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Predictions of nuclear β-decay half-lives with machine learning
and their impact on r-process nucleosynthesis
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Nuclear β decay is a key process to understand the origin of heavy elements in the universe, while the accuracy
is far from satisfactory for the predictions of β-decay half-lives by nuclear models to date. In this work, we
pave a novel way to accurately predict β-decay half-lives with the machine learning based on the Bayesian
neural network, in which the known physics has been explicitly embedded, including the ones described by
the Fermi theory of β decay, and the dependence of half-lives on pairing correlations and decay energies. The
other potential physics, which is not clear or even missing in nuclear models nowadays, will be learned by the
Bayesian neural network. The results well reproduce the experimental data with a very high accuracy and further
provide reasonable uncertainty evaluations in half-life predictions. These accurate predictions for half-lives with
uncertainties are essential for the r-process simulations.
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I. INTRODUCTION

The origin of heavy elements, e.g., how and where the
rare elements such as gold and platinum were created in the
Universe, is a fascinating but still unanswered question of
physics [1]. It relates to many branches of science, notably
astrophysics and nuclear physics [2], so the answer to this
question necessitates joint efforts of scientists from various
fields. The rapid neutron-capture process (r process) is re-
sponsible for producing about half of the elements heavier
than iron (Fe) and, in fact, the only mechanism for producing
elements beyond Bi. However, the understanding of the r
process still remains mysterious from the points of view
of nuclear physics and astrophysics. Recent multimessenger
observations including the gravitational-wave signal and mul-
tiwavelength electromagnetic counterparts strongly support
the neutron-star merger to be a site of the production of
heavy elements via the r process [3–5]. On the other hand,
the measurements of nuclear properties also achieved great
progress with the development of radioactive ion beam (RIB)
facilities, especially the region around N = 82 [6–12]. These
new observations and measurements make the r process a very
hot topic in physics nowadays.

The r process which accounts for the origin of many
heavy elements involves many unstable neutron-rich nuclei,
namely the exotic ones. The experimental measurements are
approaching the r-process paths around N = 82, while still
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far from ones around N = 126. Consequently, the reliable
theoretical predictions of nuclear properties are necessary to
the r-process simulations. Nuclear β decay is a decay process
of a nucleus where it emits an electron and a neutrino, and
hence it generates the new element with the proton number
larger than parent nucleus. Therefore, nuclear β decay governs
the abundance flow between neighboring isotopic chains in
the r process and plays a key role in understanding the
origin of heavy elements. However, the predictions of nuclear
β-decay half-lives are rather difficult for nuclear theory due to
the complexity in both interactions and nuclear many-body
calculations. The accurate predictions of nuclear β-decay
half-lives still remain an important but unsolved problem
in nuclear physics. Theoretically, massive efforts have been
devoted to this topic by developing the nuclear models based
on various approximations or in a limited configuration space,
such as gross theory (GT) [13–16], the quasiparticle random-
phase approximation (QRPA) approach [17–27], and the shell
model [28–32]. Unfortunately, the evaluations of theoretical
uncertainties of β-decay half-lives are still very scarce in
the literature, although they are essential to understand the
reliability of theoretical predictions and further their impacts
on the r process [33].

Machine learning, such as the pattern recognition and
classification tasks, has been widely applied in engineering. It
is very powerful in extracting pertinent features for complex
nonlinear systems with complicated correlations, which are
hard or even impossible to be tackled by traditional models.
Therefore, it also provides a powerful tool in physics research,
including particle physics [34–36] and condensed matter
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physics [37,38]. In nuclear physics, machine learning has been
introduced to predict some nuclear properties based on the
traditional neural network [39–43]. Comparing with conven-
tional nuclear models, it constructs a neural network complex
enough to predict nuclear properties accurately with many
parameters, which in general accompanies with the overfit-
ting problem and undetermined theoretical uncertainties. In
contrast, machine learning with a Bayesian neural network
(BNN) approach [44–48] can avoid overfitting automatically
by including prior distribution and can quantify the uncertain-
ties in its predictions naturally. Therefore, it is quite promising
to predict nuclear β-decay half-lives accurately and give
reasonable uncertainty evaluations with the BNN approach.

To better predict nuclear properties, it is important to
include those well-known physics as much as possible be-
fore applying a BNN approach. Therefore, a more effective
strategy is to use the BNN approach to improve the predic-
tions of nuclear models. In this work, we will first propose
a theoretical formula to predict nuclear β-decay half-lives
based on the Fermi theory, and the BNN approach is then
employed to improve the predictions of β-decay half-lives.
The basic formulas of nuclear β-decay half-lives and BNN
approach will be given in Sec. II. The results of β-decay
half-lives and their impacts on solar r-process simulations will
be discussed in Sec. III. Finally, a summary and perspectives
will be presented in Sec. IV.

II. NUCLEAR β-DECAY HALF-LIVES AND BAYESIAN
NEURAL NETWORK APPROACH

Let us start with the well-known Fermi theory of β decay
[49], in which the nuclear β-decay half-life in the allowed
Gamow-Teller approximation is predicted by

T1/2 = D

g2
A

∑
Em<Qβ

B(Em) f (Z, A, Em)
, (1)

where D = 6163.4 s and gA is the effective weak axial
nucleon coupling constant. B(Em) is the transition strength
from the ground state of the parent nucleus to the excited
state m of the daughter nucleus as a function of transition
energy Em. The total β-decay energy Qβ = mP − mD − me,
where mP, mD, and me are the masses of parent nucleus,
daughter nucleus, and electron, respectively. f (Z, A, Em) is
the integrated lepton (e−, ν̄e ) phase volume, where Coulomb
screening and relativistic nuclear finite-size corrections have
been considered [19].

When Em � me, nuclear half-lives are mainly determined
by f (Z, A, Em ) since it is proportional to E5

m. However, the
accurate predictions of B(Em) are still very difficult for present
nuclear models, which can only reproduce experimental half-
lives within a few orders of magnitude. Therefore, we could
approximatively predict nuclear half-life with

T1/2 = a/ f (Z, A, Em), (2)

where Em is estimated by Em = Qβ − b(1 − δ)/
√

A with δ =
1, 0,−1 for even-even nuclei, odd A nuclei, and odd-odd
nuclei, respectively. In this work, the Qβ are calculated using
the mass predictions of WS4 model [50]. The parameters
a = 4.96 and b = 8.51 are determined by the best fitting

to experimental β-decay half-lives from NUBASE2016 [7],
while only those nuclei with Z, N � 8, T1/2 � 106 s, and
decaying 100% by the β− mode are considered.

Since nuclear half-lives vary by many orders of magnitude,
the root-mean-square (rms) deviation of logarithm of half-life
log10(T1/2) is usually employed to evaluate the accuracy of
nuclear models

σrms(log10 T1/2) =
√∑n

i=1

[
log10

(
T exp

1/2 /T th
1/2

)]2
i

n
, (3)

where T exp
1/2 and T th

1/2 are the experimental and theoretical
half-lives, respectively, and n is the number of nuclei in
a given evaluation set. In this work, the experimental data
are taken from NUBASE2016, in which only those nuclei
with Z, N � 8, T1/2 � 106 s, and decaying 100% by the β−
mode are considered. It is surprising that this “oversimpli-
fied” formula can already reproduce the known half-lives
with σrms(log10 T1/2) = 0.81, although it cannot account for
the distribution of the Gamow-Teller strengths and possible
impact of the first-forbidden transitions. This accuracy is even
similar to that obtained by the sophisticated QRPA model
based on the finite-range droplet model (FRDM) [23], whose
σrms(log10 T1/2) is 0.82. Similar empirical formulas had been
used in the early estimates of β-decay half-lives used for
the canonical r-process studies [51]. Taking Ni isotopes as
typical examples, it is shown in Fig. 2 that Eq. (2) generally
reproduces the data within less than one order of magnitude of
accuracy, while showing systematic overestimation of nuclear
β-decay half-lives with too-strong odd-even staggering. Such
discrepancies from the data, which account for the physics
missing in nuclear models, will be dealt with using the BNN
approach in this work.

In the Bayesian approach, the model parameters ω are
described probabilistically while they are not fixed values
as in our traditional view. Suppose we have a set of data
D = {(x1, t1), (x2, t2), . . . , (xn, tn)}, where xk and tk (k =
1, 2, . . . , n) are input and output data and n is the number of
data. Then the probability distribution of ω after the data D are
taken into account, the posterior distribution p(ω|D), is given
based on Bayes’s theorem,

p(ω|D) = p(D|ω)p(ω)

p(D)
∝ p(D|ω)p(ω), (4)

where p(ω) is prior distribution based on our background
knowledge, p(D|ω) is the likelihood function, and p(D) is a
normalization constant, which ensures the posterior distribu-
tion is a valid probability density and integrates to 1.

In this work, the prior distributions p(ω) are set as Gaus-
sian distributions with zero means. The precisions (inverse of
variances) of these Gaussian distributions are set as gamma
distributions as in Ref. [47], which can make the precisions
vary over a large range and the optimal values of precisions
are then automatically found during the sampling process.
The likelihood function p(D|ω) usually employ a Gaussian
distribution, p(D|ω) = exp(χ2/2), where

χ2 =
N∑

n=1

[
S(x; ω) − tn

�tn

]2

. (5)
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FIG. 1. A schematic diagram for a neural network with a single
hidden layer, four neurons (H = 4), and two input variables (I = 2).

Here �tn is the associated noise error, and the inverse of its
square 1/�t2

n is set to a gamma distribution as in Ref. [47].
The function S(x; ω) in the BNN approach is a neural network,
i.e.,

S(x; ω) = a +
H∑

j=1

b j tanh

(
c j +

I∑
i=1

d jixi

)
, (6)

where x = {xi} and ω = {a, b j, c j, d ji}. H and I are the
number of neurons in the hidden layer and the number of
input variables, respectively. A schematic diagram for a neural
network with a single hidden layer, four neurons (H = 4), and
two input variables (I = 2) is shown in Fig. 1.

After specifying the the prior distribution p(ω) and likeli-
hood function p(D|ω), the posterior distribution p(D|ω) can
then be obtained by sampling using the Markov chain Monte
Carlo algorithm. With the posterior distribution p(D|ω), the
BNN prediction can be calculated by

〈S〉 =
∫

S(x; ω)p(D|ω)dω, (7)

whose uncertainty is estimated using �S =
√

〈S2〉 − 〈S〉2.
In this work, the BNN approach is employed to reconstruct

residuals between log10(T exp
1/2 ) and log(T th

1/2), i.e.,

tk = log10

(
T exp

1/2

) − log
(
T th

1/2

) = log10

(
T exp

1/2 /T th
1/2

)
. (8)

The half-life predictions with BNN approaches are then as

T BNN
1/2 = T th

1/2 × 10S(x;ω), (9)

where T th
1/2 are calculated with Eq. (2) in the work. Since the

β-decay half-lives are sensitive to the pairing effects and the
decay energies, we further introduce δ and Qβ as the inputs
of neural network apart from Z and N , i.e., x = (Z, N, δ, Qβ ).
For comparison, another neural network with x = (Z, N ) is
also constructed. For simplicity, we will use BNN-I2 and
BNN-I4 to denote the BNN approaches with x = (Z, N ) and
x = (Z, N, δ, Qβ ), respectively. Their numbers of neurons are

FIG. 2. β-decay half-lives of Ni isotopes. The experimental val-
ues in NUBASE2016 are denoted by spheres. The half-life predic-
tions with Eq. (2) are shown by the dotted line, and their counterparts
improved by BNN-I2 and BNN-I4 approaches and their uncertainties
are shown by vertical line hatched region and green hatched region,
respectively. The mean predicted half-lives of the BNN-I4 approach
are marked by the dashed line. For comparison, the half-life predic-
tions of the DF3 + CQRPA model are shown by the solid line.

taken as H = 30 and H = 20, respectively. As mentioned
above, the experimental data are taken from NUBASE2016
[7] for those nuclei with Z, N � 8, T1/2 � 106 s, and decaying
100% by the β− mode. There are 1009 data that compose the
entire data set. We further separate the entire set into two dif-
ferent sets: the learning set and the validation set. The learning
set is built by randomly selecting 900 nuclei from the entire
set and the remaining 109 nuclei compose the validation set.

III. RESULTS AND DISCUSSION

Figure 2 shows the predictions of BNN-I2 and BNN-I4
approaches for Ni isotopes, in comparison with the ones given
by Eq. (2) and the data. It is found that the BNN-I2 approach
can eliminate the systematic overestimation of half-lives in
the predictions of Eq. (2), while its odd-even staggering still
remains. Implemented with the BNN-I4 approach, this odd-
even staggering is removed to a large extent and the resulting
predictions are in excellent agreement with the experimental
data. For comparison, the half-life predictions of the density
functional of Fayans (DF3) + continuum QRPA (CQRPA)
model [27] are shown by the solid line. The DF3 +CQRPA
model well reproduces the known half-lives of Ni isotopes
with N � 50 and slightly overestimates the known half-lives
of 79,80Ni. For Ni isotopes with N > 52, the half-life predic-
tions of DF3 + CQRPA agree well with the mean predicted
values of BNN-I4 approach. This may indicate that the BNN
approach, including some known physics, paves an effective
way for the reliable and accurate prediction of the nuclear
β-decay half-life. In the following, therefore, we will only
show our results based on the BNN-I4 approach.

As further illustration, taking N = 82 as examples, Fig. 3
shows the comparison between the predictions of BNN-I4
approach and other successful theoretical models, including
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FIG. 3. β-Decay half-lives of Ni isotopes and N = 82 isotones.
The predictions of the BNN-I4 approach are shown by the green
hatched regions. The experimental values in NUBASE2016 are
denoted by spheres. For comparison, the theoretical results from the
HFB-31 + GT2, RHB + QRPA, FRDM + RPA, ETFSI + CQRPA,
and DF3 + CQRPA models are shown by the dashed, dotted, dash-
dotted, dash-dot-dotted, and solid lines, respectively.

the Hartree-Fock-Bogoliubov (HFB-31) + GT2 [14], rela-
tivistic Hatree-Bogoliubov (RHB) + QRPA [24], FRDM +
QRPA [23], extended Thomas-Fermi plus Strutinsky integral
(ETFSI) + CQRPA [25], and DF3 + CQRPA [26] models.
Once again, the results of the BNN-I4 approach are in good
agreement with the experimental data and even completely
agree with the experimental data within uncertainties. On the
contrary, the results from other theoretical models usually
show some deviations from the experimental data. For exam-
ple, the HFB-31 + GT2 model generally underestimates the
known half-lives, the RHB + QRPA model overestimates the
known half-lives when Z � 50, the FRDM + QRPA model
shows strong odd-even staggering when 43 � N � 49, and
the ETFSI + CQRPA model slightly overestimates the known
half-lives. However, the DF3 + CQRPA model well repro-
duces the known half-lives. When extrapolated to the un-
known region, the uncertainties of BNN-I4 predictions in-
crease slightly for N = 82 isotones, and the predictions of
other theoretical models generally agree with the BNN-I4
predictions within uncertainties. Notice that the uncertainties
of BNN-I4 predictions increase remarkably for Ni isotopes
when extrapolated to the unknown region (see Fig. 2). It is
interesting to notice that the BNN-I4 half-life predictions of
Ni isotopes slowly decrease in the region N = 51–58 and
suddenly drop at N = 59. This phenomenon may originate
from the microscopic shell effect, since the last-occupied
single-neutron orbitals are all 1g7/2 for nuclei 79–86Ni as
indicated by the calculations with the mean-field model. Since
the uncertainties of the BNN predictions in this region are
large, future measurements on the half-lives of Ni isotopes are
necessary to confirm whether this phenomenon is real.

In order to evaluate the global reliability of BNN approach
to predict nuclear β-decay half-lives, the rms deviations
σrms(log10 T1/2) of BNN-I4 predictions with respect to the
experimental data from the learning set and the validation
set are presented in Figs. 4(a) and 4(b), respectively. For
comparison, the corresponding results based on RHB +

FIG. 4. The rms deviations σrms(log10 T1/2) with respect to the
known β-decay half-lives from the learning set (a) and the validation
set (b). In each panel, three sets of nuclei with T1/2 � 106 s, T1/2 �
103 s, and T1/2 � 1 s are used in the rms evaluations.

QRPA, FRDM + QRPA, and Eq. (2) are shown as well. It
can be clearly seen that the theoretical approaches in general
better reproduce the experimental data of nuclei with shorter
half-lives. The BNN-I4 approach significantly improves the
half-life predictions of Eq. (2) with much better accuracy than
the selected models not only for the learning set but also for
the validation set. It is worthwhile to mention that the nuclei
along or near the r-process path are in general characterized
by the typical half-lives less than 1 s. For these nuclei, which
are in particular our focus, the σrms(log10 T1/2) of BNN-I4
approach is only about 0.2. Namely the BNN-I4 approach can
describe these relevant nuclear half-lives within a factor of two
with respect to the experimental data (100.2 = 1.6). Such high
accuracy, which is achieved for the first time, is essential for
the r-process simulations.

Furthermore, with the present Bayesian scheme, it is nat-
ural to ask, “In case a few more nuclear half-lives are de-
termined toward the neutron-drip line, how can these new
data affect the predictions?” This is in particular an inter-
esting question, since it is foreseen that even with next-
generation RIB facilities it is still not feasible to reach all
the r-process-path nuclei experimentally. Here let us assume
that three more new β-decay half-lives were measured toward
the neutron-drip line for each isotope, which are taken as the
new experimental data in the BNN-I4 prediction. By further
including these new artificial data to the learning set, the
BNN-I4 approach is trained again. The resulting predictions
are shown in Fig. 5 by taking N = 126 isotones as examples,
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FIG. 5. β-Decay half-lives of N = 126 isotones. The green
hatched region shows the predictions of BNN-I4 approach, whose
learning data are only taken from NUBASE2016. The blue hatched
region shows results of BNN-I4 approach as well, while its learning
data are extended to include three extra β-decay half-lives for each
isotope (denoted by open circles) toward the neutron-drip line. The
experimental values in NUBASE2016 are denoted by spheres.

in which the original BNN-I4 results with learning data
only from NUBASE2016 are denoted with the green hatched
region and the blue one corresponds to the BNN-I4 results
with three more artificial learning data. As expected, in the
known region, even if the new artificial data are included,
the uncertainties of BNN-I4 predictions remain almost the
same as before. However, when extending the unknown re-
gion, the new artificial data make the uncertainties decrease by
about a factor of 3. It is very important to the r-process studies.
Although many r-process-path nuclei around N = 126 are
still hard to measure even in the new-generation RIB facilities,
this fact tells us the uncertainties of half-life predictions can
be significantly reduced with only a few more measured data
toward the neutron-drip line for each isotope.

Nuclear β-decay governs the r-process abundance flow be-
tween neighboring isotopic chains, so the uncertainties in nu-
clear β-decay half-lives would affect the r-process abundance
distributions [53]. Figure 6 presents the solar r-process calcu-
lations based on the classical r-process model [54–56]. In our
calculations, the experimental data including nuclear masses
[6] and β-decay half-lives [7] are used if available; otherwise,
we employed the WS4 model to determine the unknown
masses and the BNN-I4 approach for the half-lives. The un-
certainties bands in Fig. 6 for the solar r-process abundances
are due to the uncertainties of nuclear β-decay half-lives,
which come from the experimental errors if available and
otherwise come from the uncertainties estimated with BNN-I4
approach. The green and blue bands correspond to the results
without and with three new artificial data for each isotope
when training the BNN-I4 half-life predictions, respectively.

Notice that the measurements have approached the
r-process path at N = 82, while they are still far from the ones
around N = 126. As a result, the half-life uncertainties for
r-process-path nuclei around N = 82 are much smaller than
those for r-process-path nuclei around N = 126, see Figs. 3
and 5. Coincidentally, as shown Fig. 6, the uncertainties

FIG. 6. Impact of nuclear β-decay half-lives on solar r-process
calculations. The uncertainties bands for solar r-process abundances
are due to the uncertainties of nuclear β-decay half-lives. The green
and blue bands, respectively, correspond to the calculations using
BNN-I4 half-life predictions, whose learning data are whether to
include three new artificial β-decay half-lives for each isotope or not.
The solar r-process abundances [52] are denoted by filled circles.

of solar r-process calculations at A � 140 are significantly
larger than those at A � 140. However, as indicated by the
theoretical uncertainties with BNN-I4 approaches, it is quite
expectable that the large uncertainties for the r-process abun-
dances at A � 140 can be remarkably reduced with several
new data toward the neutron-drip line measured. It also in-
dicates that future relevant experiments would significantly
improve our understanding of the r process.

IV. SUMMARY AND PERSPECTIVES

In summary, the machine-learning approach based on the
Bayesian neural network is employed to predict nuclear β-
decay half-lives accurately and give reasonable uncertainty
evaluations. To possess better predictive power, a theoretical
formula for β-decay half-lives with only two parameters
is proposed based on the Fermi theory, which can already
reproduce the data in a similar precision as the sophisti-
cated FRDM + QRPA model. Then the BNN approach is
trained to improve the predictions of the proposed formula
by simulating the missing physics. It is found that after
including more physics features related to the pairing ef-
fects and the decay energies, the machine-learning approach
can precisely describe the general evolution of half-lives
along isotopic and isotonic chains, including the odd-even
effects which are difficult to be described by the nuclear
models. Relatively large uncertainties of the present BNN
half-life predictions are observed when extrapolated to the
unknown region. Future studies on the half-life predictions
with different BNN structures are envisaged, and a more
appropriate BNN structure may help to improve extrapola-
tion ability of BNN approach. Collaborating with the pre-
dicted nuclear β-decay half-lives and theoretical uncertain-
ties, the impact on the r-process abundance distributions is
further investigated. It is found that that the uncertainties of
β-decay half-lives have consistently large influence on the
solar r-process calculations when A � 140. Fortunately, as
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revealed by the BNN approaches, the large uncertainties can
be remarkably reduced if a few more nuclear half-lives are fur-
ther determined toward the neutron-drip line for each isotope.
It also becomes quite expectable that future measurements on
half-lives could substantially improve our understanding on
the r process.
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