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Unified description of pairing and quarteting correlations within the particle-hole-boson approach
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2Faculty of Physics, University of Bucharest, 405 Atomiştilor, POB MG-11, RO-077125 Bucharest-Măgurele, Romania
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We study the description of single-species and isovector pairing correlations in the framework of the
projected-BCS (PBCS) and the quartet condensation model (QCM) from a particle-hole perspective, and we
introduce the representation of the QCM quartet condensate state in terms of particle-hole excitations with
respect to the Hartree-Fock state. We also present a new bosonic approximation for both PBCS and QCM. In
each case, the starting point is the reformulation of the pair and quartet condensate states in terms of particle-hole
excitations with respect to the Hartree-Fock state. The main simplification of our approach is the assumption
that the pair operators corresponding to both particle and hole states obey bosonic commutation relations. This
simplifies tremendously the computations and allows for an analytic derivation of the averaged Hamiltonian on
the condensate state as a function of the mixing amplitudes. We study both the pure bosonic approach and the
renormalized version and compare the particle-hole bosonic version to the naive prescription of applying the
boson approximation directly to the original condensate state. We compare the fermionic and the renormalized
particle-hole bosonic approaches in the case of a picket-fence model of doubly degenerate states and in a realistic
shell-model space with an effective interaction for the N = Z nuclei above 100Sn.
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I. INTRODUCTION

The α-cluster model of the nucleus was proposed in order
to explain the relative stability of 4n-light nuclei [1,2]. The
main theoretical difficulty is connected to strong antisym-
metrization effects between nucleons entering α-like struc-
tures. Various microscopic α-clustering models were pro-
posed to account for it [3–11]. At the same time, a simplified
version considering proton and neutron pairs within the boson
approximation was successful in explaining the even-odd pair
staggering of binding energies [12]. In medium and heavy
nuclei, the α clustering can experimentally be related to the α-
decay phenomenon [13]. It became clear that an α-clustering
component was necessary in addition to the standard single-
particle basis in order to describe the absolute value of the
α-decay width [14,15]. This can be explained by the fact that
α particles can appear only at relative low nuclear densities
[16], a situation which may be realized on the nuclear surface
of α-decaying nuclei [17].

This may be also the case for special configurations, such
as the Hoyle state in 12C, which may be seen as a loosely
bound agglomerate of three α particles condensed as bosons in
the 0S orbit of their own cluster mean field. The understanding
of the dynamics of α clusters in such situations was greatly
improved by the recent Tohaski–Horiuchi–Schuck–Röpke ap-
proach [18], which also triggered a significant amount of new
interest in the field; for a recent review, see, e.g., Ref. [19]. A
bosonic-type condensation is, however, not perfectly realized
for clustered finite fermion systems as generally there are
significant residual manifestations of the Pauli exclusion prin-

ciple (e.g., the generic picture of a dilute gaslike α-particle
structure of the Hoyle state is accurate only to about 70%–
80% as evidenced by a variety of other treatments [20–23]).
Nevertheless, an attractive feature of the above mentioned
approach is that it exhibits the two opposite limits, namely,
that of a pure Slater determinant and the other in which “the
α particles are so far apart from one another that the Pauli
principle can be neglected leading to a pure product state of α

particles, i.e., a condensate” [19].
Also recently, the simple quartet condensation model

(QCM) was proposed for the study of isovector pairing and
quarteting correlations in N = Z nuclei [24,25] and was
further developed in Refs. [26–31] to the case of isoscalar
pairing and N > Z nuclei. More general microscopic quartet
models for a shell-model basis with an effective Hamiltonian
were also recently developed [32–37]. In the quarteting-type
approaches, the basic building blocks are not the Cooper pairs
anymore but four-body structures composed of two neutrons
and two protons coupled to the isospin T = 0 and to the
angular momentum J = 0, denoted “α-like quartets.” The
QCM approach was proven to be a very precise tool for
the description of the amount of correlations present in the
ground state of N = Z nuclei. The antisymmetrization effects
are significant in these configurations, and thus the realization
of an α-condensation picture, in the sense mentioned above,
is still an open question. Moreover, studies yet to be published
[38] interestingly indicate the presence of “long-range corre-
lations of condensate type” deduced from the behavior of the
eigenvalues of the four-body density matrix.
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FIG. 1. The linear behavior of the (a) normalized PBCS and (b) QCM pair mixing amplitudes for hole states xa (circles) and inverses of
pair mixing amplitudes for particle states 1/xk (squares) for a picket-fence model of doubly degenerate levels εk = k MeV, k = 0, 1, . . . , 19
for a coupling constant G = 0.5 MeV. The linear fit for each set of amplitudes is shown with dashed lines.

Having said this, let us specify that, in this paper, we will
use the terms “pair condensate” and “quartet condensate” to
denote the specific projected-BCS (PBCS) and QCM trial
states of Eqs. (2) and (10) also due to their structural sim-
ilarity. Anyway, we should keep in mind that an actual α

condensate appears only at low densities as opposed to the
usual pair condensate.

It is noteworthy that there are inherent difficulties in de-
scribing even the simpler pairing correlations, which have
led to significant efforts dedicated to formulate approximate
descriptions, including random-phase approximation [39] and
coupled clusters methods [40–42]. Recently, an improved
approximate treatment of pairing correlations has been devel-
oped [43] in which the starting point is the reformulation of
the PBCS condensate in the particle-hole basis. Particle-hole
treatments have also been recently analyzed in the case of
arbitrary generalized seniority cases [44].

In the present paper, we take the opportunity of generaliz-
ing these ideas to the more complicated quartet correlations.
We will argue that the particle-hole description is natural for
both PBCS and QCM models as can be seen from the behavior
of the mixing amplitudes solutions (see Fig. 1 above). We
are thus motivated to find the representation of the QCM
quartet condensate state in terms of particle-hole excitations
with respect to the Hartree-Fock state [see Eqs. (14) and (15)
below].

We also introduce a new approximate hybrid fermionic-
bosonic approach, which we will refer to as the particle-
hole bosons approach, applicable to both pairing and quar-
teting cases for the study of ground-state correlations. In
a first step, this approach requires the reformulation of the
condensate state with respect to the correlated Hartree-Fock
vacuum as opposed to the empty vacuum state |0〉. This
ensures that a significant amount of fermionic correlations
are already accounted for if we pass to bosonic degrees of
freedom but keep the same structure of the trial state. As it
turns out, if we consider as a second step the simplest map-
ping of the individual pair operators to bosons, the ground-
state correlations in both pairing and quarteting cases are
reproduced rather well as compared to the fully fermionic
setting.

Although the basic ideas of treating quartet correlations
in a boson formalism (see, e.g., Refs. [12,45–48]) and con-
sidering the particle-hole excitations as bosons are certainly
not new (see, e.g., Ref. [49] for a thorough review on boson
mappings), we are unaware of the two-step approach having
been implemented in the specific way mentioned above.

Let us finally note that, in both pairing and quarteting cases,
our formalism is structurally very similar, leading to the same
functional form of the energy of the bosonic condensate, up
to form factors [see Eq. (29) below]. It is rather pleasing
that, in this sense, a unified description of the pairing and the
(significantly more complicated) quarteting correlations has
been possible.

Our paper is structured as follows: In the following sec-
tion, we present the details regarding the reformulation of
the pair and quartet condensates as particle-hole expansions.
In Sec. II B, we develop the bosonic formalism, which is
compared to the fully fermionic results in Sec. III. Finally,
in Sec. IV we draw Conclusions.

II. THEORETICAL BACKGROUND

A. Particle-hole representation of the pair
and quartet condensates

Let us consider first a model of a number Nlev of doubly
degenerate levels i, ī (the so-called picket-fence model) with
single-particle energies εi where the ground state of the stan-
dard pairing Hamiltonian,

H =
Nlev∑
i=1

εi(c
†
i ci + c†

ī
cī ) +

Nlev∑
i, j=1

Vi jP
†
i Pj (1)

is taken to be the PBCS pair condensate of np pairs,

|PBCS〉 = [�†(x)]np |0〉. (2)

Here, the coherent pair is a superposition of single-particle
pairs P†

i = c†
i c†

ī
,

�†(x) =
Nlev∑
i=1

xiP
†
i , (3)
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and |0〉 is the vacuum state with no particles. We assume
Nlev > np. All other notations are standard.

Following Refs. [43,50], instead of expressing the |PBCS〉
state with respect to the |0〉 vacuum, we may find an equivalent
form involving the Hartree-Fock state,

|HF〉 =
( np∏

i=1

P†
i

)
|0〉. (4)

To this end, we first decompose the coherent pair on compo-
nents below and above the Fermi level as follows:

�†(x) =
np∑

i=1

xiP
†
i +

Nlev∑
i=np+1

xiP
†
i ≡ �

†
h (x) + �†

p (x). (5)

It is not difficult to show that the action of the hole compo-
nent of the coherent pair of arguments x on the |0〉 vacuum
may be related to the action of the coherent pair of inverse
arguments 1/x on the Hartree-Fock state (see Appendix A for
computational details). In this way, one may prove that the
reformulation of the pair condensate reads

|PBCS〉 = np!�1

np∑
j=0

1

( j!)2

[
�†

p (x)�h

(
1

x

)] j

|HF〉, (6)

where �1 = x1x2 · · · xnp .
This approach can be generalized from pair to quartet cor-

relations. For this purpose, we consider the isovector pairing
Hamiltonian applicable to both spherical and deformed nuclei,

H =
Nlev∑
i=1

εi(Ni,π + Ni,ν ) +
∑

τ=0,±1

Nlev∑
i, j=1

Vi jP
†
i,τ Pj,τ , (7)

where τ = 0,±1 is the isospin projection. All other notations
are identical to the pairing case. Within the QCM, one first
defines a set of collective ππ, νν, and πν Cooper pairs,

�†
τ (x) ≡

Nlev∑
i=1

xiP
†
τ,i, (8)

where the mixing amplitudes xi are the same in all cases due to
isospin invariance. A collective quartet operator is then built
by coupling two collective pairs to the total isospin T = 0,

Q† ≡ [�†�†]T =0
S=0 ≡ 2�

†
1�

†
−1 − (�†

0 )2. (9)

Finally, the ground state of the Hamiltonian (7) is described
as a condensate of such α-like quartets,

|	q(x)〉 = (Q†)q|0〉, (10)

where q is the number of quartets. By construction, this state
has a well-defined particle number and isospin. Its structure
is defined by the mixing amplitudes xi, which are determined
numerically by the minimization of the Hamiltonian expecta-
tion value, subject to the unit norm constraint.

In analogy with the standard pairing case described above,
instead of expressing the quartet condensate state with respect
to the |0〉 vacuum, we may find an equivalent form involving

the Hartree-Fock state, in this case given by

|HF〉 =
(

q∏
i=1

P†
1,iP

†
−1,i

)
|0〉. (11)

The coherent pairs may be decomposed on components below
and above the Fermi level,

�†
τ (x) =

q∑
i=1

xiP
†
τ,i +

Nlev∑
i=q+1

xiP
†
τ,i ≡ �

†
τ,h(x) + �†

τ,p(x). (12)

As a consequence, the collective quartet decomposes as
follows:

Q†(x) = 2�
†
1�

†
−1 − (�†

0 )2

= 2�
†
1,h�

†
−1,h − (�†

0,h)2 + 2�
†
1,p�

†
−1,p − (�†

0,p)2

+ 2(�†
1,p�

†
−1,h + �

†
−1,p�

†
1,h − �

†
0,p�

†
0,h)

≡ Q†
h(x) + Q†

p(x) + 2[�†
p (x)�†

h (x)]. (13)

Given the more complicated decomposition of the quartet op-
erator with respect to the simple pairing case, it is remarkable
that the quartet condensate state may also be expressed as a
particle-hole expansion. The computational strategy is similar
to the PBCS case, involving the introduction, for the hole
subspace, of collective pair annihilation operators having as
arguments the inverse amplitudes. The derivation is rather
long and tedious, only its main points being presented in
Appendix A. The exact fully fermionic analytical expression
for the quartet condensate of Eq. (10) as a particle-hole
expansion reads

|	q〉 = 2qq!�2

q∑
a=0

q∑
b=0

λab

[
Q†

p(x)Qh

(
1

x

)]a

×
[
�†

p (x)�h

(
1

x

)]b

|HF〉, (14)

where

λab = 1

2ab!

a∑
r=Max(0,Nab−q)

(q − Nab)a−r

2r (a − r)!(r!)2

× �
(

3
2 + q − r

)
�

(
3
2 + Nab − r

) , (15)

and �2 = x2
1x2

2 · · · x2
q . The above formula is expressed using

the total number of pair excitations in a given term Nab =
2a + b, the � function �(z) (not to be confused with the
collective pair operator) and the Pochammer symbol (z)k =
z(z − 1) · · · (z − k). We also used a similar notation to that in
Eq. (13) for the coupling of two pairs to T = 0,[

�†
p (x)�h

(
1

x

)]
≡

∑
τ=±1,0

�†
τ,p(x)�τ,h

(
1

x

)
. (16)
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In the notation |	q〉 = �2Oq|HF〉, some particular expres-
sions for the operators Oq are

O1 = 2[�†
p�h] + 1

3
(Q†

pQh) + 3,

O2 = 4[�†
p�h]2 + 20[�†

p�h] + 1

30
(Q†

pQh )2

+ 4

5
[�†

p�h](Q†
pQh) + 2(Q†

pQh) + 30,

O3 = 8[�†
p�h]3 + 84[�†

p�h]2 + 420[�†
p�h]

+ 1

630
(Q†

pQh)3 + 3

35
[�†

p�h](Q†
pQh )2

− 99

70
(Q†

pQh)2 + 12

7
[�†

p�h]2(Q†
pQh)

+ 12[�†
p�h](Q†

pQh) + 114(Q†
pQh) + 630. (17)

The expressions for O1 and O2 have been checked by
evaluating each individual term with the help of the symbolic
computer algebra system CADABRA 2 [51–53]. It is very
interesting to note that the quartet condensate actually arises
as an interplay of isoscalar particle-hole excitations made out
of coupled-pair-type excitations and excitations of quartet-
quartet type.

Note that both Eqs. (6) and (14) suggest that the pair mix-
ing amplitudes corresponding to hole states behave inversely
to those corresponding to particle states. Indeed, the mix-
ing amplitudes corresponding to hole states and the inverse
amplitudes corresponding to particle states both present an
almost perfect linear behavior as can be seen in Fig. 1 for the
case of a constant pairing interaction strength. This was an
early argument of the adequacy of a particle-hole description
for both types of correlations. Moreover, the x versus 1/x
symmetry for particle and hole states is actually connected,
in the PBCS case, to the mixing amplitudes x being expressed
in terms of the ratio between occupancy and vacancy BCS
coefficients u and v in the context of the BCS state projection
to good particle number. This fact opens the possibility to
introduce a quasiparticle representation also for the case of
quarteting correlations.

The expressions of Eq. (6) and those of Eqs. (14) and (15)
are the starting point for the particle-hole-boson treatment
of pairing and quartet correlation in the next section. Before
presenting the boson approximation, we need to complete
the particle-hole description by also expressing the pairing
Hamiltonian in terms of particle and hole degrees of freedom.

We introduce particle (i, j, k, . . .) and hole indices
(a, b, c, . . .). For the hole subspace, we introduce the pair
creation operators as P̃†

a ≡ Pa. After a decomposition of the
pairing Hamiltonian of Eq. (1) into particle and hole compo-
nents, we obtain

H =
np∑

a=1

(2εa + Vaa)

+
np∑

a=1

(−εa − Vaa)Ña +
Nlev∑

i=np+1

εiNi

+
np∑

a,b=1

VabP̃†
a P̃b +

Nlev∑
i, j=np+1

Vi jP
†
i Pj

+
np∑

a=1

Nlev∑
i=np+1

Vai(P̃aPi + P†
i P̃†

a ) (18)

expressed also in terms of the number of holes operator Ña =
2 − Na which satisfies [Ña, P̃†

b ] = 2 δabP̃†
b .

For the case of isovector pairing, we analogously introduce
the pair creation operators for holes for a given isospin projec-
tion as P̃†

τ,a ≡ Pτ,a and the corresponding hole number opera-
tor Ñ0,a = 4 − N0,a. Thus, the Hamiltonian (7) decomposes as
follows:

H =
q∑

a=1

(4εa + 3Vaa)+
q∑

a=1

(
−εa − 3

2
Vaa

)
Ñ0,a +

Nlev∑
i=q+1

εiN0,i

+
q∑

a,b=1

Vab

∑
τ=±1,0

P̃†
τ,aP̃τ,b +

Nlev∑
i, j=q+1

Vi j

∑
τ=±1,0

P†
τ,iPτ, j

+
q∑

a=1

Nlev∑
i=q+1

Vai

∑
τ=±1,0

(P̃τ,aPτ,i + P†
τ,iP̃

†
τ,a). (19)

B. Particle-hole-boson approximation

The basic idea of our bosonic approximation is to take as
a reference state the Hartree-Fock state and to describe the
particle and hole degrees of freedom with a simplified bosonic
treatment, the particle-hole bosons thus accounting for the
deviation from the Fermi distribution (see Fig. 2).

In the following, we will first define the particle-hole-
boson approximation for the standard pairing case, the gen-
eralization to the quarteting case being trivial. Our approxi-
mation is defined by the replacements for the pair operators
and for the vacuum state,

P†
i → p†

i , P̃†
a → h†

a, |HF〉 → |0). (20)

where the particle and hole bosons annihilate the boson vac-
uum: pi|0) = 0 and ha|0) = 0 together with the mapping of
the particle and hole number operators Ña → Na, Ni → Ni,

FIG. 2. The effect of the particle and hole degrees of freedom on
the average level occupation fraction 〈n〉, shown for the QCM in the
case of the picket-fence model for q = 4 quartets.
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which also annihilate the bosonic vacuum state, i.e., Ni|0) =
0 and Na|0) = 0. They obey a bosonic algebra,

[pi, p†
j] = δi jπ j, [ha, h†

b] = δabηb, [pi, h†
j ] = 0,

(21)
[Ni, p†

j] = 2δi j p†
j, [Na, h†

b] = 2δabh†
b,

where the coefficients πi and η j are c numbers and all other
commutators vanish. Ours is not precisely a traditional bo-
son mapping (in the sense of, e.g., Ref. [54] for the same
picket-fence pairing scenario), but more of an approximate
treatment of the fully fermionic model as the pair operators
are now considered to be structureless. Whereas in the original
fermionic case, due to the fact that the pairs are composite
objects the pair commutation relation reads [Pi, P†

i ] = 1 − Ni,
where Ni is the number of particles operator, in the bosonic
approximation the pair commutator is just a c number. Below,
we will distinguish between the pure bosonic case where the
commutator is chosen to be unity and the renormalized case
in which a convenient choice is made in order to account for
the effects of the Pauli exclusion principle.

We then define the corresponding collective bosons,

H†(y) ≡
np∑

a=1

yah†
a, P†(x) ≡

Nlev∑
i=np+1

xi p
†
i . (22)

The main point is that we consider the bosonic ground state to
be of the same form as the fermionic PBCS condensate,

|ψ (x, y)〉 ≡ √
χ

np∑
n=0

1

(n!)2
[P†(x)H†(y)]n|0), (23)

where χ is a normalization constant. The hole amplitudes y
will be compared in the end to the inverse of the fermionic
amplitudes corresponding to levels below the Fermi level.
Let us first note that the commutation relations involving the
number of bosons in Eq. (21) can also be realized by using the
following replacements:

Ni → 2

πi
p†

i pi, Na → 2

ηa
h†

aha. (24)

The boson Hamiltonian can be obtained from Eq. (18) as
follows:

Hb =
np∑

a,b=1

(
2ε̃a

ηa
δab + Vab

)
h†

bha +
Nlev∑

i, j=np+1

(
2εi

πi
δi j + Vi j

)
p†

i p j

+
np∑

a=1

Nlev∑
i=np+1

Vai(ha pi + p†
i h†

a) +
np∑

a=1

(2εa + Vaa). (25)

Throughout this paper, we consistently define the single-
particle energy corresponding to holes degrees of freedom to
be simply ε̃a = −εa as we neglect the respective interaction
contribution appearing in the fully fermionic approach. In
order to compute the averages of the boson operators on the
state (23), it is very convenient to define first the norms of the

collective boson pairs,

[P (x),P†(x)] =
Nlev∑

i=np+1

x2
i πi ≡ Sp,

[H(y),H†(y)] =
np∑

a=1

y2
aηa ≡ Sh. (26)

The product SpSh will appear frequently in the following, and
we choose to denote it by Sph = SpSh. The bosonic approxi-
mation is simple enough to allow for an analytical derivation
for the norm of the bosonic pair condensate,

〈ψ (x, y)|ψ (x, y)〉 = χ

np∑
n=0

(Sph )n

(n!)2
≡ χν(Sph ). (27)

The averages of bosonic pair bilinears are easily found to be

〈h†
ahb〉 = χyaηaybηbSp

np∑
n=1

n

(n!)2
Sn−1

ph ,

〈p†
i p j〉 = χxiπix jπ jSh

np∑
n=1

n

(n!)2
Sn−1

ph ,

〈piha〉 = 〈p†
i h†

a〉 = χxiπiyaηa

np−1∑
n=0

1

(n!)2
(Sph )n. (28)

Finally, the average of the Hamiltonian over the bosonic
pair condensate may thus be written as follows:

〈Hb〉 = (HhhSp + HppSh) f1(Sph) + Hph f2(Sph) + E0ν(Sph ),

Hhh =
np∑

a=1

2ε̃aηay2
a +

np∑
a,b=1

Vabyaηaybηb,

(29)

Hpp =
Nlev∑

i=np+1

2εiπix
2
i +

Nlev∑
i, j=np+1

Vi jxiπix jπ j,

Hph = 2
np∑

a=1

Nlev∑
i=np+1

Vaixiπiyaηa,

in terms of the form factors,

f1(z) =
np∑

n=1

nzn−1

(n!)2
, f2(z) =

np−1∑
n=0

zn

(n!)2
, (30)

and the zero point energy E0 = ∑np

a=1(2εa + Vaa). It is im-
portant to remark that the bosonic approximation remains a
highly nonlinear problem, the particle and hole bosons being
coupled not only through the interaction terms Vai, but also
through the form factors. We may, thus, speak of dressed
particle and holes degrees of freedom.

The ground-state energy corresponding to the minimum of
the energy function,

E (x, y) ≡ 〈ψ (x, y)|Hb|ψ (x, y)〉
〈ψ (x, y)|ψ (x, y)〉 (31)

may be computed upon a minimization procedure with respect
to the particle and hole amplitudes xi and ya. We note that the
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energy function has a scaling symmetry E (x, y) = E (λx, y
λ

)
such that the number of independent parameters is actually
Nlev − 1. We will analyze two choices for the commutator
coefficients in Eqs. (21):

(1) pure bosonic case: ηa = 1, πi = 1.
(2) Renormalized bosonic case:

ηa = 1 − 1
2 〈Na〉 = 1 − y2

aηaSp f1(Sph )/ν(Sph ),

πi = 1 − 1
2 〈Ni〉 = 1 − x2

i πiSh f1(Sph)/ν(Sph ). (32)

It follows that in this latter case the commutator coeffi-
cients satisfy the following self-consistency condition (as the
Sp and Sh terms depend implicitly on them),

ηa = [
1 + y2

aSp f1(Sph )/ν(Sph )
]−1

πi = [
1 + x2

i Sh f1(Sph)/ν(Sph )
]−1

. (33)

Their precise values may be found, given a set of mixing am-
plitudes, by a straightforward and rapidly converging iterative
procedure.

Let us mention that a renormalized procedure is preferred
as to effectively take into account the finite maximum oc-
cupation of a given level as dictated by the Pauli exclusion
principle. Indeed, it can be seen by combining Eqs. (32) and
(33) that the average level occupation fraction satisfies, e.g.,
for hole states 〈n(h)

a 〉 = 1
2 〈Na〉 = 1 − ηa < 1.

The same basic idea of the bosonic approximation for the
standard pairing case is easily applicable to the isovector pair-
ing situation. Each projection of the triplet of pair operators
translates into a corresponding boson,

P†
τ,i → p†

τ,i, P̃†
τ,a → h†

τ,a. (34)

In the present paper, we consider the simplest approxima-
tion, that of commuting bosonic pairs of different isospin
projections,

[pτ,i, p†
σ, j] = δτσ δi jπ j, [hτ,a, h†

σ,b] = δτσ δabηb. (35)

This choice allows for a straightforward bosonic treatment
of the isovector pairing correlations along the same lines
as in the single-species pairing case. However, it should
be kept in mind that this approximation neglects the over-
laps between the proton-neutron pair operator and the pair
operators of the same nucleon type, which are accounted
for in the basic fermionic algebra through the nonvanishing
commutators [P0,i, P†

±1, j] = ±δi jT±1,i, written in terms of the

isospin operators Tτ,i = [c†
i ci]

J=0,T =1
M=0,τ . More rigorous bosonic

treatments of the isovector pairing correlations should be
based on the generalized commutation relations [pτ,i, p†

σ, j] =
Mτσ δi jπ j , involving a nondiagonal boson mixing matrix M
in the isospin space which effectively accounts for the above-
mentioned overlaps. A detailed study of this more involved
approach will be presented in future works.

In the present article, we will limit ourselves to evaluate
the consequences of the approximations given in Eq. (35).
They allow for the expressions of Eqs. (22) and (26) to
be generalized accordingly in the isovector pairing case for
each member of the collective pair triplet. Also, the bosonic
isovector pairing Hamiltonian is basically identical with that

of Eq. (25) upon the replacement of the bosonic pair bilinears
with the sum over the three isospin projections and the redefi-
nition of the constant energy term to E0 = ∑q

a=1(4εa + 3Vaa).
The bosonic isovector pairing Hamiltonian may, thus, be cast
into the same form as in Eq. (29). We present in Appendix A
the details regarding the form factors in the isovector pairing
case.

As in the PBCS case, we analyze both choices of pure
bosonic commutation relations and their renormalized ver-
sions. In the latter case, the coefficients are computed for the
isovector pairing as

ηa = 1 − 1
4 〈N0,a〉 = 1 − 1

2 y2
aηaSp f1(Sph)/ν(Sph ),

πi = 1 − 1
4 〈N0,i〉 = 1 − 1

2 x2
i πiSh f1(Sph)/ν(Sph ). (36)

We have thus succeeded in applying the same basic idea of
approximating as bosons the pairs in the particle-hole expan-
sion of the pair and quartet condensates. We have obtained in
both cases the same form of the average of the Hamiltonian
on the bosonic version of the condensate, the only differences
appearing in the so-called form factors.

III. NUMERICAL APPLICATION

We have analyzed the projected-BCS cases of np = 6
and np = 10 pairs and the QCM cases of q = 1–4 quartets
distributed over 20 equally spaced εk = (k − 1) MeV, doubly
degenerate single-particle levels, interacting via a constant
pairing force Vi j = −G. The solutions for the QCM fermionic
approach were obtained by using the analytical method de-
scribed in Ref. [55]. For the PBCS case, we implemented the
recurrence relations presented in Ref. [56]. In all cases, the
minimization of the energy function with respect to the mixing
amplitudes was carried out by using the e04ucf routine of the
Numerical Algorithms Group library.

In the following, we will denote the pure bosonic approx-
imation, corresponding to ηa = 1, πi = 1, by “bPBCS” in
the standard pairing case and by “bQCM” for the isovector
pairing case. The renormalized versions, defined by the pre-
scriptions of Eqs. (33) and (36), are referred to as rbPBCS
and rbQCM, respectively.

The pairing strength G for both standard pairing and
isovector pairing cases is given in units of the critical strength
Gcr for which the pairing gap vanishes in the standard
BCS and proton-neutron BCS, respectively [57–59]. This
allows distinguishing among the weak, the medium, and the
strong pairing regimes which roughly correspond to G <

Gcr, G ∼ Gcr, and G > Gcr. For our particular picket-fence
model, the specific values are G

(np=6)
cr = 0.238, G

(np=10)
cr =

0.234 MeV, and G(q=1)
cr = 0.144, G(q=2)

cr = 0.132, G(q=3)
cr =

0.127, G(q=4)
cr = 0.123 MeV, respectively.

In all cases, we find excellent agreement among fermionic
and both bosonic approximations in the weak pairing regime.
However, as the strength of the correlations increases the
inadequacy of the pure bosonic approach is quickly revealed,
the main reason being its inability to reproduce the finite
level occupancy as dictated by the Pauli principle. Indeed,
we observe from Figs. 3(b) and 3(c) that the average level
occupation fractions for the pure bosonic approach in the
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FIG. 3. The ground-state energies in MeV versus the ratio G/Gcr for (a) np = 6 and (b) np = 10 and the average level occupation fractions
versus state index for (c) np = 6 and (d) np = 10 for the PBCS, bPBCS, and renormalized bosonic PBCS (rbPBCS) approaches of the picket-
fence model in the strong pairing regime at G/Gcr = 4.

PBCS case for a strong pairing scenario exceed unity for
the states close to the Fermi surface. As a consequence,
the ground-state energy is not correctly reproduced. These
problems are, however, completely solved by the renormaliza-
tion procedure described in the previous section. Indeed, the
rbPBCS approach is in almost perfect agreement with the fully
fermionic results regarding average level occupation fractions
as shown in the same figure. The renormalization restrictions
also have the effect of bringing the ground-state energy much
closer to the fermionic value as displayed in Figs. 3(a) and
3(b).

In order to emphasize the essential role of considering
the bosonic ground state as having the same structure as
the particle-hole version of the fermionic condensate [see
Eqs. (6) and (23)], in Fig. 3(a) and 3(b), we also plotted
the ground-state energy in the so-called naive renormalized
bosonic approach (denoted in the following as “rb-naive”). In
this case, we applied the bosonization procedure (in the renor-
malized version) directly to the original PBCS condensate of
Eq. (2) and to the original pairing Hamiltonian of Eq. (1). Re-
garding the ground-state energy, we note strong discrepancies
between the naive bosonic approach and the fermionic case
for all interaction strengths (except the G = 0 case, which is
reproduced due to the renormalization procedure). In this way,
we support the idea that the particle-hole expansion of the
(pair) condensate contains a significant amount of information
about the pure fermionic correlations in the ground state. Let
us mention that the adequacy of the particle-hole description
of pairing correlations is indicated by the fact that the basic
physical behavior is determined by the fluctuations around the

Fermi state, small in the weak pairing regime and larger in the
medium and strong regimes. It is, however, remarkable that,
even in the naive approach, the average level occupancies are
reproduced to a high degree of accuracy with respect to the
fermionic case, which is an indication of the effectiveness of
the renormalization prescription in accounting for the effects
of the Pauli exclusion principle.

The situation is qualitatively similar in the case of quar-
teting correlations as seen in Fig. 4. There is very good
agreement between the fermionic and the bosonic approaches
in the weak and medium pairing regimes. In the strong pairing
case, however, the correlation energy is overestimated in the
pure bosonic approach (and even more so in the naive bosonic
version) and slightly underestimated within the rbQCM ap-
proximation. Let us note that the numerical value of the
critical strength in the isovector pairing case is about half the
value corresponding to the single-species pairing case. This
translates into fact that the pairing strength relative to the
level spacing G/�ε, which may also be used as an alternative
indicator of the intensity of pairing correlations, differs by a
factor of 2 in the isovector and standard pairing cases. Indeed,
the ground-state energy shows more variation in the standard
pairing case than in the isovector pairing case, up to the same
value of G/Gcr = 4. The errors in the bosonic approaches
increase beyond this point in a similar way to the behavior
presented in Figs. 3(a) and 3(b).

We show in Fig. 5 the errors in the correlation energy of the
renormalized bosonic approximation relative to the fermionic
approaches, i.e., for PBCS in the left panel (a) and for QCM in
the right panel (b), respectively. We note the perfect agreement
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FIG. 4. The ground-state energies (in MeV) versus the ratio G/Gcr for (a) q = 1, (b) q = 2, (c) q = 3, and (d) q = 4 the QCM, bQCM,
rbQCM, and rb-naive approaches of the picket-fence model.

in the weak pairing regime in all cases. Slight discrepancies
start to emerge in the medium pairing regime, but all errors
are, at most, on the order of 10% even in the strong pairing
scenario, up to G/Gcr = 4.

Regarding the average level occupation fraction in the
quarteting case, we notice in Fig. 6, as expected, unphysical
values that exceed unity for the pure bosonic approach. On
the other hand, the rbQCM approximation results slightly
underestimate the exact values. The more pronounced devi-
ations of the isovector pairing bosonic approximations with
respect to the QCM fermionic approach are to be traced
back to the fact that, in these cases, we made the additional
assumption of commuting pairs of different isospin projection
[see Eq. (35)]. Although it is not difficult to conceive further
improvements that take into account the pair mixing effects
within a bosonic treatment, we limit ourselves in this paper is
to the assessment of the consequences of the simplest kind of
approximation. We also remark that an opposite behavior is

exhibited by the naive renormalized bosonic approach in the
quarteting case, i.e., the results are slightly overestimated. We
expect that the results will be comparable to those obtained
in the PBCS scenario once pair mixing effects are taken into
account.

We then compare the results regarding the mixing ampli-
tudes for the quarteting case in the strong pairing regime.
One should recall that, in the bosonic case, they are defined
up to an overall factor due to the scaling symmetry of the
bosonic ground-state energy mentioned in the previous sec-
tion and to the lack of the unit norm constraint in the bosonic
approach (the normalization constant is this case being a free
parameter). We, thus, limit ourselves to a comparison of the
relative behavior of the fermionic and bosonic amplitudes
by choosing the overall factor in the bosonic case as to
give the best fit with respect to the fermionic case. In the
following, for the purpose of this comparison, we need to
work with the inverse amplitudes for the hole states [see

FIG. 5. The error in the correlation energy versus the ratio G/Gcr for the (a) rbPBCS and, respectively, (b) rbQCM approaches, relative to
the fermionic cases of (a) PBCS and (b) QCM.
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FIG. 6. Average level occupation fractions versus state index for the QCM, bQCM, rbQCM, and rb-naive for the first ten levels of the
picket-fence model for (a) q = 1, (b) q = 2, (c) q = 3, and (d) q = 4 in the strong pairing regime at G/Gcr = 4.

also the discussion following Eq. (23)], thus, we perform the
replacement x(b)

a → 1/x(b)
a for the bosonic hole amplitudes.

Explicitly, a least-squares fit for x( f ) = αx(b) leads to the the
expression α = [

∑
i x( f )

i x(b)
i ]/[

∑
i(x

(b)
i )2], where f stands for

the fermionic QCM case and b refers to each of the two
bosonic approximations.

As seen from Fig. 7, a very good agreement regarding
the behavior of the mixing amplitudes is found between
the exact QCM result and the renormalized bosonic rbQCM
approximation for q = 1 and q = 2 even in the strong pairing
regime; the pure bosonic theory, however, shows discrepan-
cies especially for the states around the Fermi level. For a
larger number of quartets, the results corresponding to the
renormalized bosonic version are not better than the ones
for the pure bosonic case. This is caused by the diagonal
approximation of the pair mixing matrix in isospin space
Eq. (35), which for the renormalized version generally leads
to a slight underestimation of the results for particle states,
and a slight overestimation for hole states regarding both
mixing amplitudes and average level occupancies (of physical
particles).

Finally, we present, as a more realistic application of our
approximation, the computation of the ground-state correla-
tions in the nuclei above 100Sn, namely, 104Te, 108Xe, 112Ba,
and 116Ce, corresponding to a number of quartets q = 1–4
in the sdg shell. We consider the same model space and
interaction as in Ref. [26], namely, the spherical spectrum
ε2d5/2 = 0.0, ε1g7/2 = 0.2, ε2d3/2 = 1.5, and ε3s1/2 = 2.8 MeV
together with the effective Bonn A isovector pairing potential
of Ref. [60]. The results regarding the correlations energy are
summarized in Table I. In the exact fermionic approach, we re-
produce, within numerical accuracy, the results of Ref. [26]. In

the renormalized bosonic approximation, the results are good,
showing a relative error on the order of 10% with respect to
the fermionic case. The comparison of the two approaches
regarding the average level occupation fraction is presented in
Fig. 8 where we plot the occupancy 〈N0,i〉/[2(2 ji + 1)] versus
the spherical state index i. We find very good agreement for
q = 1, however, for a larger number of quartets, we note,
for the boson approach, the usual underestimation of particle
and hole occupancies (which translates to an overestimation
of physical particle occupancies for states below the Fermi
level). A more detailed analysis of the boson approximation
as applied to realistic pairing scenarios will be performed in
future works in the context of a more accurate treatment of
bosonic pair mixing in isospin space.

Let us also remark upon the interesting possibility of
extending our approach to a more general two-body Hamil-
tonian: The starting point of our discussion was that the trial
ground state had a simple condensate-type expression which
could be nicely reformulated as a particle-hole expansion.
Unfortunately, this is not true for the ground state of a general
Hamiltonian. However, we have noted the suitability of the
renormalization procedure for the boson degrees of freedom,
which accounts very well for the effects of the exclusion
principle. This fact is very promising as the various contri-
butions arising in the standard bosonic expansions can be
effectively resummed within the renormalization procedure,
thus, keeping the boson mapping to its simplest form. The
actual degree to which this equivalence is precisely realized
is a very interesting question which will be explored in future
works.

It is noteworthy that, in the isovector pairing case, the
QCM offers an almost perfect description of the ground state
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FIG. 7. Mixing amplitudes xi versus state index for the QCM, bQCM, and rbQCM for the first ten levels of the picket-fence model for
(a) q = 1, (b) q = 2, (c) q = 3, and (d) q = 4 in the strong pairing regime at G/Gcr = 4. The best fit for the amplitudes in the bosonic models
was chosen as allowed by the scaling symmetry.

(the correlation energies are generally within a 1% error with
respect to the exact shell model diagonalization [26]), even for
the weak pairing regime (as opposed to the PBCS case (see,

e.g., Ref. [43]). As such, the renormalized bosonic treatment
of the quartet condensates promises to be a simple but also
quite a precise approach.

FIG. 8. Average level occupation fractions 〈ni/�i〉 ≡ 〈N0,i〉/[2(2 ji + 1)] versus the state index i corresponding to the exact QCM and
to the renormalized bosonic approximation rbQCM for the nuclei above the 100Sn core, computed with the Bonn A effective interaction of
Ref. [60].

064311-10



UNIFIED DESCRIPTION OF PAIRING AND QUARTETING … PHYSICAL REVIEW C 99, 064311 (2019)

TABLE I. Correlation energies corresponding to the exact QCM
and to the rbQCM (together with the relative errors in the round
brackets) for the nuclei above the 100Sn core, computed with the
Bonn A effective interaction of Ref. [60].

QCM rbQCM (%)

104Te 3.847 3.445 (10.4)
108Xe 6.726 6.512 (3.2)
112Ba 8.629 7.470 (13.4)
116Ce 10.332 9.225 (10.7)

IV. CONCLUSIONS

We developed a new bosonic approximation for pair and
quartet condensates, corresponding to the standard pairing and
isovector pairing scenarios.

The starting point was the reformulation of the pair and
quartet condensates as a particle hole expansion with respect
to the Hartree-Fock state. In particular, we derived the expres-
sion of the quartet condensate state as a particle-hole expan-
sion and found both quartet-quartet excitations and coupled
pair excitations. We evidenced the remarkable fact that, for
both standard pairing and the more complicated quarteting
correlations, there is an inverse x versus 1/x symmetry for par-
ticle and hole mixing amplitudes, which is a strong argument
for the existence of a quasiparticle representation for quartet
systems.

We then introduced a straightforward bosonic formalism
which is very similar in both pairing and quarteting cases. The
average of the Hamiltonian on the condensate states has the
same form in both cases, the only differences being in the ex-
pressions of the above-defined form factors. We have studied
both the pure bosonic approach and the renormalized version,
and we have compared the particle-hole bosonic version to the
naive prescription where we applied the boson approximation
directly to the original condensate state without performing
the particle-hole reformulation. We have found good agree-
ment between the fermionic and the renormalized particle-
hole bosonic approaches in the case of a picket-fence model of
doubly degenerate states and in a realistic shell-model space
with the Bonn A effective isovector pairing potential for the
nuclei above the 100Sn core. We note, however, that, in the
quarteting case, the pair mixing effects have been neglected
for simplicity. Their contribution is expected to increase the
accuracy of the boson approximation as will be shown in
future works.

In conclusion, we have found that the particle-hole expan-
sion of the pair and quartet condensates contains a lot of in-
formation about the fermionic correlations in the ground state,
which allows for a good description in terms of bosonic de-
grees of freedom (provided one effectively takes into account
the exclusion principle via the renormalization procedure).
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APPENDIX A: PARTICLE-HOLE EXPANSION OF THE
PBCS AND QCM

CONDENSATE STATES

In order to derive the particle-hole formulation of the pair
condensate, we first express the Hartree-Fock state of Eq. (4)
in terms of the hole component of the coherent pair as

|HF〉 = 1

np!

1

�1
[�†

h (x)]np |0〉, (A1)

where �1 = x1x2 · · · xnp . The main trick is then to use a
coherent pair of inverse arguments �h( 1

x ). Starting from the
commutator [Pi, P†

j ] = δi j (1 − N̂i ), it is easy to compute

[
�h

(
1

x

)
, �

†
h (x)

]
= np −

np∑
i=1

N̂i ≡ np − N̂h. (A2)

From this, it may be shown that[
�h

(
1

x

)] j

[�†
h (x)]k|0〉 = j!k!

(k − j)!
[�†

h (x)]k− j |0〉. (A3)

For the particular case of k = np, we may relate the action of
the coherent pair of inverse arguments on the Hartree-Fock
state to the action of the original coherent pair on the |0〉
vacuum as[

�h

(
1

x

)] j

|HF〉 = 1

�1

j!

(np − j)!
[�†

h (x)]np− j |0〉. (A4)

By employing this expression in the expansion of the PBCS
condensate, we arrive at the form mentioned in Eq. (6),

|PBCS〉 = [�†
h (x) + �†

p (x)]np |0〉

= np!�1

np∑
j=0

1

( j!)2

[
�†

p (x)�h

(
1

x

)] j

|HF〉, (A5)

For the quarteting case, we perform a similar maneuver. We
start from the q-quartet condensate state of Eq. (13), which
may be expanded as follows:

|	q〉 =
q∑

n=0

n∑
j=0

q!

(n − j)! j!(q − n)!

× 2 j (Q†
p)n− j[�†

p�
†
h] j (Q†

h)q−n|0〉. (A6)

We will perform the transition to the particle-hole repre-
sentation in two steps:

(1) We first express the n-hole-quartet state (Q†
h)q−n|0〉 as

the annihilation of n quartets from the Hartree-Fock
state of Eq. (11), and

(2) we then perform a similar computation for the term
involving the coupled pairs. Note that, as in the PBCS
case, the collective annihilation operators will depend
on the inverse amplitudes.
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1. Relate [Q†
h(x)]q−n|0〉 ∼ [Qh( 1

x )]n|HF〉
Using the hole-quartet Q†

h, we may also express the
Hartree-Fock state as

|HF〉 = 1

�2

2q

(2q + 1)!
[Q†

h(x)]q|0〉, (A7)

where �2 = x2
1x2

2 · · · x2
q . Consider the action of the collective

pair annihilation operators of inverse amplitudes on a n-
quartet state on the hole subspace. From the SO(5) algebra
[25] of the hole operators, it is not difficult to show that

�τ,h

(
1

x

)
[Q†

h(x)]n|0〉

= (−1)1−τ n(2q − 2n + 3)�†
−τ,h(x)[Q†

h(x)]n−1|0〉. (A8)

From this relation, it follows that the action of a collective
quartet annihilation operator on a n-hole-quartet state is

Qh

(
1

x

)
[Q†

h(x)]n|0〉 = n(2q − 2n + 3)[(n − 1)(2q − 2n + 5)

− 3(q − 2n + 2)][Q†
h(x)]n−1|0〉. (A9)

By iterating this relation, we obtain[
Qh

(
1

x

)]a

[Q†
h(x)]n|0〉 = (2n + 1)!(2a + 1)!

22a(2n − 2a + 1)!
[Q†

h(x)]n−a|0〉.
(A10)

It is now possible to compute the action of hole-quartet
annihilation operators on the Hartree-Fock state,

�2
2a

(2a + 1)!

[
Qh

(
1

x

)]a

|HF〉 = 2k

(2k + 1)!
[Q†

h(x)]k|0〉,

a + k = q, (A11)

which allows for the first rewriting of the q-quartet condensate
state as

|	q〉 = �2

q∑
n=0

n∑
j=0

q!

(n − j)! j!(q − n)!
22n−q (2q − 2n + 1)!

(2n + 1)!

× 2 j[Q†
p(x)]n− j[�†

p (x)�†
h (x)] j

[
Qh

(
1

x

)]n

|HF〉.

(A12)

2. Relate [�†
p�

†
h] j (Qh)n|HF〉 ∼ [�†

p�h] j (Qh)n− j|HF〉
In the following, we denote the collective annihilation

operators on the hole subspace simply by Ah ≡ Ah( 1
x ). We also

use the notation,

[�†
p�h] ≡ �

†
1,p�1,h + �

†
−1,p�−1,h + �

†
0,p�0,h. (A13)

Let us compute the commutator,

[[�†
p�h], [�†

p�
†
h]] = Q†

p

(
q − 1

2 N̂0,h
)
, (A14)

where N̂0,h = ∑q
i=1 N̂0,i is the total number of particles on the

hole subspace. From the previous relation, it follows that

[[�†
p�h], [�†

p�
†
h]n] = Q†

p[�†
p�

†
h]n−1 n

2
(2q − n + 1 − N̂0,h ).

(A15)

Combining Eqs. (A8) and (A15), we obtain the recurrence
relation,

| jn〉 ≡ [�†
p�

†
h] j (Qh)n|HF〉

= n(2q − 2n + 3)

(
[�†

p�h]| j − 1, n − 1〉 + j − 1

2

× (2q + j − 4n + 2)Q†
p| j − 2, n − 1〉

)
. (A16)

A careful analysis of this recurrence relation leads to the
expression,

[�†
p�

†
h] j (Qh)n|HF〉

= n!

(n − j)!

(2q − 2n + 2 j + 1)!

(2q − 2n + 1)!

(q − n)!

2 j (q − n + j)!

×
[ j/2]∑
k=0

1

2kk!

j!

( j − 2k)!
(q − 2n + j)k[�†

p�h] j−2k

× (Q†
pQh)k (Qh)n− j |HF〉, (A17)

where the notation (z)n is the Pochammer symbol (z)n =
z(z − 1) · · · (z − n + 1) and [n] is the floor function.

By using the expressions (A12) and (A17), we obtain

|	q〉 = �2

q∑
n=0

n∑
j=0

q!

[(n − j)!]2
22n−q n!(2q − 2n + 1)!

(2n + 1)!(q − n + j)!

×
[ j/2]∑
k=0

(q − 2n + j)k

2kk!( j − 2k)!
(Q†

pQh)n− j+k[�†
p�h] j−2k|HF〉.

(A18)

Let us mention that Eqs. (14) and (15) follow after regrouping
the terms of the quartet-quartet and coupled pairs excitations
with the same powers.

APPENDIX B: PAIRING AND QUARTETING BOSONIC
FORM FACTORS

In the standard pairing case, the form factors and norm
function entering the expression of the Hamiltonian expec-
tation value on the bosonic version of the condensate [see
Eq. (29)] may be computed analytically for any number of
pairs. They can be read off the averages of bosonic pair
bilinears of Eqs. (28),

f1(z) =
np∑

n=1

nzn−1

(n!)2
, f2(z) =

np−1∑
n=0

zn

(n!)2
, ν(z) =

np∑
n=0

zn

(n!)2
.

(B1)

However, due to the more complicated form of the quartet
condensate particle-hole expansion of Eqs. (14) and (15), we
are unable to provide general analytical expressions of the
form factors for the isovector pairing case. For each particular
number of quartets, they may be computed in a straightfor-
ward fashion by expanding the collective quartets and coupled
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bosonic pairs into individual pairs and then evaluating each
expression taking advantage of the bosonic character of the
pairs.

We present below the formulas for the form factors and
norm function in the isovector pairing case for a number of
quartets ranging from one to four,

f (q=1)
1 (z) = 12 + 8z,

f (q=1)
2 (z) = 18 + 8z, (B2)

ν (q=1)(z) = 9 + 12z + 4z2,

f (q=2)
1 (z) = 1200 + 1440z + 576z2 + 64z3,

f (q=2)
2 (z) = 1800 + 2400z + 1056z2 + 128z3, (B3)

ν (q=2)(z) = 900 + 1200z + 720z2 + 192z3 + 16z4,

f (q=3)
1 (z) = 529 200 + 1734 048z + 302 400z2 + 4262 976

49
z3 + 8640z4 + 384z5,

f (q=3)
2 (z) = 793 800 + 1421 280z + 997 920z2 + 58 752z3 − 7776z4 + 1152z5, (B4)

ν (q=3)(z) = 396 900 + 529 200z + 867 024z2 + 100 800z3 + 1065 744

49
z4 + 1728z5 + 64z6,

f (q=4)
1 (z) = 2048z7 + 86016z6 + 14 678 016z5 + 179 532 800z4

3
+ 101 606 400z3 + 1758 827 520z2

+ 4854 753 792z + 685 843 200,

f (q=4)
2 (z) = 8192z7 − 718 848z6 + 11 515 904z5 − 47 715 840z4 + 539 965 440z3 + 3803 466 240z2

+ 2347 107 840z + 1028 764 800,

ν (q=4)(z) = 256z8 + 12 288z7 + 2446 336z6 + 35 906 560z5

3
+ 25 401 600z4 + 586 275 840z3 + 2427 376 896z2

+ 685 843 200z + 514 382 400. (B5)
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