excita-

tion energies and transition rates are strongly affected by the
quadrupole deformations of the respective minima and also by
the dynamics of large shape fluctuations around equilibrium
shape which strongly depends on the topology of PES. These
properties can be reasonably well described in the 5DCH
calculations as illustrated by the studies of the Sn isotopes in
Ref. [42].

FIG. 3. Excitation energies of the 2+
1 states a function of proton

number in the N = 174 and 184 isotonic chains and as a function of
neutron number in the Z = 120 isotopic chain.

With the exception of the Z = 118 and 120 nuclei, the
results for the E (2+

1 ) values are very similar for the N = 174
isotones in the calculations with PC-PK1 and DD-PC1 CEDFs
[Fig. 3(a)]. Substantial difference between the B(E2; 2+

1 →
0+

1 ) values obtained with these two functionals is observed
only at Z = 120 [Fig. 4(a)]. Note that in this isotonic chain
spherical shapes appear on the mean-field level only for the
Z = 118 and 120 nuclei in PC-PK1 CEDF (Fig. 2); this is a
reason for some weakening of the collectivity in these nuclei
in the 5DCH calculations with PC-PK1 as compared with the
ones based on DD-PC1 CEDF.

In the Z = 120 isotopic chain, the N = 180–184 nuclei
are significantly less collective in the calculations with CEDF
PC-PK1 as compared with DD-PC1 [Figs. 3(b) and 4(b)].
Above N = 186, there is no difference between the DD-PC1
and PC-PK1 results. Below N = 178, the nuclei are less

FIG. 4. The B(E2; 2+
1 → 0+

1 ) values as a function of proton
number in the N = 174 and 184 isotonic chains and as a function
of neutron number in the Z = 120 isotopic chain.
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collective in the calculations with PC-PK1 but the difference
is not that significant as in the N = 180–184 nuclei. All
these features closely correlate with the presence/absence of
spherical nuclei along the Z = 120 chain in the RMF+BCS
calculations with PC-PK1/DD-PC1 functionals and with the
modifications of PES induced by dynamical correlations [see
Fig. 2(b) and Fig. 1].

The results for the N = 184 nuclei with Z = 112–118
obtained with the DD-PC1 and PC-PK1 functionals are dis-
tinctly different [Figs. 3(c) and 4(c)]. Indeed, the combination
of E (2+

1 ) ≈ 1.0 MeV (which is substantially higher than the
E (2+

1 ) values obtained for the N = 174 and Z = 120 chains)
and low B(E2; 2+

1 → 0+
1 ) values obtained in the 5DCH calcu-

lations with PC-PK1 strongly suggests that the Z = 112–118,
N = 184 nuclei may be considered as truly spherical. The
Z = 120, N = 184 nucleus is transitional in nature with small
E (2+

1 ) and B(E2; 2+
1 → 0+

1 ) values and the Z = 122, N =
184 nucleus is collective in ground state in the calculations
with PC-PK1. However, all N = 184 isotones are collective
in their ground states in the calculations with DD-PC1.

It is interesting to investigate the impact of ZPE on the
E (2+

1 ) energies and B(E2; 2+
1 → 0+

1 ) transition rates. This
is done by neglecting ZPE in the 5DCH calculations; such
results are shown by dashed lines with open symbols in Figs. 3
and 4.

The neglect of ZPE typically leads to the increase of
the E (2+

1 ) energies and there is a correlation between the
magnitude of this increase and the deformation of the system.
This increase is either small or even nonexistent in the results
obtained with the DD-PC1 functional (see Fig. 3); note that
the absolute majority of the calculated nuclei have nonzero
β deformations for the ground states in the RMF+BCS and
5DCH calculations with this functional (see Fig. 2). These
deformations are similar or have similar magnitude for the
N = 174 isotopic chain in the calculations with DD-PC1
and PC-PK1 [see Fig. 2(a)]. As a result, the increase in the
E (2+

1 ) energies due to neglect of ZPE is comparable in both
functionals. On the contrary, in the calculations with PC-PK1
the increases in the E (2+

1 ) energies due to neglect of ZPE
are larger in the N = 184 isotonic chain [see Fig. 3(c)] and
they are especially large in the Z = 120 isotopic chain [see
Fig. 3(b)]. In the former chain, the ground states of the nuclei
have β = 0 both in the RMF+BCS and RMF+BCS+ZPE
calculations [see Fig. 2(c)]. In the latter chain, with exception
of the N = 190 nucleus, in the ground states the β deforma-
tion is zero in the RMF+BCS calculations and the inclusion of
ZPE triggers the transition to oblate deformation in the nuclei
with N = 174–180 and N = 188 [see Fig. 2(b)].

In general, the neglect of ZPE leads to the decrease of the
B(E2; 2+

1 → 0+
1 ) transition rates (see Fig. 4). The only excep-

tions are the N = 184 nuclei with Z = 112–118 [see Fig. 4(c)]
and Z = 120 nuclei with N = 180, 182 [see Fig. 4(b)] in
the calculations with PC-PK1. However, these nuclei are
characterized by very low values of B(E2; 2+

1 → 0+
1 ). Note

also that the decrease of the B(E2; 2+
1 → 0+

1 ) transition rates
due to the neglect of ZPE depends on the nucleus and on
the functional. Note that no direct correlations between these
decreases in the B(E2; 2+

1 → 0+
1 ) values and the topologies of

PES and/or CES of the nuclei under consideration have been
found.

Figure 5 shows the impact of dynamical correlations on
the heights of inner fission barriers of the nuclei under con-
sideration. In the mean-field calculations, the height of fission
barrier is defined as the energy difference between the saddle
point and minimum of PES. In the beyond-mean-field calcu-
lations, this energy difference is extracted from the energies
of saddle and minimum of collective energy surface: This is
consistent with the definition of fission barrier height used
before in beyond-mean-field approaches based on Gogny and
Skyrme energy density functionals [53–55].

The changes introduced in the fission barrier heights due
to dynamical correlations are summarized in Fig. 6. The
calculated heights obtained in the RMF+BCS calculations are
in general close to the ones obtained in the RHB calculations
of Ref. [9]; some differences are due to the use of different
frameworks (RMF+BCS in the present manuscript and RHB
in Ref. [9]) and the differences in the way the pairing inter-
action has been defined in both manuscripts. Note that the
height of fission barrier extremely sensitively depends on the
strengths of pairing interaction (see Ref. [56] and references
quoted therein).

One can see that in the calculations with the DD-PC1
functional, the fission barriers obtained in the calculations
with and without dynamical correlations are close to each
other; the modifications of the fission barrier height by the
dynamical correlations are typically in the range of ±0.5 MeV
(see Fig. 6). The only exceptions are the (Z = 116, N =
174) [Fig. 6(a)], (Z = 120, N = 186) [Fig. 6(b)], and (Z =
116, N = 184) [Fig. 6(c)] nuclei for which the modifications
of inner fission barrier due to dynamical correlations are close
to or exceed 1 MeV. Note that the absolute majority of the
nuclei under consideration are deformed in the ground states
in the calculations at and beyond-mean-field levels with DD-
PC1 functional (see Fig. 2 and Figs. 4, 5, 10, 11, 16, and 17 in
the Supplemental Material [61]).

Similar features are also seen for the N = 174 isotones in
the calculations with the PC-PK1 functional [see Fig. 5(d)].
The majority of the nuclei in the N = 174 chain are deformed
both at and beyond-mean-field levels (see Fig. 6(a) and Figs. 7
and 8 in the Supplemental Material [61]) and only Z = 118
and 120 nuclei are spherical in the mean-field calculations.
Only for the latter two nuclei the modifications of the fission
barrier height by dynamical correlations are close to or exceed
1 MeV [see Fig. 6(a)].

On the contrary, substantial changes in fission barrier
heights induced by dynamical correlations are seen in the nu-
clei which are spherical in the ground states in the RMF+BCS
calculations with PC-PK1. These are the Z = 118, 120 nuclei
in the N = 174 isotopic chain, the N = 172–182 nuclei in the
Z = 120 chain and the Z = 112–116 nuclei in the N = 184
chain. Dynamical correlations lead to a substantial increase
(decrease) of fission barriers in the N = 184 isotones with
Z = 112–116 (in the Z = 120 isotopes with N = 172–182).
However, they have very limited impact of the fission bar-
riers of spherical nuclei located in close vicinity of the
Z = 120, N = 184 nucleus; these are nuclei which have the
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FIG. 5. The heights of inner fission barriers in the mean-field calculations (labeled as “RMF+BCS”) and in the calculations with dynamical
correlations included (labeled as “RMF+BCS+ZPE”).

features of spherical nucleus both at and beyond-mean-field
levels.

To better understand the origin of these changes in the
fission barrier heights we plot dynamical correlation energies
for the ground states and the saddles of inner fission barriers
in Fig. 7. Several interesting features emerge from the analysis
of this figure. First, the variation of dynamical correlation
energies with neutron number is rather smooth at the saddles
of inner fission barriers. Moreover, these energies are around
of 5 MeV in all nuclei under study. On the contrary, dynamical
correlation energies for the ground states typically show much
larger fluctuations as a function of neutron number; these

FIG. 6. The same as Fig. 2 but for the impact of dynamical
correlations on the height of inner fission barrier. Negative (posi-
tive) value of EB(RMF+BCS)-EB(RMF+BCS+ZPE) means higher
(lower) fission barrier in the calculations with dynamical correlations
included.

fluctuations are especially pronounced for the chains of the
nuclei which are calculated to be spherical at the mean-field
level. Second, these dynamical correlation energies are very
similar at the ground state and the saddle of inner fission
barrier in deformed nuclei [see Figs. 7(a)–7(d)]. As a con-
sequence, the impact of dynamical correlations on the fission
barriers of deformed nuclei is limited. However, they are quite
different in the nuclei which have spherical ground states in
the mean-field calculations. This feature explains observed
increase of the importance of dynamical correlations for the
calculation of inner fission barrier of SHE with soft PES the
minimum of which is located at spherical shape.

It is also interesting to look on potential impact of the
ground-state energy on the description of some fission pro-
cesses. For example, the calculation of spontaneous fission
half lives τSF depends on the energy E of collective ground
state (see Ref. [8]) since it enters into the action integral S,
corresponding to trajectory between two points a and b in
q-space (collective coordinate space),

S(a, b, E ) =
∫ s

0

√
2Bs[q(s′)]{E − V [q(s′)]}ds′, (13)

where the trajectory length counts from zero at a to s at b (see
Sec. 5.1.3. in Ref. [50]). In many applications, the tunneling
energy E (which is also the ground-state energy of the nucleus
before fission) is either approximated by E0 = 0.5 MeV (see
Refs. [54,62–65]) or defined from WKB quantization rules
(see Ref. [8]). In the latter case, this energy is extracted from
the condition that V (q) = E0 at classical turning points.

On the contrary, one can take a more microscopic approach
and associate tunneling energy E with the energy of collective
ground state defined either in generator coordinate method
(GCM) or in 5DCH. To our knowledge, this has been done so
far only in Ref. [66] in which the collective ground-state en-
ergy is defined from GCM calculations; these calculations are
based on Skyrme energy density functional but are restricted
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FIG. 7. Dynamical correlations energies at the ground states and the saddles of inner fission barriers of the nuclei under study.

to axial shape. As discussed in Ref. [8], the microscopic
values of tunneling energies differ from approximate ones. In
a similar fashion, one can associate the tunneling energy E
with the energy E (0+

1 ) of the ground state obtained in 5DCH.
The E (0+

1 ) energies, shown in bottom panels of Fig. 8, deviate
substantially in many cases both from E0 = 0.5 MeV and
from the ground state energies defined by means of the WKB
quantization rules (which are displayed in Fig. 4 of Ref. [8]).

The differences between these values also substantially de-
pend on proton and neutron numbers.

These differences in the values of tunneling energy E are
expected to have a profound effect on spontaneous fission half
lives τSF. Although the calculation of τSF is beyond the scope
of the present manuscript, the comparison of Vcoll(saddle) −
E (0+

1 ) and Vcoll(saddle) − Vcoll(min) allows to estimate the
major trends. The difference Vcoll(saddle) − E (0+

1 ) defines the

FIG. 8. The energy difference Vcoll(saddle) − Vcoll(min) between the saddle point and the minimum of collective energy surface compared
with the energy difference Vcoll − E (0+

1 ). The energy E (0+
1 ) − Vcoll(min) (shown in bottom panels) is the ground-state energy (relatively to the

energy of the minimum of CES) in the 5DCH calculations.
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maximum variation of the (E − V (q)) difference in the action
integral of Eq. (13). It is lower than the fission barrier height
Vcoll(saddle) − Vcoll(min) typically by more than 0.5 MeV. In
many cases this difference reaches few MeV. All this suggest
that the approximation of tunneling energy by E0 = 0.5 MeV
(as done in many applications) is highly unreliable. The
present results suggest that the use of E (0+

1 ) (as defined by
5DCH) for the energy of collective ground state will result
in a substantial reduction of spontaneous fission half-lives as
compared with estimates based on E = E0.

The magnitude of the E (0+
1 ) with respect of the minimum

of the collective energy surface [the E (0+
1 ) − Vcoll(min) quan-

tity in Fig. 8] depends on the softness of collective energy
surface in the vicinity of spherical/normal-deformed mini-
mum. The soft (stiff) CES leads to low (high) values of the
E (0+

1 ) − Vcoll(min) quantity. This dependence is especially
pronounced in the N = 184 isotonic chain [see Fig. 8(h)]. The
CES’s of these isotopes are soft in the vicinity of spherical
minimum at Z = 112 and oblate minimum at Z = 114–122
in the DD-PC1 functional (see Fig. 17 in the Supplemen-
tal Material [61]) and this leads to E (0+

1 ) − Vcoll(min) ≈
1.0 MeV. On the contrary, the CES’s are stiffer in the vicinity
of spherical minimum in the PC-PK1 functional with their
stiffness decreasing with increasing Z (see Fig. 14 in the
Supplemental Material [61]) and this leads to substantially
higher E (0+

1 ) − Vcoll(min) values which decrease with in-
creasing Z [see Fig. 8(h)]. Similar correlations between the
softness of CES in the vicinity of the minimum under con-
sideration and the E (0+

1 ) − Vcoll(min) values can be found
in the Z = 120 isotopic chain (compare Figs. 2 and 5 in the
Supplemental Material [61] with Fig. 8(i) in the manuscript)
and N = 174 isotonic chain [compare Figs. 8 and 11 in the
Supplemental Material [61] with Fig. 8(g)].

IV. SUMMARY

In conclusion, the impact of beyond-mean-field effects
on the ground state and fission properties of superheavy
nuclei has been investigated in five-dimensional collective
Hamiltonian. We focus here on two functionals (DD-PC1 and
PC-PK1) which give distinctly different predictions along the

Z = 120 and N = 184 lines at the mean-field level. For the
first time it is shown that the inclusion of dynamical corre-
lations brings the predictions of these two functionals closer
for nuclei along the Z = 120 line. Only few nuclei around
N = 184 remain spherical in the calculations with PC-PK1;
the rest of nuclei possess significant collectivity. This stresses
again that the impact of spherical shell closure at Z = 120
is quite limited. On the contrary, the predictions of these
two functionals remain distinctly different for the N = 184
nuclei even when dynamical correlations are included. These
nuclei are mostly spherical (oblate) in the calculations with
PC-PK1 (DD-PC1). The impact of dynamical correlations on
the height of inner fission barrier has been investigated. It
is typically moderate (significant) when the ground state is
deformed (spherical) at the mean-field level. This result for the
first time shows the importance of the inclusion of dynamical
correlations for the calculation of inner fission barriers of
the superheavy nuclei with soft potential energy surfaces the
minimum of which at mean-field level is located at spherical
shape.

It is important to keep in mind that potential energy sur-
faces of many superheavy nuclei are soft also in nonrelativistic
theories (see, for example, Refs. [62,67,68]). It is reasonable
to expect that similar to this study the correlations beyond
mean field could have a substantial impact on their ground
state and fission properties and potentially on the localization
and the properties of predicted islands of stability of super-
heavy elements.
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[25] V. Prassa, T. Nikšić, G. A. Lalazissis, and D. Vretenar, Phys.
Rev. C 86, 024317 (2012).

[26] P. Möller, A. J. Sierk, T. Ichikawa, A. Iwamoto, R. Bengtsson,
H. Uhrenholt, and S. Åberg, Phys. Rev. C 79, 064304 (2009).

[27] H. Abusara, A. V. Afanasjev, and P. Ring, Phys. Rev. C 82,
044303 (2010).

[28] H. Abusara, A. V. Afanasjev, and P. Ring, Phys. Rev. C 85,
024314 (2012).

[29] N. Schunck and L. M. Robledo, Rep. Prog. Phys. 79, 116301
(2016).

[30] J. Sadhukhan, J. Dobaczweski, W. Nazarewicz, J. A. Sheikh,
and A. Baran, Phys. Rev. C 90, 061304(R) (2014).
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