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Microscopic three-cluster study of light exotic nuclei
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I develop a microscopic three-cluster model for exotic light nuclei. I use the hyperspherical formalism,
associated with the generator coordinate method. This model is well adapted to halo nuclei, since the long-range
part of the radial wave functions is accurately reproduced. The core wave functions are described in the shell
model, including excited states. This technique provides large bases, expressed in terms of projected Slater
determinants. Matrix elements involve seven-dimension integrals, and therefore require long calculation times.
I apply the model to 11Li, 14Be, 15B, and 17N described by two neutrons surrounding a 9Li, 12Be, 13B, and 15N
core, respectively. The 17Ne (as 15O + p + p) and 15Ne (as 13O + p + p) mirror nuclei are briefly discussed. I
present the spectra and some spectroscopic properties, such as r.m.s. radii or E2 transition probabilities. I also
analyze the importance of core excitations.
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I. INTRODUCTION

Exotic nuclei represent one of the major interests in mod-
ern nuclear physics [1]. These nuclei are located close to the
driplines (neutron or proton) and, owing to the low binding
energy, present specific properties, such as an anomalously
large radius or modifications of the shell structure. Recent
development of experimental facilities have provided a large
number of new data, which need to be understood by theory.

The main property of exotic nuclei being their low binding
energy, the relative wave functions extend to large distances.
Theoretical models therefore need to reproduce this property.
A widely used approach is the hyperspherical method [2],
where the Jacobi coordinates are replaced by a set of angles,
and by a single length, referred to as the hyperradius. The
three-body equation is then replaced by a set of coupled
differential equations depending on the hyperradius. The hy-
perspherical formalism can be extended to systems involving
more than three particles [3]. Many works in atomic and in
nuclear physics have been performed within this method.

In nuclear physics, most applications are carried out in non-
microscopic models. In other words, the nucleus is seen as a
three-body system, with a structureless core, and two external
nucleons. Typical applications are the 6He and 11Li nuclei,
modeled by α + n + n and 9Li + n + n three-body structures.
This approach therefore relies on nucleon + nucleon and
nucleon + core potentials. It simulates the Pauli principle by
an appropriate choice of these interactions. Core excitations
are in general neglected.

This nonmicroscopic model can be extended to micro-
scopic theories, where the system is described by a A-body
Hamiltonian. The core nucleus is defined in the shell model,
and a full antisymmetrization is taken into account. The use
of the hyperspherical formalism guarantees the correct long-
range behavior of the wave function. The model only relies
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on a nucleon-nucleon interaction, and on the description of the
core wave functions. In contrast with nonmicroscopic models,
it allows me to include core excitations without any further
parameter.

Microscopic cluster models are used in nuclear physics
for many years (see reviews in Refs. [4,5]) but most appli-
cations deal with the two-cluster variant, much easier than
multicluster approaches. The application of the hyperspheri-
cal formalism to microscopic cluster theories is recent. The
first works were focused on 6He [6,7], which involves the α

particle as a core. The α particle can be accurately described
by a (0s)4 shell-model configuration, which makes the calcu-
lations relatively easy. The model was extended to three-body
continuum states [8], and microscopic 6He wave functions
have been used in CDCC calculations of elastic scattering on
heavy targets [9].

The main limitation of microscopic three-cluster models in
hyperspherical coordinates is that the matrix elements involve
the numerical calculation of (many) seven-dimension inte-
grals [7]. Consequently, applications are essentially limited to
light systems, most of them involving an α core. In addition
to the 6He system mentioned above, a recent application
focuses on 8Li, described by an α + 3H + n three-cluster
configuration [10].

The aim of the present work is to go beyond this limita-
tion. The development of the computing technology, and in
particular of the parallelization possibilities permits to con-
sider heavier systems, involving p-shell nuclei as the core. I
analyze four nuclei (11Li, 14Be, 15B, 17N) which are modelled
by a p-shell core and two surrounding neutrons. Compared
to previous applications, the present calculations face two
difficulties: (i) the presence of p-shell orbitals, and (ii) the
need of several Slater determinants for the core.

The paper is organized as follows. In Sec. II, I present
a general overview of the microscopic three-cluster model.
In Sec. III, I apply the method to various exotic nuclei.
Concluding remarks are presented in Sec. IV.
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II. MICROSCOPIC THREE-CLUSTER MODEL
IN HYPERSPHERICAL COORDINATES

A. General overview

My main goal is to solve a A-body problem, where the
Hamiltonian is given by

H =
A∑

i=1

ti +
A∑

i< j=1

vi j . (1)

In this definition, ti is the kinetic energy of nucleon i, and
vi j a nucleon-nucleon interaction, which contains nuclear
and Coulomb components. Recent ab initio models (see, for
example, Ref. [11]) are developed to find exact solutions of
the Schrödinger equation associated with (1). These models,
however, are in general not well adapted to halo nuclei, where
the long-range part of the wave functions plays a crucial role.
My approach, in contrast, is based on the cluster approxima-
tion [4,12].

The total wave function, solution of the Schrödinger equa-
tion

(H − E )� = 0, (2)

is written schematically as

� = Aφ1φ2φ3G, (3)

where φi are the internal wave functions of the clusters (in
practice, they are defined in the shell model), and G is a radial
function, depending on the relative coordinates between the
clusters. The antisymmetrization operator A ensures that the
wave function is completely antisymmetric.

The cluster approximation permits a strong simplification
of the calculations, in comparison with ab initio models. It is
also well adapted to halo nuclei or, more generally, to states
presenting a strong cluster structure. Owing to this approxi-
mation, however, effective nucleon-nucleon interactions vi j ,
such as the Volkov [13] or the Minnesota [14] force, must
be used. These forces simulate missing effects, such as the
tensor component, by an effective central interaction. Ideally,
three-body forces should be introduced, and developments
have been achieved in that direction for realistic forces (see
Ref. [15] for a review). For effective interactions, however,
even if some work has been done [16,17], the use of three-
body forces is essentially limited to well bound nuclei, such
as 12C or 16O. In most cluster calculations, three-body forces
are therefore neglected.

Several variants of microscopic cluster models exist. Of
course, the simplest version is a two-cluster model, which
has been used for many years [18]. Three-cluster models
have been developed in various directions: frozen triangular
configurations [19], 2 + 1 configurations essentially aimed for
nucleus-nucleus scattering such as 7Be + p [20], and, more
recently, genuine three-body models using the hyperspherical
formalism [7]. The present work is based on the hyperspher-
ical approach, which is described in more detail in the next
sections.

B. Core wave functions

Let me consider Eq. (3) where the internal wave functions
φi are associated with three clusters with nucleon numbers
(A1, A2, A3) and charge numbers (Z1, Z2, Z3). I assume that
clusters 2 and 3 are s-shell nuclei and, more specifically in
the present work, that they are neutrons. I also assume that the
oscillator parameter b is common to the three clusters. Until
now, the use of the hyperspherical formalism in microscopic
models was limited to an α core. This is well adapted, for
example, to 6He [7], 6Li [7], or 8B [10]. The main reason
for this limitation is that, as it will be discussed later, matrix
elements involve seven-dimensional integrals.

This limitation, however, restricts the applications to a few
light nuclei. In the present work, I go beyond this limitation,
and extend the model to p-wave orbitals. The consequences in
terms of computer times are twofold: (i) the matrix elements
involve p-shell orbitals, which has a strong impact on the ma-
trix elements of the nucleon-nucleon interaction (quadruple
sums over the individual orbitals); (ii) p-shell nuclei such as
9Li or 12Be involve several Slater determinants (up to 90 for
9Li), whereas the α particle is described by a single Slater
determinant.

I remind here the main properties. Let me consider a Slater
determinant �̄i involving A1 single-particle orbitals

ϕnxnynzmsmt (rrr) = ϕnx (x)ϕny (y)ϕnz (z)
∣∣ 1

2 ms
〉∣∣ 1

2 mt
〉
, (4)

where ϕn(s) are harmonic oscillator functions and where
ms, mt = ±1/2 are associated with the spin and the isospin,
respectively. The first step is to define the list of NS Slater
determinants consistent with the Pauli principle. Assuming
that the s shell is filled, the number of Slater determinants for
p-shell nuclei is NS = CZ1−2

6 × CN1−2
6 , where C j

i is the number
of combinations of j elements among i elements. For 9Li,
12Be, 13B, and 15N, I have NS = 90, 15, 20, 6, respectively.
The NS Slater determinants �̄i must be projected on the
various angular momenta I, L, S, T from a diagonalization of
the III2,LLL2,SSS2, and TTT 2 operators (III = LLL + SSS). This procedure
provides basis functions with good quantum numbers as

�Iν
1,LST =

NS∑
i=1

dIνLST
i �̄i. (5)

Finally, basis functions (5) are used to diagonalize the Hamil-
tonian (1) for cluster 1, and I get the core wave functions as

�Iν
1 =

∑
LST

DIν
LST �Iν

1,LST . (6)

This technique corresponds to a standard shell-model ap-
proach, and can be extended to higher shells (the summation
may involve an additional quantum number, associated with
the degeneracy). The specificity of the cluster model is that
(6) is only the very first step of the calculations. These internal
wave functions must then be introduced in the three-body
wave functions (3).

C. Three-cluster wave functions

Let me come back to the three-cluster wave functions (3).
In the generator coordinate method (GCM, see Refs. [4,18]),
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FIG. 1. Three-cluster configuration using the generator coordi-
nates RRR1 and RRR2 [see Eq. (7)].

the clusters are located at three points, as represented in
Fig. 1. The generator coordinates RRR1 is associated with the
external clusters (neutrons in the present applications) and
RRR2 with the relative motion between the core and the c.m. of
clusters 2 and 3. They are variational parameters, and are not
associated with the nucleon coordinates (in other words, the
antisymmetrization operator does not act on RRR1 and RRR2). A
GCM basis state is defined as

�ν1ν2ν3
c1

(RRR1,RRR2) =A�ν1
c1

(
−A23

A
RRR2

)
�

ν2
2

(
A23

A
RRR2 + A1

A12
RRR1

)

× �
ν3
3

(
A23

A
RRR2 − A1

A12
RRR1

)
, (7)

where �ν1
c1

are the core wave functions (6), and �
ν2
2 and

where �
ν3
3 correspond to the external clusters. In this equa-

tion, A12 = A1 + A2 and A23 = A2 + A3. If the internal wave
functions are defined in the harmonic oscillator model with
a common oscillator parameter b, these basis functions are
Slater determinants, and the c.m. motion is factorized exactly.
For the sake of clarity, I do not write the spins Ii of the clusters.

A first angular-momentum coupling is performed on the
spins I2 and I3 of the external clusters with

�I23Iν
c1

(RRR1,RRR2) =
∑

ν1ν2ν3

〈I2 ν2 I3 ν3|I23 ν2 + ν3〉

× 〈I1 ν1I23 ν2 + ν3|I ν〉�ν1ν2ν3
c1

(RRR1,RRR2). (8)

Then I introduce the hyperspherical formalism, well known in
nonmicroscopic models [21], and extended more recently to
microscopic theories [7,22]. I define scaled Jacobi coordinates
as

XXX =
√

A2A3

A23
RRR1, YYY =

√
A1A23

A
RRR2, (9)

which provide the hyperradius R and hyperangle α from

R =
√

XXX 2 +YYY 2, tan α = Y/X. (10)

Both coordinates are complemented by the angles associated
with XXX and YYY as

�5 = (α,�X ,�Y ). (11)

From the basis functions (8), I project on the total angular
momentum J and parity π . This is achieved by a double

projection on the orbital momenta 
x and 
y; a projected basis
function is written as

�̃JMπ
c1I23I
x
yL(R1, R2)

=
∑
νML

〈IνLML|JM〉
∫

d�X d�Y

× [
Y ∗


x
(�X ) ⊗ Y ∗


y
(�Y )

]LML
�I23Iν

c1
(RRR1,RRR2), (12)

which represents a four-dimension integral. This double-
projection technique has been used in three-body models
aimed at studying nucleus-nucleus scattering such as 7Be + p
[23] for example. In the hyperspherical formalism, one intro-
duces the hypermoment K , which is a generalization of the
angular momentum in three-body systems. An hyperspherical
basis function reads

�JMπ
γ K (R) =

∫
dα cos2 α sin2 α ϕ


x
y

K (α)

× �̃JMπ
γ (R sin α, R cos α), (13)

where index γ stands for γ = (c1I23I
x
yL). In this equation,

function ϕ

x
y

K (α) is defined by

ϕ

x
y

K (α) =N 
x
y

K (cos αR)
y (sin αR)
x

× P

y+1/2,
x+1/2
n (cos 2α), (14)

Pa,b
n (x) being a Jacobi polynomial. The normalization coeffi-

cient N 
x
y

K is given by

N 
x
y

K =
[

2n!(K + 2)(n + 
x + 
y + 1)!

�
(
n + 
x + 3

2

)
�

(
n + 
y + 3

2

)
] 1

2

, (15)

where n = (K − 
x − 
y)/2 is a positive integer. The main
advantage of the hyperspherical formalism is to reduce the
number of degrees of freedom to one. The configuration space
is therefore spanned by a single generator coordinate R. This
approach is also well adapted to three-body continuum states
[8]. Of course, matrix elements between basis states (13)
are more demanding in terms of computer times, since they
involve seven-dimensional integrals (see next subsection),
which must be performed numerically.

The total wave function of the system is given by a super-
position of basis functions (13) as

�JMπ =
∑
γ K

N∑
i=1

f Jπ
γ Ki �

JMπ
γ K (Ri ), (16)

where N is the number of generator coordinates (typically
N ≈ 10). In this expansion, the summation over the hyper-
moment K is limited to a maximum value Kmax. As usual in
hyperspherical models, Kmax must be large enough to ensure
the convergence of the physical quantities (energies, radii,
etc.). Coefficients f Jπ

γ Ki represent the generator function, and
are obtained from a diagonalization of the Hamiltonian kernel.
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D. Matrix elements

The main part of the calculation concerns matrix elements between projected basis functions (13). The Hamiltonian kernel
reads

HJπ
γ K,γ ′K ′ (R, R′) = 〈

�Jπ
γ K (R)

∣∣H ∣∣�Jπ
γ ′K ′ (R′)

〉
=

∫
cos2 α sin2 α cos2 α′ sin2 α′ ϕ
x
y

K (α) ϕ

′

x

′
y

K ′ (α′)H̃J
γ ,γ ′ (R sin α, R cos α; R′ sin α′, R′ cos α′)dα dα′, (17)

where

H̃Jπ
γ ,γ ′ (R1, R2; R′

1, R′
2) = 〈

�̃Jπ
γ (R1, R2)

∣∣H ∣∣�̃Jπ
γ ′ (R′

1, R′
2)

〉
, (18)

with �̃Jπ
γ (R1, R2) given by Eq. (12). The projection over the hypermoment therefore represents a double integration over α

and α′. This quadrature is performed numerically. From Eq. (12), the matrix elements (18) involve eight angular integrals.
In fact, owing to the rotation invariance, three angles can be fixed, which leads to five-dimensional integrals. The calculation
provides

〈
�̃Jπ

γ (R1, R2)
∣∣H ∣∣�̃Jπ

γ ′ (R′
1, R′

2)
〉 = 8π2

2J + 1

∑
ML,M ′

L,ν,ν ′
〈I ν L ML|J ν + ML〉〈I ′ ν ′ L′ M ′

L|J ν ′ + M ′
L〉

×
∫ [

Y ∗

x

(�X ′ ) ⊗ Y ∗

y

(0, 0)
]LML

[
Y
x′ (�X ′ ) ⊗ Y
y′ (θY ′ , 0)

]L′M ′
L

× 〈
�I23Iν

c1
(RRR1,RRR2)

∣∣H ∣∣�I ′
23I ′ν ′

c′
1

(RRR′
1,RRR′

2)
〉
d�X d�X ′ sin θY ′dθY ′ , (19)

where RRR2 is along the z axis and RRR′
2 is in the xz plane. This

expression is also valid for other rotation-invariant operators.
A generalization to operators, such as the electromagnetic
operators, is straightforward.

The calculation of the matrix elements (18) is therefore
performed in several steps:

(i) Matrix elements between Slater determinants
A�̄i�

ν2
2 �

ν3
3 are first computed. One-body operators

involve double sums over the individual orbitals,
whereas two-body operators involve quadruple sums.
When dealing with three s clusters, the quadruple
sums contain 34 terms, but this amounts to 64 when
one cluster belongs to the p shell. Compared to
previous works on 6He or 12C this property makes the
calculations 16 times longer.

(ii) Matrix elements between wave functions (7) are then
constructed with the transformation coefficients (6).
The number of three-cluster Slater determinants is
given by NS (2I2 + 1)(2I3 + 1). For 6He, this number
is 4, since the core is an α particle. For 11Li, in
contrast, the core involves 90 functions, and the total
number of Slater determinants (7) is therefore 360.

(iii) The next step is to compute the projected matrix ele-
ments (19), which involve five numerical quadratures
(typically ≈16–20 points are used for each angle).

(iv) Finally the projection over the hypermomentum is
performed with (17). For a given set of generator
coordinates (R, R′), all integrals are evaluated simul-
taneously.

This process must be repeated for all sets of (R, R′) values.
For systems such as 11Li, which involve many Slater determi-
nants, the full calculation is extremely time consuming. This

can be achieved with an optimization of the codes, and using
modern computing facilities. In practice, a parallelization is
performed over the hyperangles α and α′ in Eq. (17). Let me
also mention that the total number of basis functions (i.e., the
size of the matrices) can be as large as 20000. This raises
precision issues since the basis is (highly) nonorthogonal.

III. APPLICATION TO LIGHT EXOTIC NUCLEI

A. Conditions of the calculations

The calculations are performed with the Volkov V2
nucleon-nucleon interaction [13]. For the oscillator parameter,
I use b = 1.60 fm, a standard value for p-shell nuclei. The
optimal b value stems from a compromise: to reproduce
the core radius, and to minimize the binding energy of the
core. Small variations of b can be compensated by a slight
readjustment of the nucleon-nucleon interaction. The first step
is to determine the core wave functions (6), as mentioned
in Sec. II B. Including all p-shell configurations provides
(90,15,20,6) Slater determinants �̄i [see Eq. (5)] for 9Li, 12Be,
13B, and 15N, respectively. The possible quantum numbers
(I, L, S, T ) are discussed in the Appendix. For 9Li, which has
a I = 3/2− ground state, I limit the states to I = 1/2, 3/2,
and to T = 3/2 to keep the size of the basis within acceptable
values.

Values of the generator coordinate R are selected from 1.5
to 15 fm with a step of 1.5 fm. For the maximum hypermo-
mentum, I use Kmax = 16. These conditions are sufficient to
ensure the convergence of the energies and r.m.s. radii.

The central V2 interaction is complemented by a zero-
range spin-orbit force with amplitude S0 [7]. This amplitude
is fixed to 40 MeV fm5, except for 11Li, where I use S0 =
50 MeV fm5. The Volkov potential contains the admixture
parameter M, whose standard value is M = 0.6. This value,
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FIG. 2. Ground-state energies (with respect to the core + n + n
threshold) as a function of the maximum hypermomentum Kmax. The
dotted lines are obtained by neglecting core excitations.

however, can be slightly modified without changing the fun-
damental properties of the interaction. The aim is to reproduce
exactly the ground-state energies. For weakly bound nuclei,
the properties are sensitive to the long-range part of the wave
function, and therefore to the binding energies. With M =
0.7750, 0.6119, 0.5945, and 0.6177, I reproduce the experi-
mental two-neutron separation energies S2n of 11Li, 14Be, 15B,
and of 17N, respectively (0.370 MeV, 1.27 MeV, 3.75 MeV,
and 8.37 MeV [24]).

In Fig. 2, I present the convergence of the ground-state en-
ergies with the maximum hypermomentum Kmax. In all cases,
Kmax = 16 guarantees a good convergence. In this general
overview, I also evaluate the importance of core excitations.
In Fig. 2, the dotted lines represent the energies obtained
by neglecting core excitations. This is done in Eq. (20) by
keeping only γ values corresponding to the ground state of the
core. In 14Be and in 15B, this effect is of the order of 0.6 MeV.
It is quite small in 17N: core excitations are negligible in the
ground state. For 11Li, the ground state is unbound if core
excitations are neglected. The energy difference is of the order
of 0.9 MeV.

I discuss now the properties of each nucleus by increasing
mass, except for 11Li, which I present as last application since,
by far, it is the most complicated.

B. 14Be as a 12Be + n + n system

Before considering a full diagonalization of the basis,
I first display the energy curves, where a single value of
the generator coordinate R is considered. The energy curves
EJπ

i (R) are therefore obtained from the eigenvalue problem∑
K ′γ ′

[
HJπ

γ K,γ ′K ′ (R, R) − EJπ
i (R)NJπ

γ K,γ ′K ′ (R, R)
]

f Jπ
γ ′K ′ = 0, (20)

where NJπ
γ K,γ ′K ′ (R, R′) is the overlap kernel. They provide a

useful overview of the system. From the attractive or repulsive
character, one can predict the existence of bound states (or of
narrow resonances). In all cases, the three-body threshold is
subtracted.

FIG. 3. 12Be + n + n energy curves (20) for different Jπ -values.

The 12Be + n + n energy curves are displayed in Fig. 3. In
positive parity, there is a minimum for J = 0+ and J = 2+,
which correspond to the 14Be ground state and to the 2+
resonance, respectively. In negative parity, the 0− and 2−
curves are repulsive. There is a shallow minimum for J = 1−,
which might be associated with a broad resonance. A deeper
analysis of such resonances, however, would require a specific
formalism for continuum states [8], and is beyond the scope
of the present work.

An interesting characteristic of the system is provided
by the energy convergence as a function of the maximum
R value, which I denote as Rmax. In Fig. 4, I show 14Be
energies obtained by increasing the N value in Eq. (16) or,
in other words, by increasing Rmax. Two different behaviors
can be clearly observed. The 0+ and 2+ energies are almost
stable above Rmax ≈ 10 fm, and present a plateau. The 2+
energy is 0.25 MeV, in nice agreement with experiment
(0.28 ± 0.01 MeV [25]). This result emphasizes the impor-
tance of a microscopic theory; a non-microscopic three-body
model, based on 12Be + n and on n + n phenomenological
interactions, does not reproduce the 0+ and 2+ energies
simultaneously [26]. The 12Be(g.s.) + n + n component is
87% in the ground state, and 67% in the 2+ resonance. This
means that core excitations play a role, and may explain
why nonmicroscopic models, which ignore core excitations,

FIG. 4. Convergence of 14Be energies with respect to the maxi-
mum generator coordinate Rmax.
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FIG. 5. Convergence of the 14Be squared radius as a function of
the maximum generator coordinate Rmax. The two first 0+ and 2+

eigenvalues are shown.

cannot predict the 2+ energy accurately. The other curves
in Fig. 4 do not present a plateau, which means that no
further narrow resonance can be expected. In particular, the
1− curve is typical of a continuum state where, according to
the variational principle, the minimum energy is zero.

Another useful method to distinguish between narrow and
broad resonances is to analyze the convergence of the r.m.s.
radius 〈r2〉 as a function of Rmax. This is displayed in Fig. 5.
The 0+ and 2+ low-lying states reach convergence near
Rmax ≈ 12 fm. In contrast, the second eigenvalues present
a diverging behavior at large Rmax. This is expected since,
strictly speaking, matrix elements involving continuum states
diverge. Although I cannot specifically address continuum
states, this technique allows a clear distinction between nar-
row and broad resonances. It is consistent with the energy
convergence shown in Fig. 4, and confirms that r.m.s. radii
in the continuum should be considered very carefully.

The ground-state radii are presented in Table I, and com-
pared with experiment. The neutron radius is in nice agree-
ment with experiment. The experimental proton radius, how-
ever, is significantly larger than the predicted value. This is
difficult to understand from a 12Be + n + n model, where
the 14Be proton radius should be close to the core proton

TABLE I. Proton, neutron and matter radii (in fm).

√〈r2〉p

√
〈r2〉n

√
〈r2〉m

Th. Exp. Th. Exp. Th. Exp.

14Be 2.10 3.00(36)a 3.24 3.22(39)a 2.96 3.16(38)a

15B 2.23 2.56(8)b 2.82 2.64 2.75(6)b

17N 2.32 2.61 2.49 2.48(5)c

17Ne 2.69 3.04(2)d 2.32 2.54 2.75(7)d

11Li 1.97 2.467(37)e 3.12 3.36(24) 2.85 3.27(24)f

aReference [27].
bReference [28].
cReference [29].
dReference [30].
eReference [31].
fReference [32].

radius. Experimental values are partly model dependent, and
a reanalysis of the 14Be charge radius would be welcome.

Notice that the radii are slightly sensitive to the oscillator
parameter b. From the total matter radius

√
〈r2〉m, one can

define the expectation value of the hyperradius 〈r2〉 from

A
〈
r2

m

〉 = A1
〈
r2

1

〉 + 〈r2〉, (21)

where
√

〈r2
1〉 is the core radius. In the shell model, this quan-

tity is proportional to b and takes the values 〈r2
1〉 = 49b2/24

for 12Be, 〈r2
1〉 = 27b2/13 for 13B, 〈r2

1〉 = 32b2/15 for 15N and
15O, and 〈r2

1〉 = 17b2/9 for 9Li. In contrast 〈r2〉, which is
associated with the external neutrons, weakly depends on the
oscillator parameter. For compact states, 〈r2〉 is small and the
matter radius approximately varies linearly with b. For halo
states, however, 〈r2〉 is the dominant term, and the matter
radius is almost insensitive to the oscillator parameter.

C. 15B as a 13B + n + n system

The 15B ground state is known to be bound by 3.77 MeV.
Although the spin assignment is no definite, there are strong
indications for a spin J = 3/2−. Two excited states at Ex =
1.336 MeV and Ex = 2.743 MeV have been reported in
Ref. [33]. On the theoretical side, shell-model [34] and an-
tisymmetrized molecular dynamics (AMD, see Ref. [35]) cal-
culations have been performed. Nonmicroscopic calculations
are unavailable until now, essentially due to the lack of reliable
13B + n potentials.

In Fig. 6, I present the energy curves of 15B. As expected,
the lowest energy is obtained for J = 3/2−. I may also expect
other bound states, corresponding to minima in the energy
curves. The GCM spectrum, including all generator coordi-
nates, is presented in Fig. 7. The theoretical spectrum shown
in Fig. 7 is remarkably supported by experiment [33], al-
though there is no spin assignment. The amount of 13B(g.s.) +
n + n component is shown for the GCM calculation. As sug-
gested by Fig. 6, the role of core excitation is small in 15B. As
for 14Be, the positive-parity energy curves are not completely
repulsive, but do not support narrow resonances. A more
reliable study of positive-parity states in 15B would require
introducing sd-shell components in the 13B wave functions.
This would considerably increase the computer times, and is
not feasible at the moment.

The proton and matter radii, given in Table I are in reason-
able agreement with experiment. The theoretical radius of the
13B core is 2.31 fm, which means an increase of 0.33 fm for
15B.

Let me briefly discuss the 15Ne mirror nucleus, which has
been addressed experimentally in Ref. [36] and theoretically
in Ref. [37]. The ground state and first excited state have been
observed in two-neutron knockout reactions from a 17Ne beam
at 2.5 and 4.4 MeV above the 13O + p + p threshold. Both
states are expected to be broad.

In the present model, the 15B and 15Ne mirror nuclei are
studied in the same conditions. The energy curves are shown
in Fig. 6(b). The 3/2− and 5/2− curves present minima, which
are associated with the ground and first excited states. These
minima are close to the Coulomb barrier, and clearly suggest
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FIG. 6. (a) 13B + n + n energy curves (20) for different Jπ

values. For negative parity, two eigenvalues are displayed.
(b) 13O + p + p energy curves.

continuum states. According to the higher centrifugal barrier,
however, the 5/2− excited state could be narrower than the
3/2− ground state. The 15Ne spectrum is shown in Fig. 7.
Although the GCM energies are obtained in the bound-state

FIG. 7. 15B and 15Ne energy spectra, compared with experiment
[33,36]. Numbers at the left of the GCM states correspond to the
amount of 13B(g.s.) + n + n configuration (in %). For 15Ne, the
hatched areas indicate broad resonances.

FIG. 8. 15N + n + n energy curves (20) for different Jπ values.

approximation, the results are close to the energies observed
experimentally [36].

D. 17N as 15N + n + n and 17Ne as 15O + p + p systems

Microscopic calculations involving a 15N or a 15O core
are relatively simple since only the ground state 1/2− and
the first excited state 3/2− are present in the 0h̄ω shell
model. A previous three-cluster microscopic calculation was
performed in Ref. [38], where the main goal was to address the
possible existence of a proton halo in 17Ne. Figure 8 shows the
energy curves, which present a minimum near R = 0 for neg-
ative parity. This suggests a compact structure for negative-
parity states, in contrast with the other systems considered
here.

The 17N spectrum is displayed in Fig. 9. The general
agreement with experiment is reasonable but, as in Ref. [38]
the ordering of the two first excited states is incorrect. For
all states the 15N(g.s.) + n + n component is dominant. No

FIG. 9. 17N and 17Ne energy spectra, compared with experiment
[44]. Only negative-parity states are shown. Numbers at the left of
GCM states correspond to the amount of 15N(g.s.) + n + n configu-
ration (in %).
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TABLE II. E2 electromagnetic transition probabilities (in e2fm4)
in 17Ne. No effective charge is used.

GCM Exp.

1/2− → 5/2− 92.9 90 ± 18 [43], 124 ± 18 [42]

1/2− → 3/2− 68.0 68+19
−25 [41]

5/2− → 3/2− 7.1

positive parity state is found, as suggested by the repulsive
energy curves of Fig. 8.

The 17Ne spectrum is studied with the same nucleon-
nucleon interaction; the Majorana parameter is the same as
in 17N. The GCM reproduces the binding energy very well
(−1.05 MeV in the model, to be compared to the experimental
value −0.93 MeV), which shows that the Coulomb shift is
accurately described.

Electromagnetic transitions have been suggested to be a
valuable tool to investigate the structure of 17Ne [39,40]. The
E2 transition probabilities have been studied by relativistic
Coulomb excitation with a 17Ne radioactive beam [41–43].
The B(E2) values, computed without any effective charge, are
presented in Table II. The B(E2, 1/2− → 5/2−) GCM value
is in excellent agreement with the latest data of Marganiec
et al. [43]. The experimental value of Chromik et al. [42] is
larger, but is probably influenced by nuclear effects, which
have been dismissed in the analysis [43]. The transition to the
3/2− state is also well reproduced, which shows that the GCM
wave functions are reliable.

The matter radius of the 17N ground state, given in Table I,
is an excellent agreement with experiment [29]. For 17Ne,
however, even if the binding energy is lower, the GCM does
not support the large difference with 17N. I rather confirm the
conclusion of Ref. [38], that there is no evidence for a proton
halo in 17Ne.

E. 11Li as a 9Li + n + n system

The 11Li nucleus has been studied in many experimental
and theoretical works. The very low binding energy (S2n =
0.367 MeV [24]) is responsible for a remarkable halo struc-
ture, as suggested by the large r.m.s. radius. The present cal-
culation is made difficult because of the large number of Slater
determinants (90) involved in the 9Li core. A previous micro-
scopic three-cluster study was performed in Ref. [45], but with
a frozen triangular geometry. In Ref. [46], the authors describe
the core in an α + t + n + n multicluster configuration.

The 9Li + n + n energy curves are displayed in Fig. 10. A
minimum is obtained for J = 3/2− and, to a lesser extend, for
J = 1/2−. The 3/2− minimum corresponds to the 11Li ground
state. The role of core excitations is illustrated in Fig. 2.
When core excitations are neglected, the state is unbound.
The importance of core excitations was already pointed out
in Ref. [46]. In contrast with the previous examples, where
the neutron number of the core N = 8 corresponds to a closed
shell, the various 9Li + n + n configurations are not orthogo-
nal to each other. Consequently, a ground-state component in
11Li cannot be estimated.

FIG. 10. 9Li + n + n energy curves (20) for different Jπ values.

The proton, neutron and matter radii are presented in
Table I. The calculation confirms the large enhancement of
the matter radius, compared to the 9Li core [the shell-model
value is

√
〈r2〉m(9Li) = b

√
17/9 = 2.20 fm]. The GCM value

is, however, slightly smaller than experiment. For the proton
radius, the experimental 11Li value (2.467 fm) is signifi-
cantly larger than the 9Li value (2.217 fm), which suggests
that the neutron halo of 11Li affects the core [31,47]. In
the present model, the 9Li proton radius is

√〈r2〉p(9Li) =
b
√

4/3 = 1.84 fm. The difference between 11Li and 9Li is
therefore 0.13 fm, which is smaller than experiment (0.25 fm)
(see a detailed discussion in Refs. [31,47]).

IV. CONCLUSION

The main goal of the present work is to extend the hyper-
spherical formalism to microscopic three-cluster models. The
hyperradial functions are expanded over a Gaussian basis us-
ing the generator coordinate method. Then the wave functions
are expressed in terms of projected Slater determinants. This
approach is well adapted to multicluster systems. With a sin-
gle generator coordinate, it provides an accurate description
of the wave functions, even at long distances. The calculations
of the matrix elements, however, require very long computer
times, owing to the seven-dimension integrals necessary for
the angular momentum projection. The extension to p-shell
cores raises additional difficulties due to (i) the quadruple
sums involved in the matrix elements of two-body interac-
tions; (ii) the presence of several Slater determinants; (iii) the
introduction of core excited states. The calculations are made
possible thanks to an efficient parallelization of the computer
code.

The model has been applied to some exotic light nuclei:
14Be, 15B, 17Ne, and 11Li. In all cases, the only parameter
(the admixture parameter M involved in the Volkov nucleon-
nucleon interaction) is adjusted on the ground-state energy.
For 14Be, the 2+ excitation energy is well reproduced, in
contrast with nonmicroscopic models. The GCM spectrum
of 15B is in nice agreement with the experimental energies.
An exploratory study of the 15Ne mirror system, which is
unbound, is consistent with the experimental energies, and
suggests that the first excited state is narrower than the ground
state. The 17N spectrum presents many states, which, in
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general, are fairly well reproduced by the GCM. The ground
state is confirmed to be 1/2−, but the order of the first two
excited states in incorrect, as in Ref. [38]. In the 17Ne mirror
nucleus, the ground-state energy, as well as E2 transition
probabilities are in good agreement with experiment. For
11Li, calculations are extremely long, owing to the 90 Slater
determinants involved in the core. The neutron and matter
radii are explained fairly well, but the proton radius is smaller
than the experimental value.

The present model could be extended to deal with three-
body continuum states [8]. On the other hand, the wave
functions could be used as an input to determine scattering
cross sections, as it was done for 6He for example [9].

ACKNOWLEDGMENTS

P. D. is Directeur de Recherches of F.R.S.-FNRS, Belgium.
This work was supported by the Fonds de la Recherche Scien-
tifique - FNRS under Grant No. 4.45.10.08. It benefited from
computational resources made available on the Tier-1 super-
computer of the Fédération Wallonie-Bruxelles, infrastructure
funded by the Walloon Region under the Grant Agreement
No. 1117545.

APPENDIX: CORE WAVE FUNCTIONS

In this Appendix I give some detail about the core wave
functions (5). The quantum numbers (I, L, S, T ) are given in
Table III. First, the list of functions �̄i is determined, and is
then used to diagonalize the operators III2,LLL2,SSS2, and TTT 2. The
diagonalization provides eigenvalues and coefficients dIνLST

i ,
which do not depend on the Hamiltonian.

TABLE III. Quantum numbers (I, L, S, T ) of the core wave
functions. n is the degeneracy.

I T S L n

9Li 1/2 3/2 1/2 0 1
1 2

3/2 1 1
2 2

5/2 1/2 1 1
3/2 3/2 1/2 1 2

2 2
3/2 0 1

1 1
2 1

5/2 1/2 1 1
5/2 3/2 1/2 2 2

3 1
3/2 1 1

2 1
7/2 3/2 1/2 3 1

3/2 2 1
12Be 0 2 0 0 1

1 1 1
1 2 1 1 1
2 2 0 2 1

1 2 1
13B 1/2 3/2 1/2 1 1

3/2 3/2 1/2 1 1
1/2 2 1
3/2 0 1

5/2 3/2 1/2 2 1
15N 1/2 1/2 1/2 1 1

3/2 1/2 1/2 1 1
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