T **mixing and decay widths of first two 1[−] states in 10B**

H. T. Fortune

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

(Received 26 January 2019; published 4 June 2019)

For the isospin-mixed 1[−] states in ¹⁰B, widths for deuteron and α decays provide an independent estimate of the amount of isospin mixing, which is consistent with results from γ decays. Analysis provides two solutions for the proton spectroscopic factors of the pure $T = 0$ and 1 states.

DOI: [10.1103/PhysRevC.99.064305](https://doi.org/10.1103/PhysRevC.99.064305)

I. INTRODUCTION

A great deal has been written about the isospin mixing of two 1^- states at 6.873(5) and 7.430(10) MeV in ¹⁰B [\[1\]](#page-2-0), beginning with the paper by Wilkinson and Clegg in 1956 [\[2\]](#page-2-0). The main features of the argument are summarized on p. 298 of the latest compilation [\[1\]](#page-2-0). Using the information available at the time, Wilkinson and Clegg estimated the $T = 1$ impurity in the 6.873-MeV state to be about 20%, and they predicted the existence of a predominantly $T = 1$ 1[−] state within 1 MeV. They stated "This is distinctly the largest well-established isotopic spin impurity known in any light nucleus." Other estimates of the mixing were made by others. With the ${}^{9}Be(p,\gamma)$ reaction, Edge, and Gemmell [\[3\]](#page-2-0) confirmed an isospin impurity of about 20%. Barker and Kondo [\[4\]](#page-2-0) discussed the possibilities for the isospin-mixed partner of the first 1[−] state.

II. ANALYSIS

The argument for *T* mixing is outlined on p. 298 of the compilation [\[1\]](#page-2-0). Briefly, *E*1 transitions in a self-conjugate nucleus must be isovector, and both of these 1[−] states exhibit *E*1 decays to 1^+ , $T = 0$ states, implying a $T = 1$ component in both 1[−] states. These *E*1's are summarized in Table [I](#page-1-0) [\[1,5–8\]](#page-2-0). The ratios of the sums for decay from each state result in an estimate of the *T* mixing of $b^2/a^2 = 0.227(62)$, where I have assumed

$$
|6.873\rangle = a|(T = 0)\rangle + b|(T = 1)\rangle;
$$

$$
|7.430\rangle = -b|(T = 0)\rangle + a|(T = 1)\rangle.
$$

Transitions to the 0^+ , $T = 1$ state at 1.74 MeV are also listed in Table [I,](#page-1-0) and they imply a limit of $b^2/a^2 < 0.21(6)$, consistent with the other estimate.

Both of these 1^- states decay by proton, deuteron, and α emission. The latter two must involve decay only from the $T = 0$ components of the two states. It occurred to me that these decays could be used to estimate the $T = 0$ content in the upper state. The latest compilation [\[1\]](#page-2-0) contains some inconsistent information about the p , d , and α widths of these two states $[6,8-10]$. I have attempted to arrive at best values for these quantities that are consistent with the latest total

widths. These are listed in Table [II.](#page-1-0) I used my best judgment and the procedures outlined in the footnotes to the table.

In order to use these widths to estimate *T* mixing in the second state, we need spectroscopic factors for decay of the first $1 - T = 0$ state of ¹⁰B to ^{δ}Li + α and ⁸Be + *d*. The 1[−] wave function was obtained from a *psd* shell-model calculation using the Millener-Kurath interaction [\[11\]](#page-2-0). Wave functions for 8 Be and 6 Li ground states were taken from a shell-model calculation fully within the $1p$ shell $[12]$. For ⁶Li, the interaction was $(6-16)2BME$, for ⁸Be, it was $(8-16)POT$. Cluster overlaps were computed from the shell-model wave functions using the procedure outlined by Kurath [\[13\]](#page-2-0). These are both $L = 1$ decays, and their shell-model *S*'s [\[14\]](#page-2-0) are listed in Table [III.](#page-1-0) I have calculated the *sp* widths for these decays in a Woods-Saxon well, whose depth was adjusted to reproduce the decay energies. Geometric parameters were r_0 , *a*, $r_{\text{oc}} = 1.37$, 0.60, 1.40 fm for the deuteron, and $R_0 =$ $R_{0c} = 2.79$ fm, $a = 0.65$ fm for α . I calculated ⁶Li + α and 8 Be + *d* elastic scattering and computed the *sp* widths from the $L = 1$ phase shifts. These *sp* widths are also listed in Table [III.](#page-1-0) The spectroscopic factor is a measure of the singleparticle nature of a state, and it is related to the decay width by the expression $S = \Gamma_{\rm exp}/\Gamma_{\rm sp}$. The calculated widths to be expected for the allowed decays are thus $\Gamma_{\text{calc}} = S \Gamma_{\text{sp}}$. Uncertainties are decreased if we sum the widths for *d* and α . The *T* mixing is then

$$
b^2/a^2 = (\Gamma_{\rm d} + \Gamma_{\alpha})_{\rm exp}/(\Gamma_{\rm d} + \Gamma_{\alpha})_{\rm calc}.
$$

The result is given in Table [III.](#page-1-0) Perhaps surprisingly, this estimate of T mixing is very well consistent with the one derived from γ decays. I now compute the weighted average of these two and the limit from 1^- decays to $0^+, T = 1$ to get $(b^2/a^2)_{\text{ave}} = 0.243(40)$. These results are listed in Table [IV](#page-1-0) and depicted graphically in Fig. [1.](#page-2-0)

As a check on the above procedure, I also apply it to *d* and α decays of the first 1⁻ state. Results are listed in Table [V.](#page-1-0) Agreement is good.

The aim now is to use this amount of *T* mixing and experimental proton widths (Table [VI\)](#page-1-0) to estimate the proton spectroscopic factors for the pure $T = 0$ and 1 basis states. Defining $S = A^2$, and recalling that $C^2S = \Gamma_{\text{exp}}/\Gamma_{\text{sp}}$ (with $C^2 = 1/2$ here), we can use the proton widths to first determine experimental *S*'s and then use those to determine the

Final		Initial	$B(E1)$ (w.u.)	Initial	$B(E1)$ (w.u.)	T mixing b^2/a^2
E_x (MeV)	J^{π} , T					
0.718	0, 1	6.87 MeV	$4.2(11) \times 10^{-3}$	7.43 MeV	$2.3(5) \times 10^{-2}$	
2.154	1^+ ,0		$6.0(15) \times 10^{-3}$		$2.2(7) \times 10^{-2}$	
1.740	0^+ , 1		$1.9(5) \times 10^{-2}$		$< 4.0 \times 10^{-3}$	< 0.21(6)
Sum to 1^+ ,0			$1.02(19) \times 10^{-2}$		$4.5(9) \times 10^{-2}$	0.227(62)

TABLE I. Strengths of relevant χ transitions from first two 1[−] states in ¹⁰B [\[1,5–8\]](#page-2-0).

TABLE II. Best decay widths (keV) for first two 1[−] states in ¹⁰B.

E_x (MeV)	Total	Proton	Alpha	Deuteron	$Alpha + deuteron$
______ 6.873(5)	$120(5)^{a}$	$27.6(48)^b$	$40(3)^d$	$52(8)^1$	92(7)
7.430(10)	$100(10)^a$	$38(7)^c$	$34(9)^e$	$28(7)^e$	62(12)

^a From master table [\[1\]](#page-2-0). ^bFrom $\Gamma_{\rm p}/\Gamma = 0.23(4)$ [\[10\]](#page-2-0). From $\Gamma_p/\Gamma = 0.38(6)$ [\[6\]](#page-2-0).

dFrom $\Gamma_\alpha/\Gamma = 0.33(2)$ [\[10\]](#page-2-0). ^eUsing BR and renormalizing Γ_{tot}

 ${}^{\text{f}}$ From $\Gamma_{\text{d}} = \Gamma - \Gamma_{p} - \Gamma_{\alpha}$.

Channel	E (decay)	$\mathbf{1}_{SD}$		$\Gamma_{\rm calc}=S\,\Gamma_{\rm sp}$	Γ (exp)	T mixing b^2/a^2
${}^{8}Be+$ d	1.403	755	0.1794	135	28(7)	
${}^{6}Li + \alpha$	2.969	2440	0.0304	75	34(9)	
Sum				210	62(12)	0.295(57)

TABLE IV. Estimates of *T* mixing in 1[−] states.

^aGives $a = 0.897, b = 0.442$.

TABLE V. Results (energies in MeV, widths in keV) for first 1[−] state.

Channel	E (decay)	\mathbf{I} sp		$\Gamma_{\rm calc} = a^2 S \Gamma_{\rm sp}$	Γ (exp)
${}^{8}Be + d$	0.846	220	0.1794	32	52(8)
${}^{6}Li + \alpha$	2.412	2140	0.0304	52	40(3)
Sum				84	92(9)

TABLE VI. Proton widths and spectroscopic factors.

FIG. 1. Estimates of isospin mixing of first two 1[−] states in 10B: from γ decays to 1⁺, $T = 0$ states, from γ decays to 0⁺, $T = 1$ states, and from d and α decays.

basis-state *S*'s. Relevant equations are

$$
A(6.873) = aA_0 + bA_1; A(7.430) = -bA_0 + aA_1
$$

(where the subscripts denote isospin), which can be manipulated to give

 $A_1 = bA(6.873) \pm aA(7.430) = 0.653(41)$ or 0.240(41); $A_0 = aA(6.873) \pm bA(7.430) = 0.80(8)$ or 1.01(8).

Basis-state spectroscopic factors are then $S_0 = A_0^2$ and $S_1 =$ *A*1 2, as listed in Table VII. Note that the sum of *S* is preserved. Of the two solutions, one has comparable strengths for the pure states, the other has virtually no strength in the $T = 1$ basis state. Most shell-model calculations would prefer the former (solution 2).

TABLE VII. Basis state spectroscopic factors.

Basis state	S (solution 1)	S (solution 2)	
$1^-, T = 0$	1.02(17)	0.64(13)	
1^{-} , $T=1$	0.058(20)	0.426(54)	
Sum	1.08	1.07	

With an energy splitting of 0.557 MeV, the current *T* mixing results in a matrix element of $V(1^-) = ab \Delta E =$ 0.221(20) MeV. The *T* -mixed 2[−] states are only 0.270(30) MeV apart, implying a matrix element of $V(2^-) < 0.135(15)$ MeV. The two would be consistent if *V* goes as $1/(2J + 1)$.

Barker and Kondo [4] have argued that these two 1[−] states do not satisfy the conditions for two-state mixing. Additionally, they suggested that a second $1^-, T = 0$ state should exist nearby. Such a state has not yet been identified. I see no evidence for large deviations from a two-state-mixing scenario.

III. SUMMARY

For the first two 1⁻ states in ¹⁰B, I have used γ widths to 1^+ , $T = 0$ states and to 0^+ , $T = 1$ states to determine isospin mixing of $b^2/a^2 = 0.227(62)$ and $b^2/a^2 < 0.21(6)$, respectively, in agreement with earlier estimates. I have then used deuteron and α widths to obtain an independent estimate of $b^2/a^2 = 0.295(57)$, which is consistent with the results from γ decay. The weighted average of all the results is $b^2/a^2 = 0.243(40)$. With this value and the proton widths of the physical 1[−] states, I have obtained the proton spectroscopic factors of the $T = 0$ and 1 1[−] states. Of the two solutions, one has approximately equal *S*'s for the two, the other has $S \approx 1$ for the $T = 0$ state and *S* very small for $T = 1$.

- [1] D. R. Tilley, J. H. Kelley, J. L. Godwin, D. J. Millener, J. E. Purcell, C. G. Sheu, and H. R. Weller, [Nucl. Phys. A](https://doi.org/10.1016/j.nuclphysa.2004.09.059) **[745](https://doi.org/10.1016/j.nuclphysa.2004.09.059)**, [155](https://doi.org/10.1016/j.nuclphysa.2004.09.059) [\(2004\)](https://doi.org/10.1016/j.nuclphysa.2004.09.059).
- [2] D. H. Wilkinson and A. R. Clegg, [Phil. Mag.](https://doi.org/10.1080/14786435608238102) **[1](https://doi.org/10.1080/14786435608238102)**, [291](https://doi.org/10.1080/14786435608238102) [\(1956\)](https://doi.org/10.1080/14786435608238102).
- [3] R. D. Edge and D. S. Gemmell, [Proc. Phys. Soc.](https://doi.org/10.1088/0370-1328/71/6/305) **[71](https://doi.org/10.1088/0370-1328/71/6/305)**, [925](https://doi.org/10.1088/0370-1328/71/6/305) [\(1958\)](https://doi.org/10.1088/0370-1328/71/6/305).
- [4] F. C. Barker and Y. Kondo, [Nucl. Phys. A](https://doi.org/10.1016/S0375-9474(00)00590-X) **[688](https://doi.org/10.1016/S0375-9474(00)00590-X)**, [959](https://doi.org/10.1016/S0375-9474(00)00590-X) [\(2001\)](https://doi.org/10.1016/S0375-9474(00)00590-X).
- [5] W. F. Hornyak, C. A. Ludemann, and M. L. Roush, [Nucl. Phys.](https://doi.org/10.1016/0029-5582(64)90219-6) **[50](https://doi.org/10.1016/0029-5582(64)90219-6)**, [424](https://doi.org/10.1016/0029-5582(64)90219-6) [\(1964\)](https://doi.org/10.1016/0029-5582(64)90219-6).
- [6] T. Mo and W. F. Hornyak, [Phys. Rev.](https://doi.org/10.1103/PhysRev.187.1220) **[187](https://doi.org/10.1103/PhysRev.187.1220)**, [1220](https://doi.org/10.1103/PhysRev.187.1220) [\(1969\)](https://doi.org/10.1103/PhysRev.187.1220).
- [7] W. Auwarter and V. Meyer, [Nucl. Phys. A](https://doi.org/10.1016/0375-9474(75)90038-X) **[242](https://doi.org/10.1016/0375-9474(75)90038-X)**, [129](https://doi.org/10.1016/0375-9474(75)90038-X) [\(1975\)](https://doi.org/10.1016/0375-9474(75)90038-X).
- [8] F. Ajzenberg-Selove, [Nucl. Phys. A](https://doi.org/10.1016/0375-9474(79)90146-5) **[320](https://doi.org/10.1016/0375-9474(79)90146-5)**, [1](https://doi.org/10.1016/0375-9474(79)90146-5) [\(1979\)](https://doi.org/10.1016/0375-9474(79)90146-5).
- [9] G. Weber, L. W. Davis, and J. B. Marion, [Phys. Rev.](https://doi.org/10.1103/PhysRev.104.1307) **[104](https://doi.org/10.1103/PhysRev.104.1307)**, [1307](https://doi.org/10.1103/PhysRev.104.1307) [\(1956\)](https://doi.org/10.1103/PhysRev.104.1307).
- [10] [D. Zahnow, C. Rolfs, S. Schmidt, and H. P. Trautvetter,](https://doi.org/10.1007/s002180050389) Z. Phys. A **[359](https://doi.org/10.1007/s002180050389)**, [211](https://doi.org/10.1007/s002180050389) [\(1997\)](https://doi.org/10.1007/s002180050389).
- [11] D. J. Millener and D. Kurath, [Nucl. Phys. A](https://doi.org/10.1016/0375-9474(75)90683-1) **[255](https://doi.org/10.1016/0375-9474(75)90683-1)**, [315](https://doi.org/10.1016/0375-9474(75)90683-1) [\(1975\)](https://doi.org/10.1016/0375-9474(75)90683-1).
- [12] S. Cohen and D. Kurath, [Nucl. Phys.](https://doi.org/10.1016/0029-5582(65)90148-3) **[73](https://doi.org/10.1016/0029-5582(65)90148-3)**, [1](https://doi.org/10.1016/0029-5582(65)90148-3) [\(1967\)](https://doi.org/10.1016/0029-5582(65)90148-3).
- [13] D. Kurath, [Phys. Rev. C](https://doi.org/10.1103/PhysRevC.7.1390) **[7](https://doi.org/10.1103/PhysRevC.7.1390)**, [1390](https://doi.org/10.1103/PhysRevC.7.1390) [\(1973\)](https://doi.org/10.1103/PhysRevC.7.1390).
- [14] D. J. Millener (private communication).