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Two fits of the pairing residual interaction in the rare-earth region are independently performed. One is made
on the odd-even staggering of masses by comparing measured and explicitly calculated three-point binding-
energy differences centered on odd-even nuclei. Another deals with the moments of inertia of the first 2+ states of
well-deformed even-even nuclei upon comparing experimental data with the results of Inglis-Belyaev moments
(supplemented by a crude estimate of the so-called Thouless-Valatin corrections). The sample includes 24 even-
even and 31 odd-mass nuclei selected according to two criteria: They should have good rotor properties and
should not correspond to low pairing-correlation regimes in their ground states. Calculations are performed in the
self-consistent Hartree-Fock plus BCS framework (implementing a self-consistent blocking in the case of odd-
mass nuclei). The Skyrme SIII parametrization is used in the particle-hole channel and the fitted quantities are
the strengths of |Tz| = 1 proton and neutron seniority residual interactions. As a result, the two fits yield sets of
strengths in excellent agreement: about 0.1% for the neutron parameters and 0.2% for protons. In contrast, when
one performs such a fit on odd-even staggering from quantities deduced from BCS gaps or minimal quasiparticle
energies in even-even nuclei, as is traditional, one obtains results significantly different from those obtained in
the same nuclei by a fit of moments of inertia. As a conclusion, beyond providing a phenomenological tool for
microscopic calculations in this region, we have illustrated the proposition performed in the seminal paper of
Bohr et al. [Phys. Rev. 110, 936 (1958)] that moments of inertia and odd-even staggering in selected nuclei
were excellent measuring sticks of nuclear pairing correlations. Furthermore, we have assessed the validity
of our theoretical approach which includes simple yet apparently reasonable assumptions (seniority residual
interaction, parametrization of its matrix elements as functions of the nucleon numbers, and global Thouless-
Valatin renormalization of Inglis-Belyaev moments of inertia).

DOI: 10.1103/PhysRevC.99.064306

I. INTRODUCTION

Any phenomenological approach of a property of physical
interest relies on a safe fitting process of the parameters of the
theory which attempts to describe it. To do so, two necessary
conditions are required: (i) One must choose a quantity to be
reproduced which is, to a large extent, solely dependent on
the property under study, and (ii) this quantity should vary
with respect to the fitting parameters in a fast monotonic
fashion. More precisely, the range of the fitted parameters
corresponding to the relevant experimental error bars should
be considered as being small from the point of view of some
other physical considerations.

In this paper, we want to describe the spectroscopic prop-
erties of rare-earth nuclei within a self-consistent BCS-type
approach. Taking for granted that we have at our disposal a
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good effective nucleon-nucleon interaction in the particle-hole
channel, an important challenge is, thus, to fit the parameters
of the pairing residual interaction. In the rare-earth region,
the nuclei are far enough from the N = Z line so that, as
well known and easily checked, neutron-proton pairing is
inoperative. We will therefore restrict our paper to the consid-
eration of neutron-neutron, proton-proton (or |Tz| = 1) pairing
residual interactions.

This fit will be achieved in two independent ways: re-
producing either the odd-even staggering (OES) in ground-
state energies or the moment of inertia of well and rigidly
deformed nuclei. It is remarkable that these two properties
have been singled out as good indices of pair correlations
in the seminal paper of Bohr et al. [1] on the existence of
pair-correlated nuclear states analogous to superconducting
metallic states. These properties are quoted there after the
first evidence which is presented, namely, the difference of
particle-excitation nuclear spectra between even-even and
odd-mass systems. Although these differences in nuclear
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spectra are rather difficult to reproduce theoretically in a
systematic fashion, the OES and moments of inertia are now
within reach in tractable and reliable calculations and thus
well adapted to a fitting process.

We will demonstrate that the two approaches lead to
consistent results, thus substantiating at the same time the
theoretical underlying assumptions and their modelization.

II. PRINCIPLES OF THE FITS

A. Odd-even staggering of binding energies

Traditionally, it has been considered that a theoretical de-
scription of pairing-correlation properties should be adjusted
in such a way as to reproduce the OES observed in ground-
state energies. This energy staggering has been associated
approximately with the BCS gap parameter corresponding to
the single-particle (sp) state of the unpaired nucleon already
as we saw from the beginning [1], and this is regularly quoted
as such in textbooks (see, e.g., Refs. [2,3]). Fitting the pair-
ing residual interaction parameters has thus consisted in an
attempt to reproduce as best as possible in a BCS framework
pairing gaps deduced through some finite difference formulas
(see below for the discussion on how this is achieved) from
the consideration of the ground-state binding-energy surface
E (N, Z ) of nuclei with N neutrons and Z protons (see, e.g.,
Ref. [4]). This fitting protocol has been followed also in
extensive self-consistent Hartree-Fock plus BCS calculations
from their beginning (see Ref. [5]) and on in many instances
as quoted, for example, in the review paper of Ref. [6].

Within the BCS framework, we must be more specific. The
simplest approach deals with constant pairing matrix elements
of the so-called seniority residual interaction,

g(q) = 〈ii|̂vres| j j〉 − 〈ii|̂vres| j j〉, (1)

where the labels i and j refer to canonical basis states of
the charge state q and v̂res is the residual interaction operator
(as defined, e.g., in Ref. [7]). Indeed, one neglects, in that
case, the state dependence of these matrix elements with
the necessity of an energy cutoff of the otherwise divergent
corresponding calculations. As a consequence, this cutoff is a
primary parameter of the theory. Once this parameter is fixed,
one fits g(q) by equating the corresponding pairing gap �(q)

(identical for each canonical basis state of charge q) with some
version of the OES energy. Alternatively, one may fit (see,
e.g., Ref. [8]) this OES energy with the minimal quasiparticle
(qp) energy in which the sp energy is noted as ei,

E (q)
qp (i) =

√
(ei − λ(q) )2 + (�(q) )2, (2)

where λ(q) is the corresponding chemical potential. One intro-
duces, thus, a somewhat uncontrollable term (ei − λ(q) )2.

A more advanced approach uses a spin-singlet zero-range
(δ) local interaction,

v̂δ ∝ 1
4 (1 − σ̂1 · σ̂2)δ(r1 − r2), (3)

where σ̂ i’s are spin Pauli matrices. In line with the richer
structural properties of this interaction, its use in a BCS
formalism induces a state dependence of the pairing gaps. As a
consequence, the question of knowing which sp configuration

is to be chosen for the unpaired particle becomes an important
issue. Generally, one chooses the one yielding the lowest qp
energy, yet sometimes at the price of describing an intrinsic
configuration which might be different from the experimental
one.

These calculations have been generally performed, at least,
until rather recently, for even-even nuclei. This entails a priori
two deficiencies. Whatever the exact definition of the OES
energy, one obviously has to deal with odd-neutron or odd-
proton nuclei. In these systems, the pairing is quenched by the
Pauli reduction of available levels onto which the residual in-
teraction can perform pair transfers. Consequently, the pairing
correlations in even-even nuclei, and thus the corresponding
gaps, are overestimated with respect to what they are in the
adjacent odd systems. The second drawback is related to the
mean-field effect affecting the energy differences between
two neighboring nuclei. Indeed, the mean field can influence
pairing properties by changing the sp level density at the
Fermi surface first by the polarization effect. This may lead
to different equilibrium deformations. Moreover, the mean
field may affect the sp level density as a consequence of the
slight breaking of the time-reversal symmetry resulting from
an odd number of fermions. In systems with such a number
of nucleons, the self-consistency of the mean-field removes
the Kramers degeneracy of conjugate single-particle states as
discussed, e.g., in Refs. [9–11].

To minimize the polarization effect, one must not rely
on OES experimental estimates involving too long isotopic
or isotonic series since, particularly in transitional regions,
they may involve too large variations of sp level densities.
One will thus preferably fit a three-point mass difference
formula. As discussed in Refs. [12,13], such differences �(3)

q
centered around an odd-neutron (odd-proton, respectively) are
indeed good markers of the neutron (proton, respectively)
degree of pairing correlations. They are, to a large extent, free
from single-particle filling effects. Indeed, they are given, for
instance, for an isotopic series by

�(3)
n (N ) = (−1)N

2
[E (N + 1, Z ) − 2E (N, Z ) + E (N − 1, Z )]

(4a)

= (−1)N

2
[Sn(N, Z ) − Sn(N + 1, Z )], (4b)

where N is odd and Sn(N, Z ) is the experimental neutron
separation energy of a nucleus composed of N neutrons and Z
protons.

From above, one sees that centering the binding-energy
difference on an odd-N value prevents unwanted energy jumps
in the separation-energy differences caused by the occupation
of different sp states for the ejected nucleon.

In an approach where the fit is performed on energy gaps
(or qp energies), however, one does not evaluate directly ob-
servable quantities. In this paper, we compute explicitly OES
energies, namely, �(3)

q differences. This implies computing
total ground-state energies of three adjacent nuclei (either
isotopes or isotones), specifically two even-even nuclei and
one odd-mass nucleus. We perform these calculations within
the Hartree-Fock plus BCS framework with self-consistent
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blocking for odd-mass nuclei. In this approach, we take into
account time-odd components in the mean field when needed.
Even though, as above discussed, the �(3)

q terms are mostly
dependent on pairing properties, we can incorporate in such a
way small possible polarization effects.

B. Moments of inertia of well- and rigidly deformed nuclei

As noted in Ref. [1], the quenching of the moments of
inertia of well- and rigidly deformed even-even nuclei from
their rigid-body values constitute a clear manifestation of
the existence of pair correlations. It has received a physical
explanation in terms of a gradual alignment of the members
of the Cooper pairs, dubbed as the Coriolis antipairing effect
in Ref. [14]. This effect has been introduced phenomeno-
logically to modify the Inglis formula [15] in Ref. [16] by
inserting a pairing gap in the energy denominator. It has
found, later, a sound theoretical basis within the context of
a microscopic Routhian approach à la Thouless-Valatin [17],
by Belyaev [18] for rotations in an adiabatic regime. The
resulting so-called Inglis-Belyaev formula for the moments
of inertia corresponds, however, to a non-self-consistent ap-
proximation of the adiabatic time-dependent Hartree-Fock-
Bogoliubov (ATDFHB) approach of Baranger and Vénéroni
[19]. As discussed in Ref. [20] and more recently in Ref. [21],
it does not take into account the time-odd mean-field part
brought in by the time-odd component of the density matrix
generated by the collective motion. It has been shown [20]
that this omission entails a spurious reduction of the ATDFHB
moment of inertia estimated on average in Ref. [22] to be
approximately equal to 32%. This enhancement of the Inglis-
Belyaev moments will be referred to as the Thouless-Valatin
correction.

As has been clear from the first extensive calculations
within the Inglis-Belyaev framework (see, e.g., Ref. [23])
the moments of inertia are strongly dependent on the pair-
ing correlations. Increasing these correlations leads to a fast
decrease in these moments through the correlation-generated
counter-rotating intrinsic currents. Therefore, moments of
inertia qualify for the fit considered in this paper.

Specifically, we will fit the moment of inertia of the first
2+ states of well and rigidly deformed even-even nuclei in
the rare-earth region. The choice of such nuclear states is,
of course, prompted by the necessity to compare the above-
calculated adiabatic inertia parameters with the nuclear states
having the lowest available nonvanishing angular velocity. In
order for this comparison to make sense, one should also make
sure that the energy of this 2+ state corresponds to a pure
rotational excitation mode. This implies that the quantal shape
fluctuations around the classical equilibrium deformation are
limited so that the description of this nuclear state by a
single BCS wave function makes some sense. To assess this
approximation, microscopically based Bohr Hamiltonian cal-
culations of low-energy spectra have been recently performed
in this mass region by Rebhaoui and collaborators [24]. Many
rare-earth isotopes are indeed well deformed, having intrinsic
charge expectation values Q̂20 of 7 b or more, and may be
considered as good rotors with a ratio E4/2 of the energies
of the first 4+ and 2+ states in the 3.3 range. Rebhaoui and

collaborators showed that these isotopes do not show any
significant coupling of the rotational modes with β or γ

vibrational modes in their first 2+ states. As a conclusion,
the moment of inertia, being strongly dependent on pairing
correlations, satisfies the two criteria for a good fitting process
mentioned at the beginning of the Introduction.

III. THEORETICAL APPROACH

Our theoretical approach is based on the self-consistent
Hartree-Fock-BCS framework yielding an intrinsic state so-
lution for the nuclei of interest. A phenomenological Skyrme
effective nucleon-nucleon interaction is used. Axial and in-
trinsic parity symmetries are assumed.

Calculations of even-even nuclei are performed according
to the standard method described in Ref. [25], whereas in the
case of odd-mass nuclei, two approaches may be considered.

One is dubbed as the self-consistent blocking (SCB) frame-
work. Within this framework, the single-particle state occu-
pied by the unpaired nucleon is blocked by setting its occu-
pation probability to 1 whereas the occupation of its quasipair
partner (as defined below) is set to 0. These single-particle
states do not participate in the BCS pair-transfer process. The
time-reversal symmetry breaking inherent to the description
of a system with an odd number of fermions is reflected in the
Hartree-Fock field by the presence of time-odd terms which
are defined within the Skyrme formalism in terms of time-odd
densities, such as current and spin-vector densities among
others (see, e.g., Ref. [26] for details). The two quantum
numbers K and π , respectively, projection of the total angular
momentum on the symmetry z axis and parity, are taken as
those of the experimental Iπ quantum numbers of the nuclear
state which we want to describe. The assimilation of the
K quantum number to the total spin I is made here upon
assuming the validity of the Bohr-Mottelson unified model
description of rotational band heads in deformed nuclei in the
absence of Coriolis coupling.

Our restricted Bogoliubov qp transformation implies
quasipairs consisting in couples of almost time-reversed
states. These pairs are defined without ambiguity as described,
e.g., in Refs. [9,10] due to the small character of the time-
reversal symmetry breaking resulting from the odd number of
nucleons in such heavy nuclei.

In the second approach, called the equal filling approxima-
tion, one sets the occupation number of the blocked state and
its conjugate state to 0.5 and thus reestablishes artificially the
time-reversal symmetry (see, e.g., Ref. [27]). In that case, one
performs self-consistent calculations as one would do for the
ground state of an even-even nucleus.

The SIII parametrization [28] of the Skyrme effective
interaction has been chosen since it has been reported to
yield very good nuclear spectroscopic properties in early self-
consistent calculations (see, e.g., Refs. [29,30]). It has been
shown to meet with reasonable success in the reproduction of
the spin and parity of odd-A nuclei in the systematic study
of Ref. [31]. It is still used in recent studies, for instance, in
Refs. [10,32–34].

As already mentioned within our BCS framework, the pair-
ing interaction is approximated using a spin-singlet seniority
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force. Its matrix elements g(q) for the charge state q are given
in terms of a parameter Gq and the corresponding number
of particles Nq, according to a parametrization introduced in
Ref. [8],

g(q) = − Gq

11 + Nq
. (5)

Indeed, since we are dealing with heavy nuclei not too far
from the valley of stability, we content ourselves by dealing
only with |Tz| = 1 pairing. Moreover, we note that there is
a priori no reason for the residual interaction to be such
that g(n) = g(p) since these matrix elements depend on the
corresponding different mean fields. Moreover, the truncated
single-configuration spaces on which these residual interac-
tions are projected are different, and finally, one must account
for the Coulomb antipairing effect (see, e.g., Ref. [35]).

When solving the BCS equations, all single-particle states
with energies up to 6 MeV above the Fermi level are taken into
account with a smoothing factor μ = 0.2 MeV as prescribed
in Ref. [36].

As mentioned earlier, the adiabatic moments of inertia have
been evaluated according to the Inglis-Belyaev formula [18],

I =
∑
k,l>0

|〈k| ĵ+|l〉|2
(Ek + El )

(ukvl − ulvk )2

+ 1

2

∑
k,l>0

|〈k| ĵ+|l〉|2
(Ek + El )

(ukvl − ulvk )2. (6)

In this expression, the first sum runs on all canonical basis
states k such that the projection on the symmetry axis Kk of
their total angular momentum is positive whereas the sum on
the states l is restricted in practice to states such that Kl =
Kk − 1. The second sum is limited to states k and l such that
Kk = Kl = 1/2. Furthermore, in this equation, um and vm are
the absolute values of the BCS probability amplitudes for the
single-particle state m to be empty or filled, respectively.

IV. SOME ASPECTS OF OUR CALCULATIONS

A. Selection of nuclei to be considered

We have included in our paper a total of 24 even-even,
17 odd-neutrons, and 14 odd-protons rare-earth nuclei (see
Fig. 1). Most of the selected even-even nuclei fulfill the
following condition (see Table I),

E (4+)

E (2+)
� 3.3, (7)

whereby E (2+) and E (4+) are the excitation energies of the
first 2+ and 4+ states, respectively. This is meant to limit our
sample to well- and rigidly deformed nuclei.

It has been shown that the BCS approach is a bad ap-
proximation for low pairing-correlation regimes (see, e.g.,
Ref. [40]). This is due to the nonconservation of the particle
number inherent to the BCS ansatz. Therefore, we chose
here to consider odd-N (odd-Z respectively) nuclei such
that their experimental pairing gaps satisfy �n > 0.45 MeV
(�p > 0.45 MeV respectively). These gaps are defined here
as the three-point mass differences centered on a nucleus

FIG. 1. The nuclear mass region of interest with a total of 24
even-even, 17 odd-neutron, and 14 odd-proton nuclei considered
in this paper. The ground-state experimental quantum numbers Iπ

are displayed (as discussed in the text, they are assumed here to
correspond to the Kπ quantum numbers). Whenever our lowest-
energy solutions Kπ values are inconsistent with the data, two sets
of quantum numbers are displayed. In each box, the upper panel
corresponds to the data where the use of parentheses means that these
numbers are simply assumed, whereas the lower panel corresponds
to our calculated ground-state solutions.

having an odd number of neutrons given in Eq. (4a) and in
a similar fashion for protons.

In what follows, we will need to estimate from the data,
pairing gaps for even-even nuclei. This will be achieved by
taking the average of the �n (�p, respectively) between the
values obtained as above discussed of the two neighboring
odd-N (odd-Z , respectively) isotopes (isotones, respectively).

The relevance of such energy differences is contingent
upon the quality of calculated binding energies for each
member of the considered triplet of nuclei with respect to
experimental data. As shown in the Appendix, whereas our
calculated binding energies are slightly too low in absolute
value (by about 4.5 MeV), such a discrepancy is found to be
the same for all nuclei irrespective of the parity of the nucleon
number. This provides a much needed necessary condition for
the estimate of our OES energies.

B. Some calculational details

The single-particle wave functions of the canonical basis
are expanded on the axially deformed harmonic-oscillator
basis states. The expansion is truncated following the pre-
scription of Ref. [25] in terms of the axial and perpendicular
harmonic-oscillator quantum numbers nz and n⊥ as

h̄ω⊥(n⊥ + 1) + h̄ωz
(
nz + 1

2

)
� h̄ω0(N0 + 2), (8)
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TABLE I. Some nuclear properties for all even-even nuclei considered in this paper. The second column shows the experimental energy
ratio of the first 2+ and 4+ states whereas the third and fourth columns show the experimental average between the three-point-mass formulas
centered around two neighboring odd-mass nuclei for a given even-even nucleus. The calculated charge radii r (th)

ch (in fm2) in the fifth column
are compared to experimental values r (exp)

ch of the next column. These experimental data were taken from Ref. [37] whereas the numbers
in parentheses were taken from Ref. [38]. The last two columns are the charge quadrupole moments with experimental values taken from
Ref. [39].

Nucleus E (4+)/E (2+) �(3,ave)
n (MeV) �(3,ave)

p (MeV) r (th)
ch (fm) r (exp)

ch (fm) Q(th)
20 (b) Q(exp)

20 (b)

156Sm 3.290 0.672 0.608 5.144 6.903
158Sm 3.301 0.581 0.558 5.161 7.084
160Sm 3.291 0.623 0.529 5.178 7.186
160Gd 3.300 0.680 0.576 5.191 5.174 (5.1734) 7.276 7.265 (42)
162Gd 3.302 0.658 0.497 5.208 7.420
164Gd 3.300 0.706 0.639 5.225 7.538
166Gd 3.297 0.668 0.605 5.240 7.605
162Dy 3.290 0.786 0.642 5.219 5.196 7.420 7.33 (8)
164Dy 3.300 0.679 0.538 5.236 5.224 7.597 7.503 (33)
166Dy 3.310 0.653 0.557 5.253 7.724
168Dy 3.313 0.576 0.576 5.268 7.796
168Er 3.309 0.647 0.555 5.281 5.272 (5.2644) 7.890 7.63 (7)
170Er 3.309 0.622 0.505 5.297 5.286 (5.2789) 7.976 7.65 (7)
172Er 3.315 0.572 0.505 5.305 7.738
170Yb 3.293 0.749 0.678 5.308 5.286 (5.2853) 7.983 7.63 (9)
172Yb 3.305 0.626 0.570 5.323 5.301 (5.2995) 8.067 7.792 (45)
174Yb 3.309 0.536 0.527 5.331 5.317 (5.3108) 7.786 7.727 (39)
176Yb 3.310 0.565 0.485 5.341 5.321 (5.3215) 7.566 7.30 (13)
178Yb 3.310 0.607 0.685 5.352 7.431
176Hf 3.285 0.677 0.686 5.350 5.331 (5.3286) 7.514 7.28 (7)
178Hf 3.290 0.635 0.629 5.359 5.338 (5.3371) 7.243 6.961 (43)
180Hf 3.307 0.578 0.626 5.371 5.349 (5.3470) 7.094 6.85 (9)
182Hf 3.295 0.503 0.555 5.379 (5.3516) 6.855
180W 3.260 0.717 0.642 5.379 (5.3491) 6.965 6.53 (18)

whereby ωz is the angular frequency in the z direction chosen
as the symmetry axis and ω⊥ is the oscillator frequency on
the perpendicular x-y plane, whereas ω3

0 = ω2
⊥ωz defines the

associated spherical oscillator frequency ω0. In this paper, we
chose N0 = 14.

The harmonic-oscillator parameters b = √
(mω0)/h̄

(where m is the mean nucleon mass) and q = ω⊥/ωz are
optimized in order to yield the lowest-energy solution for the
ground state of the 24 even-even rare-earth nuclei. The b and
q values for odd-mass nuclei considered in our calculations
are simply the average of the values for the neighboring
even-even isotopes (isotones, respectively) for odd-N (odd-Z ,
respectively) nuclei. Numerical integrations are performed
using the Gauss-Hermite quadrature on the z axis and the
Gauss-Laguerre quadrature on the perpendicular plane with
50 and 16 integration points, respectively.

C. Choice of the rare-earth region

As discussed in Sec. II, the relevance of our fits is contin-
gent upon the condition of considering rigidly deformed nu-
clei to avoid the bias introduced by quantal shape fluctuations
invalidating both the consideration of a single BCS wave func-
tion as a valuable ground-state description and the pollution
of first 2+ energies by nonrotational collective modes. On the

other hand, one should have at one’s disposal an as large as
possible sample of nuclei satisfying this condition.

Two nuclear regions are available a priori: the rare-earth
and the actinide nuclei. The actinide nuclei, stable enough
to generate reliable and accurate mass and spectroscopic
data, are cut off as well known by their fission instabilities
upon increasing the fissility parameter. This leaves the single
possibility to consider the rare-earth region. There are 16
even-even isotopes from Z = 62 to Z = 72 which have a ratio
of excitation energies of their first 4+ and 2+ states equal to or
larger than 3.3. All these nuclei, sharing such good rotational
properties, have been included in our sample. They have been
complemented by eight other isoptopes for which this ratio is
close to the 3.3 value.

V. RESULTS OF THE FITS

A. Fit based on odd-even mass differences

To perform this fit, we have computed explicitly the �(3)
q

values from the energies of Hartree-Fock plus BCS solutions
involving the three nuclei belonging to the relevant isotopic
(or isotonic) series. These energies are compared with the
experimental ones as given in Ref. [41]. For an odd-mass
nucleus, the lowest-energy solution is not necessarily ob-
tained by blocking the single-particle state corresponding to
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TABLE II. Average root-mean-square (rms) deviations (in keV)
between calculated and experimental odd-even mass differences �(3)

n

and �(3)
p for different sets of pairing strengths Gn and Gp (in MeV).

Gp Gn

14 15 16 17

�(3)
n �(3)

p �(3)
n �(3)

p �(3)
n �(3)

p �(3)
n �(3)

p

14 267 288 191 290 83 287 220 286
15 282 172 191 182 87 182 224 194
16 279 262 189 284 84 289 227 293

experimental nuclear spin and parity quantum numbers. How-
ever, as seen in Fig. 1, in most cases (24 out of 31), our cal-
culations yield ground-state spin and parity values consistent
with the data. This confirms the good spectroscopic quality
of the SIII parametrization as already discussed in Ref. [31].
In view of this, we have consistently considered in our fit the
energies of the solutions corresponding to the experimental
Iπ configurations.

The average rms deviations of �(3)
n and �(3)

p are displayed
in Table II on a mesh of relevant (Gn, Gp) values. As a first
striking result, one finds that the quality of the fit for �(3)

n does
not depend significantly on the values of Gp (and �(3)

p on Gn)
in the retained range of parameters Gn and Gp. In other words,
one can perform independent fits of �(3)

q with respect to Gq,
provided that one has chosen a value deemed reasonable for
the parameter Gq associated with the other charge state q.

As a result, it appears that the optimum pairing strengths
should be in the vicinity of the Gn = 16 and Gp = 15 MeV
values for which �(3)

n is reproduced within 87 keV and �(3)
p

within 182 keV (see Table II).
To yield a specific set of values for (Gn, Gp), we have mini-

mized a χ2 function combining all odd-A (i.e., odd-N together
with odd-Z) calculated results through the expression,

χ2 = 1

31

⎡
⎣ 17∑

i=1

(
�

(th)
n,i − �

(exp)
n,i

)2 +
14∑
j=1

(
�

(th)
p, j − �

(exp)
p, j

)2

⎤
⎦,

(9)

where �
(th)
q,k and �

(exp)
q,k denote the calculated and experimental

odd-even (three-point) energy differences, respectively, of the
kth nucleus for the charge state q.

The corresponding average rms deviations are displayed
in Table III. A polynomial regression of the third order

TABLE III. The same as Table II for charge averaged root-mean-
square deviations (in keV) between calculated and experimental odd-
even mass differences.

Gp Gn

14 15 16 17

14 276.68 240.80 202.43 251.96
15 238.68 186.99 138.24 210.98
16 271.45 236.67 203.93 258.90

shows that the minimum is located at Gn = 16.10 and Gp =
14.84 MeV.

There is seemingly some arbitrariness in mixing, in a
single rms quality indicator, the neutron and proton odd-even
mass differences (with relative weights merely fixed by the
numbers of considered nuclei which happen in our case to
be not too different). This does not turn out to be a problem
as demonstrated in the following way. Taking stock of the
already noted independence of the fit of Gn upon fixing any
reasonable value of Gp (and conversely for the fit of Gp with
a reasonable value of Gn), we made a one-dimensional fit
of Gn with Gp = 15 MeV and a one-dimensional fit of Gp

with Gn = 16 MeV. The resulting optimal values of Gn (in
the first case) and Gp (in the second case) were found, indeed,
very close to what has been obtained in the two-dimensional
fit. Namely, we found Gn(Gp = 15) = 16.06 and Gp(Gn =
15) = 15.08 MeV, which corresponds to the previous values
up to 0.25% for neutrons and 1.2% for protons.

B. Fit based on moments of inertia

This second fit is performed for all the 24 even-even
nuclei in the rare-earth region which are shown in Fig. 1. As
mentioned earlier, the moments of inertia calculated according
to the Inglis-Belyaev formula [18] are multiplied [22] by a
constant α = 1.32 to take into account the so-called Thouless-
Valatin corrective terms.

As is well known, because of the angular momentum de-
pendence of the moments of inertia, one has to specify which
definition is retained to evaluate them from data. However, the
differences between various reasonable choices are minimal
since we focus here on the first 2+ state. Here, we have defined
the moment of inertia for the rotational-band state of angular
momentum I h̄ from the difference between the incoming and
the outgoing γ transition energies corresponding to this state.
It is proportional to the inverse of the moment of inertia. We
have, thus, compared our adiabatic moments of inertia with

I (exp) = 4h̄2/[E (4+) − 2E (2+)], (10)

where E (2+) and E (4+) are experimental [41] excitation en-
ergies of the first 2+ and 4+ ground-band states, respectively.

The average rms deviations between calculated and exper-
imental values are tabulated in Table IV. Similar to what has
been obtained with the fit based on odd-even mass differences,
the best values in the considered grid are obtained for Gn = 16

TABLE IV. Average root-mean-square deviations of moment of
inertia in the h̄2 MeV−1 unit for even-even rare-earth nuclei as a
function of pairing strengths.

Gp (MeV) Gn (MeV)

14 15 16 17 18

13 16.34 11.35 6.17 2.28 2.97
14 13.93 8.82 3.59 1.96 5.39
15 11.73 6.52 1.75 4.17 7.96
16 9.86 4.25 2.36 6.39 10.26
17 8.38 3.47 3.96 8.31 12.22
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and Gp = 15 MeV where the rms deviation is found to be
1.75 h̄2 MeV−1.

We have obtained the optimal values of Gn and Gp through
a cubic polynomial regression approach to obtain Gn = 16.27
and Gp = 15.26 MeV, which are very close to the values
obtained in the previous fit.

C. Pairing strengths derived from BCS calculations on
even-even nuclei

As already discussed, in many earlier calculations, the se-
niority force parameters have been fitted from BCS solutions
involving merely even-even nuclei. The pairing force inten-
sities have been adjusted so that some calculational results
were assimilated with odd-even mass differences extracted
from experimental nuclear mass tables (see, e.g., the analysis
of Ref. [5]).

In this paper, we want to perform similar fits for the
sake of comparison with these approaches. In our case, these
experimental energy differences were obtained for a given
even-even nucleus by averaging the quantities �(3)

q between
the two adjacent odd-N nuclei in the isotopic series for the fit
of Gn and the two adjacent odd-Z nuclei in the isotonic series
for the fit of Gp.

We have also mentioned in Sec. II A, that two approaches
for the fit have been followed. In one case, the pairing
strengths have been adjusted so as to reproduce the above data
by some appropriate quasiparticle energies E (k)

qp [see Eq. (2)].
In the other case, one has fitted directly the BCS pairing
gaps �q.

To be consistent with what has been performed in Sec. V A,
we have retained the quasiparticle states having the lowest
quasiparticle energy for the quantum numbers Kπ correspond-
ing to the experimental ground-state configuration Iπ .

As a result, we expect, for reasons previously discussed,
to obtain fitted pairing strength parameters smaller than what
was obtained by explicit calculations of �(3)

q quantities. The
aim of this section is to estimate to which extent they are
underestimated.

In the case where quasiparticle energies are used in the
fit, we have obtained the results displayed in Table V for the
rms energy differences between calculated and experimental
�(3)

q energies. Table VI displays the results of a combined

TABLE V. Average root-mean-square deviations between calcu-
lated and experimental odd-even mass differences for different sets
of pairing strengths based on quasiparticle energies.

Gp Gn

13 14 15 16

�(3)
n �(3)

p �(3)
n �(3)

p �(3)
n �(3)

p �(3)
n �(3)

p

11 210.60 174.89 137.79 177.48 82.86 177.64 203.37 179.15
12 208.19 105.15 138.36 104.76 82.57 106.41 200.26 106.58
13 211.99 215.88 138.62 78.32 82.83 73.27 201.45 75.84
14 212.7 215.88 138.80 216.90 80.10 214.60 204.70 213.10
15 177.67 404.53 96.10 412.0 113.20 403.00 216.70 410.70

TABLE VI. Average root-mean-square deviations (in keV) based
on a fit using quasiparticle energy E (k)

qp .

Gp (MeV) Gn (MeV)

13 14 15 16

11 193.57 158.88 138.60 191.64
12 164.93 122.71 95.24 160.41
13 160.47 112.58 78.20 148.87
14 214.31 182.09 162.00 208.90
15 312.42 286.44 296.00 314.30

(proton and neutron) χ2 analysis similar to what has been
performed in Sec. V A. It yields optimal values of Gn = 14.78
and Gp = 12.36 MeV. The neutron strength Gn is, indeed,
found moderately lower than the one obtained from exact �(3)

q
calculations, whereas it is largely quenched for protons.

It is to be noted that, although this set of optimal pairing
strengths yields a remarkable agreement for odd-neutron gaps
as seen in Table V, it is nevertheless inconsistent with the fit
based on moment of inertia.

The same type of analysis has been performed when the
fit is performed on pairing-gap values. The rms deviations
obtained for the OES differences are displayed in Table VII
whereas the results of the combined χ2 analysis are displayed
in Table VIII. We obtain the following set of seniority strength
parameters: Gn = 15.40 and Gp = 13.67 MeV. The expected
quenching effect on the Gq values is present but less important
than what was observed when fitting on the quasiparticle
energies. This can be understood since we omit in the former
case the contribution of the (ek − λ)2 term present in the
latter.

To quantify in a concrete example the consequence of the
approximation made by determining pairing strengths from
such calculations on even-even nuclei, we have computed the
moments of inertia for our sample of 24 even-even nuclei with
the seniority-force parameters obtained in the quasi-particle-
energy version of our fit. The results are displayed in Table IX.
When applying as we should the Thouless-Valatin correction
to the Inglis-Belyaev results, we found as expected a huge
overestimation of the moments of inertia. It is a remarkable
coincidence that without this necessary correction the results

TABLE VII. Average root-mean-square deviations (in keV) be-
tween calculated and experimental odd-even mass differences for
different sets of pairing strengths based on �BCS.

Gp Gn

14 15 16 17

�(3)
n �(3)

p �(3)
n �(3)

p �(3)
n �(3)

p �(3)
n �(3)

p

11 367.39 462.82 167.85 466.14 131.21 472.59 328.78 482.57
12 369.11 325.88 171.39 329.11 130.14 332.58 328.39 341.01
13 372.21 191.39 168.59 192.80 132.64 193.68 329.12 194.79
14 372.67 346.72 160.16 345.03 135.99 343.02 337.51 340.79
15 372.36 346.72 160.16 345.03 135.99 343.02 337.51 340.79
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TABLE VIII. Average root-mean-square deviations (in keV) be-
tween calculated and experimental pairing gap based on a fit to �BCS.

Gp (MeV) Gn (MeV)

14 15 16 17

11 417.84 350.33 346.81 412.90
12 348.17 262.38 252.53 334.76
13 295.95 181.10 165.99 270.43
14 285.20 155.73 137.40 256.73
15 359.77 268.98 260.92 339.16

are found in a very good agreement with the data. That could
have possibly prevented authors who discarded this correction
and performed a pairing-strength fit merely on odd-even mass
differences out of even-even nuclear solutions from realizing
that they were artificially lowering the strength of their pairing
residual interaction. This should, of course, yield important
consequences on a further description of other properties
affected significantly by the level of pairing correlations.

TABLE IX. Moment of inertia (in units of h̄2/MeV) calculated
using the Inglis-Belyaev formula with Thouless-Valatin correction
TVג using two sets of (Gn, Gp) pairing strengths (in MeV): (16,15)
from a fit to OES and (14.8,12.4) from a fit to quasiparticle energies.
Experimental moments expג are also given. In the (14.8,12.4) case, we
have added the uncorrected Inglis-Belyaev values IBג for the sake of
comparison with expג as discussed in the text. Finally, in the (16,15)
case, we have displayed the Thouless-Valatin corrected values exactג

TV

obtained when treating exactly the Coulomb exchange contribution.

Nucleus (16,15) (14.8,12.4) expג

TVג exactג
TV IBג TVג

156Sm 41.21 42.40 39.30 51.88 40.846
158Sm 41.54 42.70 39.91 52.68 42.239
160Sm 44.49 45.62 44.58 58.84 43.716
160Gd 39.69 41.40 39.96 52.75 40.816
162Gd 44.58 46.57 47.29 62.42 42.918
164Gd 42.95 45.13 42.47 56.06 41.973
166Gd 45.79 48.40 50.26 66.35 44.053
162Dy 38.05 39.46 38.71 51.10 38.335
164Dy 43.34 44.69 46.50 61.38 41.908
166Dy 41.32 42.68 40.28 53.17 39.859
168Dy 44.00 45.49 45.66 60.28 40.646
168Er 39.23 39.92 36.58 48.28 38.285
170Er 42.37 43.33 43.37 57.25 38.854
172Er 36.72 37.57 34.89 46.06 39.526
170Yb 38.64 39.35 36.90 48.71 36.724
172Yb 41.35 42.49 42.63 56.27 38.917
174Yb 37.13 38.97 37.85 49.96 39.930
176Yb 35.73 37.88 35.78 47.22 37.182
178Yb 37.80 40.38 37.94 50.09 36.364
176Hf 33.87 34.56 33.70 44.49 35.248
178Hf 33.46 34.51 33.65 44.42 33.262
180Hf 35.22 36.26 35.39 46.71 32.806
182Hf 32.06 33.07 30.55 40.32 31.598
180W 30.55 30.69 29.07 38.38 30.666

D. Comparison with similar attempts to fit
the pairing residual interaction

It is worth comparing our results with those obtained
within the OES protocol in Refs. [42,43]. In both, one uses
a zero-range density-dependent residual interaction to define
the pairing part of the energy density functional (EDF). For
the particle-hole part in their EDF, the authors of Ref. [42]
use the SLy4 parametrization of the Skyrme interaction
[44] whereas those of Ref. [43] start from a previous EDF
parametrization, called UNEDF0 [45], to improve it as a UN-
EDF1 version.

Our comparison will be based on the rms error (in keV)
obtained for neutrons and protons for the three-point en-
ergy differences �(3)

q . In Ref. [42], these values are at best,
i.e., within the favored Hartree-Fock-Bogoliubov (HFB) plus
Lipkin-Nogami approach, about 250 keV for both charge
states. The corresponding results in Ref. [43] are 342 keV
(350 keV, respectively) for neutrons in A � 80 nuclei with the
UNEDF0 (UNEDF1, respectively) whereas the corresponding
figures are 229 keV (respectively, 248 keV). In our approach
now, for Gn = 16 and Gp = 15 MeV, we have obtained 87
keV for neutrons and 182 keV for protons which corresponds
to a significant improvement.

Three remarks are in order here. First, the numbers of nu-
clei included in the sample of both approaches in Refs. [42,43]
are considerably larger. This does not constitute necessarily
a decisive advantage since one should be a priori rather
selective in any fitting process. Second, in Fig. 7 of Ref. [42]
a significant deformation dependence of the rms error for �(3)

n
is exhibited. Within the HFB approach (slightly less good than
their HFB plus Lipkin-Nogami approach) the authors of this
paper found that the corresponding rms error was reduced
from 270 to 250 keV upon limiting their sampling to nuclei
in our region of interest, namely, for nuclei whose quadrupole
deformation parameter β was found in the 0.2–0.3 range.
Finally, in Sec. VI of Ref. [42], a suggestive remark has been
made about the intensity of the proton residual interaction.
These authors found it larger by about 10% than what is
obtained for neutrons. The authors rightfully express that “the
Coulomb interaction in the pairing channel [· · · ] would be
expected to decrease the strength not to increase it.” It is to be
noted that we found the reverse effect (Gn significantly larger
than Gp) which seems more easily understood.

VI. CONCLUSION

In this paper, we have substantiated the statement made in
the seminal paper of Bohr et al. [1] that pairing properties
could be very well be assessed by correctly reproducing
both the odd-even energy staggering and the moments of
inertia of the first members of ground-state rotational band in
well-deformed nuclei. As summarized in Table X, we found,
indeed, excellent agreement between the outputs of the two
independent approaches.

Obtaining this, we have also demonstrated that our crude
theoretical approach of both properties (limitation to seniority
force BCS calculations, global renormalization of moments of
inertia due to the Thouless-Valatin corrections as proposed in
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TABLE X. Optimum pairing strengths (in MeV) obtained from
various fitting procedures.

Fit procedures Gn Gp

Moment of inertia 16.27 15.26
OES using SCB 16.10 14.84
OES using �BCS 15.40 13.67
OES using Eqp 14.78 12.36

Ref. [22], and simple parametrization of the particle number
dependence of the seniority force strength, for instance) was
most probably accurate enough to describe the properties
under study.

We have also shown (see Table X) that widely used fitting
protocols of pairing properties from odd-even energy differ-
ences deduced merely from solutions for even-even nuclei
were by far not appropriate.

Since it is clear that it is simpler to compute moments of
inertia in even-even nuclei than to compute explicitly odd-
even mass differences, our results could have a real practical
impact on the fit of residual interactions.

There are clearly many points that could be improved,
among which the use of a seniority force and the particle-
number breaking character of the BCS approximation. Both
issues are currently tackled within the so-called highly trun-
cated diagonalization approach (HTDA) of Ref. [36] where a

zero-range δ residual interaction is used within a variational
approach on good particle-number trial wave functions.

One should thus consider that the main physical motivation
of this paper is to substantiate the point of principle suggested
in Ref. [1] about the relevance of OES energies and moments
of inertia to determine the amount of pairing correlations. This
point being made, we intend to move forward and perform
a fit of more sophisticated residual interactions to be used
within the HTDA formalism to study spectroscopic properties
where an accurate treatment of pairing plays an important
role. This is, in particular, the case when studying high-K
isomers where the Pauli blocking effect quenches the pairing
correlations in a low regime where the HF + BCS (or HFB
for this matter) approximation is known to be unsatisfactory
(see, e.g., Ref. [40]).

Another deficiency is to be quoted. It has been consistently
found here that proton properties were leading to slightly less
satisfactory properties than neutron ones. This can be seen in
the rms values in various fits or. similarly. the significantly
larger—yet small in absolute terms—differences between the
two fits of Secs. V A and V B. This might result from the sys-
tematic effect on level density around the Fermi energy of the
approximate Slater treatment of the Coulomb exchange term
(see, e.g., Ref. [11]). Indeed, the approximate spectra are sig-
nificantly more compressed than exact ones. This yield in the
latter case, upon using the same residual interaction, slightly
larger moments of inertia as quantified in the comparison of
Table IX. Of course, to each energy density functional should

TABLE XI. Binding energies (in MeV) calculated using the Skyrme SIII Bth and compared to the experimental values Bexp from Ref. [46].
The ground-state spin and parity quantum numbers of odd-mass nuclei are given in parentheses.

Even-even nuclei Odd-N nuclei Odd-Z nuclei

Nucleus Bth Bexp Nucleus Bth Bexp Nucleus Bth Bexp

156Sm 1275.54 1279.98 157Sm (3/2−) 1281.18 1285.37 159Eu (5/2+) 1295.66 1300.09
158Sm 1287.65 1292.01 159Sm (5/2−) 1292.97 1297.04 161Eu (5/2+) 1307.75 1311.99
160Sm 1299.07 1303.14 161Gd (5/2−) 1310.52 1314.92 161Tb (3/2+) 1311.51 1316.09
160Gd 1304.58 1309.28 163Gd (7/2+) 1322.77 1326.87 163Tb (3/2+) 1324.97 1329.37
162Gd 1317.36 1321.76 165Gd (1/2−) 1334.21 1338.15 165Tb (3/2+) 1337.47 1341.45
164Gd 1329.20 1333.32 163Dy (5/2−) 1325.49 1330.37 167Tb (3/2+) 1349.12 1353.03
166Gd 1340.21 1344.27 165Dy (7/2+) 1339.16 1343.74 167Ho (7/2−) 1353.17 1357.77
162Dy 1319.00 1324.10 167Dy (1/2−) 1351.87 1356.21 169Ho (7/2−) 1366.13 1370.43
164Dy 1333.09 1338.03 169Er (1/2−) 1367.05 1371.78 169Tm (1/2+) 1366.60 1371.35
166Dy 1346.22 1350.79 171Er (5/2−) 1380.16 1384.71 171Tm (1/2+) 1380.75 1385.42
168Dy 1358.51 1362.90 171Yb (1/2−) 1379.92 1384.74 173Tm (1/2+) 1393.87 1398.61
168Er 1360.79 1365.77 173Yb (5/2−) 1394.23 1399.12 177Lu (7/2+) 1421.05 1425.46
170Er 1374.32 1379.03 175Yb (7/2−) 1407.70 1412.41 179Lu (7/2+) 1434.24 1438.28
172Er 1386.78 1391.55 177Yb (9/2+) 1420.51 1424.85 179Ta (7/2+) 1432.95 1438.01
170Yb 1373.10 1378.12 177Hf (7/2−) 1420.41 1425.17
172Yb 1387.77 1392.76 179Hf (9/2+) 1434.68 1438.90
174Yb 1401.52 1406.59 181Hf (1/2−) 1447.45 1451.98
176Yb 1414.66 1419.28
178Yb 1427.04 1431.63
176Hf 1413.93 1418.80
178Hf 1428.29 1432.80
180Hf 1441.89 1446.29
182Hf 1454.25 1458.70
180W 1439.69 1444.58
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correspond a specific fit of the residual interaction, and the
exact Coulomb exchange calculations have been performed
here merely for the sake of illustration of the limit of the EDF
in use. It is clear that the numerical results of our present fit are
to be used with a SIII Skyrme EDF with Coulomb exchange
terms in the Slater approximation.

Having pointed out the various limitations of our current
approach, we think it possible, nevertheless, to conclude that
the remarkable agreement between the results of the two
fits based on very different physical properties should very
likely survive, at least, qualitatively when attempting similar
calculations in most advanced theoretical frameworks.
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APPENDIX: COMPARISON OF CALCULATED AND
EXPERIMENTAL GROUND-STATE BINDING ENERGIES

The binding energy calculated using the Skyrme SIII
parametrization for ground states of both even-even and odd-
mass nuclei are tabulated in Table XI and compared to ex-
perimental data [46]. The rms deviations for 24 even-even,
17 odd-neutron, and 14 odd-proton nuclei are 4.64, 4.48, and
4.45 MeV, respectively. This leads to a rms deviation of 4.54
MeV for all the considered 55 rare-earth nuclei.

One notes, therefore, a systematic underbinding of our
solutions (in absolute value). This leaves some room for
corrections of various origins, such as truncation of the basis
or zero-point motions. Yet this error is found to be very similar
irrespective of the parity of the neutron and proton numbers.
This consistency is a very important point in our case since the
OES energies imply differences among even-even and odd-N ,
even-Z , or even-N , odd-Z nuclei.
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