T mixing and decay widths of first two 1^{-} states in ${}^{10}B$

H. T. Fortune

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

(Received 26 January 2019; published 4 June 2019)

For the isospin-mixed 1⁻ states in ¹⁰B, widths for deuteron and α decays provide an independent estimate of the amount of isospin mixing, which is consistent with results from γ decays. Analysis provides two solutions for the proton spectroscopic factors of the pure T = 0 and 1 states.

DOI: 10.1103/PhysRevC.99.064305

I. INTRODUCTION

A great deal has been written about the isospin mixing of two 1⁻ states at 6.873(5) and 7.430(10) MeV in ¹⁰B [1], beginning with the paper by Wilkinson and Clegg in 1956 [2]. The main features of the argument are summarized on p. 298 of the latest compilation [1]. Using the information available at the time, Wilkinson and Clegg estimated the T = 1 impurity in the 6.873-MeV state to be about 20%, and they predicted the existence of a predominantly T = 1 1⁻ state within 1 MeV. They stated "This is distinctly the largest well-established isotopic spin impurity known in any light nucleus." Other estimates of the mixing were made by others. With the ⁹Be(p, γ) reaction, Edge, and Gemmell [3] confirmed an isospin impurity of about 20%. Barker and Kondo [4] discussed the possibilities for the isospin-mixed partner of the first 1⁻ state.

II. ANALYSIS

The argument for T mixing is outlined on p. 298 of the compilation [1]. Briefly, E1 transitions in a self-conjugate nucleus must be isovector, and both of these 1⁻ states exhibit E1 decays to 1⁺, T = 0 states, implying a T = 1 component in both 1⁻ states. These E1's are summarized in Table I [1,5–8]. The ratios of the sums for decay from each state result in an estimate of the T mixing of $b^2/a^2 = 0.227(62)$, where I have assumed

$$|6.873\rangle = a|(T=0)\rangle + b|(T=1)\rangle;$$

$$|7.430\rangle = -b|(T=0)\rangle + a|(T=1)\rangle.$$

Transitions to the 0⁺, T = 1 state at 1.74 MeV are also listed in Table I, and they imply a limit of $b^2/a^2 < 0.21(6)$, consistent with the other estimate.

Both of these 1⁻ states decay by proton, deuteron, and α emission. The latter two must involve decay only from the T = 0 components of the two states. It occurred to me that these decays could be used to estimate the T = 0 content in the upper state. The latest compilation [1] contains some inconsistent information about the *p*, *d*, and α widths of these two states [6,8–10]. I have attempted to arrive at best values for these quantities that are consistent with the latest total

widths. These are listed in Table II. I used my best judgment and the procedures outlined in the footnotes to the table.

In order to use these widths to estimate T mixing in the second state, we need spectroscopic factors for decay of the first $1^- T = 0$ state of ${}^{10}B$ to ${}^{6}Li + \alpha$ and ${}^{8}Be + d$. The 1^- wave function was obtained from a *psd* shell-model calculation using the Millener-Kurath interaction [11]. Wave functions for ⁸Be and ⁶Li ground states were taken from a shell-model calculation fully within the *1p* shell [12]. For ⁶Li, the interaction was (6-16)2BME, for ⁸Be, it was (8-16)POT. Cluster overlaps were computed from the shell-model wave functions using the procedure outlined by Kurath [13]. These are both L = 1 decays, and their shell-model S's [14] are listed in Table III. I have calculated the *sp* widths for these decays in a Woods-Saxon well, whose depth was adjusted to reproduce the decay energies. Geometric parameters were r_0 , a, $r_{oc} = 1.37$, 0.60, 1.40 fm for the deuteron, and $R_0 =$ $R_{0c} = 2.79$ fm, a = 0.65 fm for α . I calculated ⁶Li + α and ⁸Be + d elastic scattering and computed the sp widths from the L = 1 phase shifts. These *sp* widths are also listed in Table III. The spectroscopic factor is a measure of the singleparticle nature of a state, and it is related to the decay width by the expression $S = \Gamma_{exp}/\Gamma_{sp}$. The calculated widths to be expected for the allowed decays are thus $\Gamma_{\text{calc}} = S \Gamma_{\text{sp}}$. Uncertainties are decreased if we sum the widths for d and α . The *T* mixing is then

$$b^2/a^2 = (\Gamma_{\rm d} + \Gamma_{\alpha})_{\rm exp}/(\Gamma_{\rm d} + \Gamma_{\alpha})_{\rm calc}.$$

The result is given in Table III. Perhaps surprisingly, this estimate of T mixing is very well consistent with the one derived from γ decays. I now compute the weighted average of these two and the limit from 1⁻ decays to 0⁺, T = 1 to get $(b^2/a^2)_{ave} = 0.243(40)$. These results are listed in Table IV and depicted graphically in Fig. 1.

As a check on the above procedure, I also apply it to d and α decays of the first 1⁻ state. Results are listed in Table V. Agreement is good.

The aim now is to use this amount of *T* mixing and experimental proton widths (Table VI) to estimate the proton spectroscopic factors for the pure T = 0 and 1 basis states. Defining $S = A^2$, and recalling that $C^2S = \Gamma_{exp}/\Gamma_{sp}$ (with $C^2 = 1/2$ here), we can use the proton widths to first determine experimental *S*'s and then use those to determine the

		e e				
Final		Initial	<i>B</i> (<i>E</i> 1) (w.u.)	Initial	<i>B</i> (<i>E</i> 1) (w.u.)	T mixing b^2/a^2
E_x (MeV)	J^{π}, T					
0.718	1+,0	6.87 MeV	$4.2(11) \times 10^{-3}$	7.43 MeV	$2.3(5) \times 10^{-2}$	
2.154	$1^{+},0$		$6.0(15) \times 10^{-3}$		$2.2(7) \times 10^{-2}$	
1.740	$0^{+}, 1$		$1.9(5) \times 10^{-2}$		$<4.0 \times 10^{-3}$	< 0.21(6)
Sum to 1+,0			$1.02(19) \times 10^{-2}$		$4.5(9) \times 10^{-2}$	0.227(62)

TABLE I. Strengths of relevant χ transitions from first two 1⁻ states in ¹⁰B [1,5–8].

TABLE II. Best decay widths (keV) for first two 1^- states in ${}^{10}B$.

E_x (MeV)	Total	Proton	Alpha	Deuteron	Alpha + deuteron
6.873(5)	120(5) ^a	27.6(48) ^b	40(3) ^d	52(8) ^f	92(7)
7.430(10)	100(10) ^a	38(7) ^c	34(9) ^e	28(7) ^e	62(12)
^a From master tab	le [1]				

^aFrom master table [1]. ^bFrom $\Gamma_p/\Gamma = 0.23(4)$ [10]. ^cFrom $\Gamma_p/\Gamma = 0.38(6)$ [6]. ^dFrom $\Gamma_{\alpha}/\Gamma = 0.33(2)$ [10]. ^eUsing BR and renormalizing Γ_{tot} ^fFrom $\Gamma_d = \Gamma - \Gamma_p - \Gamma_{\alpha}$.

TABLE III.	Results	(energies in	MeV.	widths in l	keV)	for second 1	- state.
		(A			/		

Channel	E(decay)	$\Gamma_{\rm sp}$	S	$\Gamma_{ m calc} = S \Gamma_{ m sp}$	Γ(exp)	T mixing b^2/a^2
⁸ Be+ d	1.403	755	0.1794	135	28(7)	
$^{6}\text{Li} + \alpha$	2.969	2440	0.0304	75	34(9)	
Sum				210	62(12)	0.295(57)

TABLE IV. Estimates of T mixing in 1^- states.

Source	b^2/a^2
Gamma decay to $1^+, T = 0$	0.227(62)
Gamma decay to 0^+ , $T = 1$	<0.21(6)
Alpha + deuteron decay	0.295(57)
Weighted average	0.243(40) ^a

^aGives a = 0.897, b = 0.442.

TABLE V. Results (energies in MeV, widths in keV) for first 1 ⁻	state.
--	--------

Channel	E(decay)	Γ_{sp}	S	$\Gamma_{ m calc} = a^2 S \Gamma_{ m sp}$	Γ(exp)
$\overline{^{8}\text{Be}+d}$	0.846	220	0.1794	32	52(8)
$^{6}Li + \alpha$	2.412	2140	0.0304	52	40(3)
Sum				84	92(9)

TABLE VI. Proton widths and spectroscopic factors.

State	$\Gamma_{\rm p}({\rm exp})$	$\Gamma_{ m sp}$	$S = 2 \Gamma_{\rm p}({\rm exp}) / \Gamma_{\rm sp}$	$A = S^{1/2}$
6.873	27.6(48)	54	1.02(18)	1.01(9)
7.430	38(7)	720	0.053(10)	±0.230(22)

FIG. 1. Estimates of isospin mixing of first two 1⁻ states in ¹⁰B: from γ decays to 1⁺, T = 0 states, from γ decays to 0⁺, T = 1 states, and from d and α decays.

basis-state S's. Relevant equations are

$$A(6.873) = aA_0 + bA_1; A(7.430) = -bA_0 + aA_1$$

(where the subscripts denote isospin), which can be manipulated to give

 $A_1 = bA(6.873) \pm aA(7.430) = 0.653(41)$ or 0.240(41); $A_0 = aA(6.873) \pm bA(7.430) = 0.80(8)$ or 1.01(8).

Basis-state spectroscopic factors are then $S_0 = A_0^2$ and $S_1 = A_1^2$, as listed in Table VII. Note that the sum of *S* is preserved. Of the two solutions, one has comparable strengths for the pure states, the other has virtually no strength in the T = 1 basis state. Most shell-model calculations would prefer the former (solution 2).

PHYSICAL REVIEW C 99, 064305 (2019)

TABLE VII. Basis state spectroscopic factors.

Basis state	S (solution 1)	S (solution 2)
$1^{-}, T = 0$	1.02(17)	0.64(13)
$1^{-}, T = 1$	0.058(20)	0.426(54)
Sum	1.08	1.07

With an energy splitting of 0.557 MeV, the current *T* mixing results in a matrix element of $V(1^-) = ab \Delta E = 0.221(20) \text{ MeV}$. The *T*-mixed 2⁻ states are only 0.270(30) MeV apart, implying a matrix element of $V(2^-) < 0.135(15)$ MeV. The two would be consistent if *V* goes as 1/(2J + 1).

Barker and Kondo [4] have argued that these two 1⁻ states do not satisfy the conditions for two-state mixing. Additionally, they suggested that a second 1⁻, T = 0 state should exist nearby. Such a state has not yet been identified. I see no evidence for large deviations from a two-state-mixing scenario.

III. SUMMARY

For the first two 1⁻ states in ¹⁰B, I have used γ widths to 1⁺, T = 0 states and to 0⁺, T = 1 states to determine isospin mixing of $b^2/a^2 = 0.227(62)$ and $b^2/a^2 < 0.21(6)$, respectively, in agreement with earlier estimates. I have then used deuteron and α widths to obtain an independent estimate of $b^2/a^2 = 0.295(57)$, which is consistent with the results from γ decay. The weighted average of all the results is $b^2/a^2 = 0.243(40)$. With this value and the proton widths of the physical 1⁻ states, I have obtained the proton spectroscopic factors of the T = 0 and 1 1⁻ states. Of the two solutions, one has approximately equal S's for the two, the other has $S \approx 1$ for the T = 0 state and S very small for T = 1.

- [1] D. R. Tilley, J. H. Kelley, J. L. Godwin, D. J. Millener, J. E. Purcell, C. G. Sheu, and H. R. Weller, Nucl. Phys. A 745, 155 (2004).
- [2] D. H. Wilkinson and A. R. Clegg, Phil. Mag. 1, 291 (1956).
- [3] R. D. Edge and D. S. Gemmell, Proc. Phys. Soc. 71, 925 (1958).
- [4] F. C. Barker and Y. Kondo, Nucl. Phys. A 688, 959 (2001).
- [5] W. F. Hornyak, C. A. Ludemann, and M. L. Roush, Nucl. Phys. 50, 424 (1964).
- [6] T. Mo and W. F. Hornyak, Phys. Rev. 187, 1220 (1969).
- [7] W. Auwarter and V. Meyer, Nucl. Phys. A 242, 129 (1975).

- [8] F. Ajzenberg-Selove, Nucl. Phys. A 320, 1 (1979).
- [9] G. Weber, L. W. Davis, and J. B. Marion, Phys. Rev. 104, 1307 (1956).
- [10] D. Zahnow, C. Rolfs, S. Schmidt, and H. P. Trautvetter, Z. Phys. A 359, 211 (1997).
- [11] D. J. Millener and D. Kurath, Nucl. Phys. A 255, 315 (1975).
- [12] S. Cohen and D. Kurath, Nucl. Phys. 73, 1 (1967).
- [13] D. Kurath, Phys. Rev. C 7, 1390 (1973).
- [14] D. J. Millener (private communication).