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We perform systematic calculations regarding the effects by Coulomb and/or spin-orbit (SO) interaction on
like- and unlike-pairing correlations in sd-, p f -, and sdgh-shell N = Z nuclei. The former two interactions
are comprised in a deformed mean-field potential and the latter pairing correlations are treated by residual
interactions in the mean field. We make use of two different pairing matrix elements (PMEs) for the residual
interactions : constant and state-dependent Brueckner G matrix. The constant PME may give rise to meaningful
information on the pairing correlations under the Wigner spin-isospin SU(4) symmetry in the absence of the
Coulomb and the SO interaction. The state-dependent Brueckner PME takes into account the nuclear medium
effect based on a realistic nucleon-nucleon interaction. In this work, through the analyses of the Coulomb and
the SO interaction effects on the pairing correlations, we discuss in detail the isoscalar pair condensation and
the coexistence of the isoscalar and the isovector pairs in the unlike pairing of the N = Z nuclei. Our results
show that the Coulomb and the SO interaction as well as nuclear deformation affect the single-particle state
evolution in a deformed mean field and, as a result, give significant impacts on the pairing correlations and the
smearing of occupation probabilities near Fermi energy. In particular, the pairing gaps in the heavy nuclei are
largely disturbed by the Coulomb interaction as well as the SO interaction.
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I. INTRODUCTION

Recently, pairing correlations in nuclei are being revived
because of lots of interesting discussions whether we may
expect deuteronlike structure in some specific nuclei with N �
Z . Most nuclei have revealed interesting features stemming
from pairing correlations of neutron-neutron (nn) and proton-
proton (pp) pairs, which is called like pairing. Bardeen-
Cooper-Schrieffer (BCS) theory is often adopted in the nu-
clear physics to take into account the property of the pairing
correlations. This theory has been established by the like-
pairing correlations in a mean field with the help of the
seniority scheme.

However, in some nuclei, one expects another type of the
pairing correlations from neutron-proton (np) pairs. Specif-
ically, for N � Z nuclei, protons and neutrons occupy the
same orbital and may have the maximum spatial overlap. The
nn and pp pairing have an isovector (IV) spin-singlet (T =
1, J = 0) mode, while the np pairing has an isoscalar (IS)
spin-triplet mode (T = 0, J = 1) as well as an IV spin-singlet
mode (T = 1, J = 0) [1–6].
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Over the last few decades, there have been many discus-
sions of the np pairing correlations, in particular, the IS and IV
pairing interaction and their competition and/or coexistence
in some specific nuclei with N � Z [7–10]. Most studies
focused on N = Z nuclei because the np pairing is expected
to be larger than that of N �= Z nuclei. However, as shown in
a recent work [11], the nuclear structure of N � Z nuclei may
also be affected by the np pairing correlations. For example,
the authors of Ref. [11] predicted a mixing phase of the IS
and IV pairing correlations for nuclei with 60 < N < 70 and
57 < Z < 64.

Other works for understanding the role of the np pair-
ing correlations were aimed for interpreting Wigner energy,
which is associated with a linear isospin dependence in the
nuclear binding energy [12]. For example, the IS np pairing
was claimed to account for the Wigner energy introduced to
explain unusual even-even odd-odd nuclei mass differences
by the linear isospin-dependence [13,14]. In particular, the
IS contribution with J = odd components was shown to be
significant in their shell-model calculations. The Wigner en-
ergy was also interpreted in terms of the isospin symmetry
breaking by the cranking method in the isospin space in a
similar way to the rotational symmetry breaking leading to
rotational bands [15]. But the IS contribution was shown to
be smaller than that of the IV component of the np pairing
correlations. This approach was exploited to understand the
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symmetry energy as well as the Wigner energy by the explicit
consideration of the isospin-dependent potential energy term,
κ
2 T2, beyond mean-field theories [16,17]. In Refs. [18,19],
quartet correlations beyond the standard BCS-type approach
were taken into account in the study of the Wigner energy. It
was pointed out that in the quartet model the IV contribution
is important for elucidating the empirical Wigner energies.
In these studies [13–19], simple separable type pairing inter-
actions are adopted as a model Hamiltonian. In the present
work, we adopt pairing interactions based on Brueckner G
matrix, which is obtained from a realistic nucleon-nucleon
(N-N) interaction taking into account nuclear medium effect.

Recently, more interesting experimental data were re-
ported, which show the IV quenching in the M1 spin tran-
sition data for sd-shell N = Z nuclei [20]. It implies that
the T = 0 pairing by the tensor force, which is well known
in deuteron structure, may become important in finite nuclei
[21,22] and lead to IS pair condensation in nuclear symmetric
matter and also finite nuclei. The Gamow-Teller (GT) strength
distribution data for 56Ni in Ref. [23] also show explicitly the
importance of the np pairing. Since then there appeared many
theoretical discussions about the IV quenching related to the
np pairing [24–26]. Detailed reports about the present status
and recent progress concerning the np pairing correlations in
nuclear structure can be found at Refs. [27,28].

The importance of the np pairing was also discussed in
our previous papers [29–33] by using a state-dependent two-
body pairing interaction given by the Brueckner G matrix
based on the CD Bonn potential [34,35]. A deformed quasi-
particle random phase approximation (DQRPA) was utilized
to include explicitly both the deformation and the like and
unlike pairings. The deformation is indispensable to discuss
the pairing correlations because the shell evolution by the
deformation may compete and/or cooperate with the pairing
correlations in the residual interaction.

The Coulomb and the spin-orbit (SO) force are important
ingredients in the mean field. The two forces may play signifi-
cant roles to determine the pairing correlations and also Fermi
energies. For example, Fermi energy difference of protons and
neutrons, which is easily affected by the Coulomb and/or

TABLE I. Deformation parameter β2 from experimental E2 tran-
sition data [40], theoretical β2 by relativistic mean field (RMF) [41],
FRDM model [42], and ours for the sd-, p f -, and sdg7/2h11/2-shell
N = Z nuclei. The values of βOurs

2 are obtained at the minimized
ground-state energy. Empirical pairing gaps estimated from a five-
point mass formula [29,36] are also presented. Theoretical values
from NNDC data and KTUY05 data [43] are used when experimental
mass data are not available.

Nucleus
∣∣βE2

2

∣∣ [40] βRMF
2 [41] βFRDM

2 [42] βOurs
2 �emp

p �emp
n

24Mg 0.605 0.416 0. 0.300 3.123 3.193
36Ar 0.256 −0.207 −0.255 −0.200 2.265 2.311
48Cr 0.337 0.225 0.226 0.200 2.128 2.138
64Ge – 0.217 0.207 0.100 1.807 2.141
108Xe – – 0.162 0.100 1.467 1.496
128Gd – 0.350 0.341 0.100 1.415 1.393

the SO force, may block the np pairing correlations. The
deformation also changes single-particle state (SPS) density
around Fermi surface, and as a result, gives rise to change of
the pairing correlations [37].

The aim of the present work is to study the effects of the
Coulomb and the SO force in a mean field on the pairing
correlations in a deformed BCS approach. Specifically, we
focus on the unlike pairing, i.e., the np pairing correlations
for N = Z nuclei, such as 24Mg and 36Ar in sd shell, 48Cr and
64Ge in p f shell, and 108Xe and 128Gd in sdg7/2h11/2-shell
nuclei. In Table I, we summarize basic properties of those
nuclei. Another point of this work is to study the Wigner
spin-isospin SU(4) symmetry violation by the Coulomb and
the SO interaction [38,39] in the pairing correlations of the
N = Z nuclei.

II. FORMALISM FOR DEFORMED BCS

Since the theoretical framework for a deformed BCS ap-
proach (DBCS) have already been detailed in our previous
papers [29,32], we briefly recapitulate the basic formula. We
start from the following nuclear Hamiltonian

H = H0 + Hint,

H0 =
∑
ρααα′

ερααα′c†
ρααα′cρααα′ ,

Hint =
∑

ραρβργ ρδ,αβγ δ, α′β ′γ ′δ′
Vρααα′ρβββ ′ργ γ γ ′ρδδδ′c†

ρααα′c
†
ρβββ ′cρδδδ′cργ γ γ ′ , (1)

where greek letters denote proton or neutron SPSs with a projection 
 of a total angular momentum on a nuclear symmetry axis.
ρα (ρα = ±1) denotes a sign of the total angular momentum projection of a α state. Isospins of the particles are denoted by greek
letters with prime. The operator c†

ρααα′ (cρααα′ ) in Eq. (1) stands for a usual creation (destruction) operator of a real particle in the
state of αρα . The Hamiltonian, represented by real particles in Eq. (1), was then transformed to a quasiparticle representation by
the following DBCS transformation for the α state

⎛
⎜⎜⎝

a†
1

a†
2

a1̄
a2̄

⎞
⎟⎟⎠

α

=

⎛
⎜⎝

u1p u1n v1p v1n

u2p u2n v2p v2n

−v1p −v1n u1p u1n

−v2p −v2n u2p u2n

⎞
⎟⎠

α

⎛
⎜⎜⎝

c†
p

c†
n

cp̄

cn̄

⎞
⎟⎟⎠

α

, (2)
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where u and v coefficients are calculated by the following DBCS equation⎛
⎜⎝

εp − λp 0 �pp̄ �pn̄

0 εn − λn �np̄ �nn̄

�pp̄ �pn̄ −εp + λp 0
�np̄ �nn̄ 0 −εn + λn

⎞
⎟⎠

α

⎛
⎜⎝

uα′′ p
uα′′n
vα′′ p
vα′′n

⎞
⎟⎠

α

= Eαα′′

⎛
⎜⎝

uα′′ p
uα′′n
vα′′ p
vα′′n

⎞
⎟⎠

α

. (3)

Here Eαα′′ is an energy of a quasiparticle 1 and 2 denoted α′′ in the α state. We include np̄ and n̄p pairings in addition to the
like-pairing (pp̄ and nn̄) correlations. The pairing potentials in Eq. (3) are permitted between the nucleons in a time-reversed
state (α-ᾱ) [4]. But the unlike pairing may have (α- α) pairing as well as (ᾱ-ᾱ) pairing [5]. An effective approach to take into
account these unlike pairings is shown in Appendix A.

In the DBCS, the quasiparticle state is mixed with different particle states in a spherical basis because each deformed state
(basis) is represented by a linear combination of the spherical state (basis) (see Fig. 1 at Ref. [29]). This feature is one of
additional merits due to the inclusion of deformation in the DBCS approach. With the np pairing in the deformed basis one may
get a simple HFB-type transformation in the spherical basis [3,29].

The pairing potentials in Eq.(3) are calculated in the deformed basis by using G matrix calculated from the realistic Bonn CD
potential for the N-N interaction as follows:

�pp̄α
= �αpᾱp = −

∑
γ

[ ∑
J,a,c

gppF J0
αaᾱaF J0

γ cγ̄ cG(aacc, J, T = 1)

](
u∗

1pγ
v1pγ

+ u∗
2pγ

v2pγ

)
, (4)

�pn̄α
= �αpᾱn = −

∑
γ

[[ ∑
J,a,c

gT =1
np F J0

αaᾱaF J0
γ cγ̄ cG(aacc, J, T = 1)

]
Re

(
u∗

1nγ
v1pγ

+ u∗
2nγ

v2pγ

)
(5)

+
[ ∑

J,a,c

gT =0
np F J0

αaᾱaF J0
γ cγ̄ ciG(aacc, J, T = 0)

]
Im

(
u∗

1nγ
v1pγ

+ u∗
2nγ

v2pγ

)]
,

where F JK
αaᾱa = Bα

a Bα
a (−1) ja−
αCJK

ja
α ja−
α
(K = 
α − 
α )

was introduced with an expansion coefficient Bα [29]

Bα
a =

∑
Nnz�

C j
α

l 1
2 �

AN0l
Nnz

bNnz�, AN0l
Nnz

= 〈N0l|Nnz〉.

(6)

Detailed formulas used for the coefficient Bα
a and the over-

lap integral AN0l
Nnz

are presented in Appendix B. The T = 0
pairing contribution is included as an imaginary term in the
np pairing potential in Eq. (5). K is a projection number of
a total angular momentum J onto the z axis and selected
as K = 0. The Brueckner G(aacc JT ) matrix represents the
state-dependent pairing matrix element (PME) calculated in
the spherical basis. In this work, in order to study nuclear
structure effects on the pairing potentials, we exploit a con-
stant two-body PME in line with the Kisslinger-Sorensen ap-
proach [35,44], i.e., the innermost square brackets in Eqs. (4)
and (5) are treated as a constant, and compare to the results by
the state-dependent Brueckner G-matrix PME. We sum up all
possible J values of the coupling of two-particle state assigned
by (aa) or (cc) in the spherical basis, which has the K = 0
projection. This sum of J values is due to the expansion of the
deformed state by the spherical states (aa) or (cc). �αnᾱn is
obtained from Eq. (4) by replacing p by n.

III. RESULTS AND DISCUSSIONS

This study exploits a cylindrical Woods-Saxon potential
with the Blomqvist and Wahlborn parameter set reported by
Cwiok et al. [45]. In this parameter set, radius parameters of

a central and a spin-orbit (SO) potential and strength of the
SO potential of neutrons are the same as those of protons.
So we can argue possible charge symmetry breaking effect
on the like- and unlike-pairing gaps due to the Coulomb
force. The particle model space for all nuclei considered here
was extended to N = 5h̄ω for a deformed basis, which was
expanded up to N0 = 10h̄ω in a spherical basis.

In this work, we switch on and off the Coulomb and/or
the SO interaction, respectively, in the deformed WS (DWS)
potential. Consequently, we may examine the Wigner spin-
isospin SU(4) symmetry, in which the nuclear Hamiltonian
satisfies the following relation:

[H, �iτi] = [H, �iσi] = [H, �iτiσi] = 0. (7)

The SU(4) symmetry is usually broken either by τi term in the
Coulomb interaction or by the σi term in the SO interaction.
The SU(4) symmetry is also broken if a repulsive proton-
proton (pp) Coulomb interaction on the pairing correlations
is taken into account in the residual interaction.

In the following, we take two N = Z nuclei, 24Mg and 36Ar
for sd-shell, 48Cr and 64Ge for p f -shell, and 108Xe and 128Gd
for sdg7/2h11/2-shell nuclei for the study of the Coulomb and
the SO force. We calculate the like-pairing (nn and pp) and the
unlike-pairing (np) gaps with full terms in the DWS potential,
and study the role of each potential on the pairing gaps.

In actual calculation, we calculate the quasiparticle energy
for each α state, Eqp

α =
√

(εα − λα )2 + �2
α , with its SPS en-

ergy εα obtained by the DWS potential and chemical potential
λα by the iteration for conserving particle numbers in average.
And then we take the lowest quasiparticle energy in the state α

and adopt the �pp̄α
as the pairing gap �p to be compared with
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FIG. 1. Pairing gaps of pp, nn and np for the sd-shell nuclei, 24Mg and 36Ar, by the DBCS model based on a deformed Woods-Saxon
potential [45]. Black squares (red circles) are calculated with Vnucl(≡ Vnu ) + Vcoul + Vs.o.(Vnu + Vs.o.) and blue triangles (green inverted triangles)
for Vnu + Vcoul (Vnu ). The pairing gaps are calculated by two different PME cases. (a) and (c) are by the constant PME, and (b) and (d) are by
the state-dependent G-matrix PME. (a) and (b) are for 24Mg and (c) and (d) are for 36Ar. (e) and (f) represent the occupation probabilities of
protons and neutrons with and without the SO force as a function of single particle energy with the G-matrix PME for 24Mg. The circles and
squares surrounded by black circles in (f) imply the existence of degenerated states.

the odd-even mass difference. In the process, by changing the
strength parameter gpp(= gp) in Eq. (4), which is a kind of
renormalization constant due to a finite Hilbert particle model
space, we fit the pairing gap to the empirical pairing gap in
Table I. Other strength parameters, gnn(= gn) and gT =0,1

np , are
adopted as the same as the gpp value for each nucleus because
we have interests only on the variations of the pairing gaps by
the SU(4) symmetry breaking. The np pairing gaps in Figs. 1,
3, 5, and 7 show the absolute value of the complex �np given
by Eq. (5).

For the constant PME, we take an arbitrary value close to
1.0 for the strength parameter, so that the calculated gap en-
ergies with the constant PME have no meaning quantitatively.
Deformation parameters β2 are determined at the minimum
ground-state energies [32,33].

1. 24Mg and 36Ar

In Figs. 1(a)–1(d), we present the pairing gaps �p,�n,�np

obtained from the lowest quasiparticle energy state near Fermi
surface. All like- and unlike-pairing gaps for 24Mg and 36Ar
are very close and independent to the given potential types.
It means that the charge independence symmetry is mostly
conserved for the sd-shell N = Z nuclei.

We look into details of the results in Figs. 1(a)–1(d). First,
we note that the differences between triangles and inverted
triangles and between squares and circles are very small. It
implies that all pairing gaps are not affected by the Coulomb
interaction, regardless of the existence of the SO potential.
It can be easily understood if we notice the following facts:
The Coulomb potential considered here is a component in
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the mean field and induces only a Coulomb energy difference
between neutrons and protons. But the pairing gaps stem from
the residual interactions. As a result, they are not affected by
the Coulomb interaction.

Second, the unlike-pairing gap is almost equal to the like-
pairing gaps. The Coulomb energy difference is believed to
produce the smaller np pairing with the heavier (neutron-rich)
nuclei. But, in light nuclei, the Coulomb energy difference
does not suppress the np pairing gap even if we use the
state-dependent PME. It implies that the Coulomb energy
difference does not seriously affect the pairing correlations,
at least for sd-shell N = Z nuclei.

However, in heavy nuclei, the SPS reordering by the central
Coulomb interaction appears and affects the pairing correla-
tions. The repulsive Coulomb interaction among protons may
also contribute to the residual interactions. Recent calculation
of diproton correlations in proton-rich light nuclei could be an
interesting suggestion for this kind of pp pairing correlations
[46]. It is pointed out that the two-body Coulomb potential
decreases the pairing matrix elements by about 10%. In the
present approach, we do not include the repulsive residual
Coulomb interaction among protons.

Third, the SO force influences the pairing gaps, as we note
the differences between top and bottom results in Figs. 1(a)–
1(c). The SO force decreases the pairing gaps for 24Mg as
shown in Figs. 1(a) and 1(b). It comes from the fact that the
number of the pairs (see Eq. (12) in Ref. [6]) are decreased
by the SO splitting. This tendency by the SO force is closely
related to the smearing of the SPS occupation probabilities

as shown in Figs. 1(e) and 1(f). If we switch on the SO
force, the smearing becomes small as shown in Fig. 1(e). Note
that the circles in Fig. 1(f) mean degenerated states, which
affect the smearing.

The evolution of SPSs for 24Mg by the deformation pa-
rameter β2 is illustrated in Fig. 2 for the case (a) with and
(b) without the SO force, respectively. In Fig. 2(b), many
degenerated states appear in the absence of the SO force,
which keep more particles around Fermi surface and make the
larger pairing gaps leading to the larger smearing as shown
in Fig. 1(f). In Fig. 2(a), by the SO force in the prolate
deformation the 0d3/2 shell is split above Fermi surface, while
the 0d5/2 shell splitting still remains around Fermi surface
for 24Mg. As a result, the pairing gaps are reduced, which is
closely related with the small smearing by the SO force in
Fig. 1(e).

But, for 36Ar case, the SO force affects differently. That is,
it increases the pairing gaps as shown in Fig. 1(c) because
of the following reasons. The SO force splits the 0d shell
and makes the smearing small by the splitting of the 0d3/2

shell in a similar way to 24Mg case, but the 7/2−
1 state in

the 0 f7/2 shell in the oblate deformation region increases its
occupation probability because of the intruder configuration
in the sd orbits as shown in Fig. 2(a). As a result, the pairing
gap becomes larger. But its magnitude depends on the PME
as shown in Fig. 1(d).

Here we present matrix elements by the SO interaction
in the Nilsson oscillator basis for diagonal and off-diagonal
cases as follows [47]:

〈nz, n⊥,,�|�l · �s|nz, n⊥,,�〉 = �,

〈nz + 1, n⊥ − 1, + 1, � − 1|�l · �s|nz, n⊥,,�〉 = 1
2 [(nz + 1)(n⊥ − )]1/2,

〈nz + 1, n⊥ − 1, − 1, � + 1|�l · �s|nz, n⊥,,�〉 = − 1
2 [(nz + 1)(n⊥ + )]1/2,

〈nz − 1, n⊥ + 1, − 1, � + 1|�l · �s|nz, n⊥,,�〉 = 1
2 [nz(n⊥ −  + 2)]1/2,

〈nz − 1, n⊥ + 1, + 1, � − 1|�l · �s|nz, n⊥,,�〉 = − 1
2 [nz(n⊥ +  + 2)]1/2, (8)

where the vector �l is the Nilsson’s stretched angular momen-
tum vector. The matrix elements of the SO interaction in
Eq. (8) are independent of the deformation parameter β2. But,
the SO potential in the DWS potential has a surface-peaked
structure. Consequently, the SO splitting can be affected
by the deformation through this radial dependence. In fact,
Fig. 2(a) reveals that the splitting becomes larger with the
deformation. On top of that, the deformation can split the SPS
as follows:

ε0(nz, n⊥, ml ) � h̄ω0(δ)

[(
N + 3

2

)
+ δ

(
N

3
− nz

)]
, (9)

where δ is related to the deformation parameter β2 ∼
(2/3)

√
4π/5 δ. Figure 2(b) clearly shows the deformation

splitting. Therefore, the splitting of SPS energies occurs by
the deformation in Eq. (9) as well as by the SO force due to

the potential dependent factor, and seriously affect the pairing
correlation.

Here, we make a short summary about the SO force
effect as follows. By the splitting, the pairing gaps become
smaller, as in 24Mg case, and the smearing decreases. But,
the deformation splitting in Eq. (9) might be as important
as the SO splitting because it may bring about the intruder,
which increases the smearing and consequently gives rise to
the larger pairing, as in 36Ar case.

For 36Ar, the SO force does not change the pairing gaps
for the state-dependent PME in Fig. 1(d). This might be due to
the fact that the Brueckner G matrix has different properties of
the intruder state in the competition between the SO force and
the deformation effect. Finally, if we switch off the Coulomb
and the SO interaction, the SU(4) symmetry is shown to be
almost hold on the pairing gaps, as shown in the green inverted
triangles.
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FIG. 2. The SPSE of neutrons for 36Ar as a function of deformation parameter β2. (a) is calculated with Vnucl + Vcoul + Vs.o. and (b) is with
Vnucl + Vcoul, i.e., without the SO force. The black dotted lines denote Fermi energy. Some of the states in (b) are degenerated.

2. 48Cr and 64Ge

Results for p f -shell nuclei, 48Cr and 64Ge, are shown
in Fig. 3 with the shell evolution in Fig. 4. First, one
finds that the Coulomb effect is similar to that of the sd-
shell nuclei. Namely, the Coulomb effect does not influ-

ence on the pairing gaps. But, interestingly, the Coulomb
effect for 64Ge appears appreciably for the state-dependent
PME, that is, it splits the proton and the np pairings
as shown in the green and blue triangles in Fig. 3(d),
if we switch off the SO force. The downward splitting
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FIG. 3. The same as Fig. 1, but for p f shell 48Cr and 64Ge.

of the pairing gaps might stem from the reordering of
SPSs due to the degeneracies in the absence of the SO
force.

Results in Fig. 3(g) show the proton smearing for each
potential case. This smearing is closely associated with the

proton pairing gaps, i.e., the larger pairing gaps in Fig. 3(d)
induce the larger smearing. For instance, the smearing dis-
appears by the Vcoul term, which is related to the decrease
of the proton pairing gap denoted as a blue triangle in
Fig. 3(d).
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FIG. 4. Same as Fig. 2, but for 64Ge.

Second, in Figs. 3(a) and 3(c), the SO force decreases the
pairing gaps for the constant PME. It can be inferred by the
smearing features of the SPS for 48Cr and 64Ge in Figs. 3(e)
and 3(f). But the state-dependent PME in Fig. 3(b) increases
the pairing for 48Cr case with the SO force. It may come
from a peculiar circumstance of the level density and Pauli
blocking near the Fermi surface of 48Cr.

In principle, the SO force may have some contributions
from the Coulomb force. The SO force in the present DWS
potential has a factor related to the Coulomb force given in
a derivative form, which gives rise to different proton and
neutron splitting. But, in the present work, we turn off the
Coulomb contribution in the SO force in order to study the
Wigner SU(4) symmetry, so that the same SO forces are
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FIG. 5. The same as Fig. 1, but for sdg7/2h11/2-shell nuclei, 108Xe and 128Gd.

used for protons and neutrons. Test calculations including the
Coulomb factor in the SO force show that the Coulomb force
contribution is not large enough to change the pairing gaps.

3. 108Xe and 128Gd

Finally, we discuss two heavy nuclei in sdg7/2h11/2-shell
N = Z nuclei in Fig. 5, whose nuclei were reported to have
strong IS (T = 0) pairing correlations [11]. Since these nuclei
have strong Coulomb effects in the mean field, we examine
carefully the Coulomb effect. Evolutions of SPSs by the
deformation parameter β2 for 128Gd are shown in Fig. 6,
where we compare the SPS evolution [Fig. 6(a)] with and
[Fig. 6(b)] without the Coulomb interaction.

One can find reordering of the sdgh shell near Fermi sur-
face by the Coulomb interaction, which causes large Coulomb
effects on the pairing correlations. The states in the 1d5/2

shell are almost overlapped with those in the 0h11/2 shell by
the Coulomb force as shown in Fig. 6(a), which makes the
smearing larger. As a result, the proton and the np pairing
gaps are expected to increase by the Coulomb force. But, the
SO force decreases (increases) the pairing gaps for the case
without (with) the existence of the intruder as argued in the
sd- and p f -shell nuclei.

Therefore there appears the competition of the Coulomb
and the SO force in the sdgh-shell nuclei. For example, for
108Xe the SO force decreases the pairing gaps. In particular,
the SO force decreases largely the neutron pairing gap for the
state-dependent PME in Fig. 5(b) because of the 0g shell de-
generacy. But the proton and the np pairing gap are increased
by the Coulomb force if we note that the red circles move
to the black squares by the Coulomb force. This separation

by the Coulomb force does not take place in the sd-and
p f -shell nuclei. For 128Gd, the SO force increases the neutron
pairing gap due to the intruder of 0h11/2 shell. The Coulomb
force enlarges much more the np and the proton pairing gap
increased by the SO force as shown in Figs. 5(c) and 5(d).

4. Competition of isoscalar and isovector interactions

The last discussion is the isoscalar (IS) pair condensation.
In a previous paper [32], we argued that the IS condensation
may happen in 24Mg with β2 = 0.4 deformation (see Fig. 3 in
Ref. [32]). Therefore, we show the results of the pairing gap
by two different deformations β2 = 0.3 and 0.4 in Figs. 7(a)
and 7(b), respectively, and also present the np pairing gaps
obtained by the three times enhanced T = 0 pairing strength,
gT =0

np = 3.0 × gT =1
np , in the last column (denoted as np∗). This

enhancement strength is explained in Eq. (A2) in Appendix A.
Similar calculations for the p f - and sdgh-shell cases are done
for 48Cr and 108Xe in Figs. 7(c)–7(f). Here the β2 values in the
left panels are from the βours

2 in Table I, while the values in
the right panels are taken to be a bit larger than the βours

2 by
considering the |βE2

2 | in Table I.
We note two interesting points. One is the results of the

enhanced T = 0 case in the last column. They illustrate large
SO effects compared to the normal T = 0 case. It implies that
the stronger IS np pairing would lead to the more degenerated
states in the absence of the SO interaction. But detailed
features depend on the shell evolution by the deformation as
shown in Figs. 7(c) and 7(f).

Another interesting point is that the np pairing gaps are
not changed even by the enhanced IS pairing in the small
deformation region as shown in the left panels, but they
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FIG. 6. The SPS energies of proton for 128Gd as a function of deformation parameter β2. (a) is calculated with Vnucl + Vcoul + Vs.o. and (b) is
for Vnucl + Vs.o. (without Coulomb force). The black dotted lines denote Fermi energy.

increase in the larger deformation in the right panels. One
infers that the IS pairing can dominate the np pairing gap
with the larger deformation region. This tendency is clearly
illustrated in Fig. 8. We present ratios of the IV and IS pairing
gap contributions to the np pairing gap along the deformation
with the enhanced IS pairing. For 24Mg in Fig. 8(a), the
β2 = 0.1 ≈ 0.3 region is dominated by the IV contribution,

while for β2 ≈ 0.4 region the np pairing gap is dominated by
the IS contribution. That is, a phase transition from IV to IS
dominance occurs in the region from β2 = 0.3 to β2 = 0.4, as
argued in our previous paper [32]. This transition is termed as
the IS pair condensation in the present work. If we take the
normal IS pairing interaction, the IV contribution dominates
the np pairing gap all the way.
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FIG. 7. Same as Fig. 1, but the last column shows the np pairing gap by the three times enhanced T = 0 pairing strength denoted as np∗.
(a) and (b) for 24Mg are obtained by β2 = 0.3 and 0.4 case, respectively. (c) and (d) for 48Cr are by β2 = 0.2 and 0.4 case, respectively. (e) and
(f) for 108Xe are by β2 = 0.1 and 0.3 case, respectively. Pairing strengths gp are fixed to reproduce the empirical proton pairing gaps and others
are kept to have the same values as gp similarly to Fig. 1.

This trend also appears for 48Cr in Fig. 8(b): IS contribu-
tion dominates the np pairing gap, if we increase the deforma-
tion with the enhanced IS pairing interaction. For 108Xe, even
the normal IS pairing shows such a phase transition feature in
Fig. 8(d). If we take the enhanced IS pairing, the np pairing
gap of 108Xe is always dominated by the IS contribution as
shown in Fig. 8(c). It implies that N = Z heavy nuclei may
have the IS condensation by the normal IS pairing if they are
largely deformed, according to our calculation. If we adopt
the enhanced IS pairing interaction for 108Xe, the IS pairing
interaction becomes dominant for all deformation region as
shown in Fig. 8(c).

Therefore we can conjecture that the stronger deforma-
tion may give rise to the IS condensation through a phase
transition. For example, in this work, the deformation pa-

rameters β2 in Figs. 7(a), 7(c) and 7(e) are taken from our
theoretical model, DBCS approach. Results by these defor-
mations in Fig. 8 show only IV dominance even with the
enhanced T = 0 pairing. But the values near experimental
deformation |βE2

2 | for 24Mg and 48Cr in Table I give rise
to the IS pair condensations explicitly. Future calculations
including β3 and triaxial deformation adjacent to the data
are desirable for further conclusive arguments for the IS pair
condensation.

IV. CONCLUSION

In conclusion, we studied the SO interaction and the
Coulomb effects on the like- and unlike-pairing correlations
in sd-, p f -, and sdg7/2h11/2- shell N = Z nuclei. The SPS
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FIG. 8. Ratio of IV and IS pairing interaction gap to the total np pairing gap by the enhanced T = 0 pairing [(a)–(c)] in Eq. (A2) for 24Mg,
48Cr, and 108Xe, respectively. For 108Xe, we showed two cases, enhanced (c) and normal (d) T = 0 pairing.

energies are calculated by a deformed WS potential. In order
to investigate the pairing gaps by the like- and unlike-pairing
correlations, we exploit two pairing interactions: the constant
and the state-dependent Brueckner G-matrix PME. The results
by the constant PME show the Coulomb and SO force effects
similar to those by the state-dependent PME in most cases,
but show large differences in several cases compared to the
pairing gaps by the state-dependent PME. It comes from
the fact that the results calculated with the state-dependent
PME are very sensitive to the energy splitting by both the
deformation and the SO force in the mean-field level as well
as some characteristics of each orbital state, as shown in 48Cr
case.

The SO and the Coulomb force, which can break ex-
plicitly the Wigner SU(4) symmetry, are shown to change
substantially the pairing gaps. Namely, the SO force splits
the degeneracy of shell orbits and generally decreases the
pairing gaps, which brings simultaneously the decrease of

the number of the pairs. However it depends largely on the
location of Fermi surface and the deformation. That is, some
intruder states come into near the Fermi surface in the case
of large deformation and increase the pairing gaps inducing
more smearing.

The Coulomb interaction does not affect the pairing gaps
at least for sd-shell nuclei. But its effect appears for p f - and
sdg7/2h11/2-shell nuclei because of the proton SPS reordering
by the Coulomb interaction. For heavy nuclei, the Coulomb
effect can be more important than the SO force. The Wigner
SU(4) symmetry on the pairing correlations appears explicitly
in the limit of strong pairing force, but the symmetry is
broken by the Coulomb and the SO interaction in the realistic
cases.

Finally, we argued that the IS pair condensation may occur
in deformed N = Z nuclei, such as 24Mg and 48Cr, through
an abrupt phase transition from IV to IS interaction due to
the enhanced T = 0 np pairing correlations. For heavy nuclei
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such as 108Xe, the transition may happen more smoothly even
with the normal T = 0 pairing interaction. More detailed and
systematic calculations regarding the IS pair condensation and
the coexistence of the IV and IS phase for heavy N � Z nuclei
are in progress.
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APPENDIX A: ENHANCED ISOSCALAR
PAIRING STRENGTH

In the present DBCS framework, we include only np̄
and n̄p pairing correlations for the unlike pairing by the np
pairing correlations. But we may effectively include the T = 0
contributions due to the np and n̄ p̄ channels by multiplying a
factor 2 to the T = 0 pairing matrices by the np̄ and n̄p pairs
[32]. This has been done by following Ref. [3], which took
into account the np, n̄ p̄, n̄p, and np̄ pairings. If we assume

〈αnαp, T = 0|Vpair|βnβp, T = 0〉
= 〈αnαp, T = 0|Vpair|β̄nβ̄p, T = 0〉, (A1)

then Im �T =0
αnαp = 0 and Re �T =0

αnαp = Im �T =0
αnᾱp by Eqs. (5)–(7)

in Ref. [3]. It leads to∣∣�T =0
npα

∣∣2 = 2
∣∣�T =0

αpᾱn

∣∣2 + 2
∣∣�T =0

αpαn

∣∣2 = 4
∣∣�T =0

αpᾱn

∣∣2
, (A2)

where the factor 2 in the second equality comes from the ᾱpαn
and ᾱpᾱn pairing, respectively. Consequently, we multiply a
weighting factor 1.5 × 2 = 3.0 to the T = 0 pairing G-matrix
strength [32]. This is the enhanced IS pairing used in the last
column of Figs. 7 and 8. The factor 1.5 is employed to take
into account the IV quenching (or IS enhancement) of the M1
spin strength data at Ref. [20].

APPENDIX B: EXPANSION OF A DEFORMED WAVE
FUNCTION BY A SPHERICAL WAVE FUNCTION

We denote a spherical harmonic oscillator (HO) wave
function as

|N0lα〉 |�〉 =
∑

j

C j
α

lα
1
2 �

|N0l j 
α〉, (B1)

where C j
α

lα
1
2 �

is a Clebsch-Gordan coefficient for a coupling

of an orbital (l ) with its projection α and a spin angular
momentum ( 1

2 ) with its projection � to a projection 
α of
a total angular momentum ( j) defined as 
α = α + �.

Then a deformed HO wave function |Nnzα
α (= α +
�)〉 = |Nnzα〉|�〉 can be expanded in terms of the spherical
HO wave function |N0lα〉|�〉 in Eq. (B1) as follows:

|Nnzα〉 |�〉 =
∑

N0=N,N±2,N±4,...

∑
l=N0,N0−2,N0−4,...

A
N0l, (nr= N0−l

2 )
Nnz

|N0lα〉 |�〉, (B2)

where a major quantum number N0 is given as N0 = 2nr + l with a radial quantum number nr in a spherical basis. The major
shell quantum number N in a deformed basis is given as N = nx + ny + nz = n⊥ + nz with 2nρ +  = n⊥. The spatial overlap
integral AN0l

Nnz
= 〈N0(nr )l|N (nρ )nz〉 is calculated numerically in a spherical coordinate system as follows:

AN0l
Nnz

=
∫

dV
′
[[

2(nr!)

�(nr + l + 3/2)

]1/2

(bs)−(l+3/2)rle( −r2

2bs2 )Ll+1/2
nr

(
r2

bs
2

)[
2l + 1

4π

(l − )!

(l + )!

]1/2

P||
l

∗
(θ )

e−iφ

√
2π

×
[

2(nρ!)

(nρ + ||)!
]1/2

(bd )−(+1)ρe
( −ρ2

2bd
2 )

L||
nρ

(
ρ2

bd
2

)
1

(
√

π2nz nz!)
1/2 bz

−1/2e
( −z2

2bz2 )
Hnz

(
z

bz

)
eiφ

√
2π

]
, (B3)

where bs,d,z =
√

h̄
mωs,d,z

are oscillation parameters for spherical, ρ-radial, and z direction, respectively. The first and second factor

are from the spherical HO, and the third and the fourth come from the deformed HO wave function.
The expansion of the deformed state |α
α〉 ≡ |Nnzα
α〉 into the spherical state |a
α〉 = |N0lα�〉 can be simply written

as

|α
α〉 =
∑

a

Bα
a |a
α〉, Bα

a =
∑
Nnz�

C j
α

l 1
2 �

AN0l
Nnz

bNnz
α
, (B4)

where Bα
a is an expansion coefficient, and a and α indicate quantum numbers of a nucleon state in a spherical and a deformed

basis, respectively. Coefficients bNnz
α
are calculated from a deformed Woods-Saxon potential in the following way. In the

cylindrical coordinate, eigenfunctions of a single particle state and its time-reversed state in a deformed Woods-Saxon potential
are expressed as follows [29]:

|αρα = +1〉 =
∑
Nnz

[
b(+)

Nnz
α
|N, nz,α,
α = α + 1/2〉 + b(−)

Nnz
α
|N, nz,α + 1,
α = α + 1 − 1/2〉],

|αρα = −1〉 =
∑
Nnz

[
b(+)

Nnz
α
|N, nz,−α,
α = −α − 1/2〉 − b(−)

Nnz
α
|N, nz,−α − 1,
α = −α − 1 + 1/2〉], (B5)
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where the coefficients b(+)
Nnz
α

and b(−)
Nnz
α

are obtained from the
eigenvalue equation of the total Hamiltonian in the deformed
HO basis (Nilsson basis). The second terms in Eq. (B5) have
the same projection 
α value as the first terms, but retain

another orbital angular momentum projection because of a
flipped spin. Particle model space was exploited up to N =
5h̄ω for a deformed basis and up to N0 = 10h̄ω for a spherical
basis.
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