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We study the role of dynamic pairing correlations in fission dynamics by considering intrinsic Hartree-Fock-
Bogoliubov wave functions that are obtained by minimizing the particle number projected energy. For the
restricted variational space, the set of self-consistent wave functions with different values of proton and neutron

number particle fluctuations are considered. The particle number projected energy is used to define the potential
energy surface for fission whereas collective inertias are computed within the traditional formulas for the intrinsic
states. The results show that the effect of the restricted variation after particle number projection in the potential
energy surface is small while collective inertias substantially decrease. On the other hand, we show that this
quenching is strongly mitigated when Coulomb antipairing is considered and therefore the final outcome of the
complete calculation is close to the plain mean field result without Coulomb antipairing. In the light of these
beyond-mean-field calculations, the validity of traditional fission calculations is discussed.
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I. INTRODUCTION

Undoubtedly, pairing correlations represent a key ingre-
dient in the description of the dynamics of the fission phe-
nomenon experienced by heavy atomic nuclei [1,2]. For in-
stance, the amount of pairing correlations has a strong impact
on quantities such as spontaneous fission lifetimes [3-13],
the shape of the barriers separating the ground state from
scission [14-20], and fission fragments distributions [21-24].
At the mean-field level, pairing is traditionally described
using the Hartree-Fock-Bogoliubov (HFB) theory, which is a
reasonable approximate scheme when pairing correlations are
strong [25]. In nuclear physics, however, the pairing strength
is not strong enough and, as a consequence, many mean field
configurations show little or no pairing correlations at all
[26,27]. In this case the mean-field description of the nucleus
breaks down, and the inclusion of dynamic pairing corre-
lations stemming from beyond-mean-field effects becomes
necessary. The evolution of the nucleus through the different
shapes involved in fission affects the level density around the
Fermi energy, with a large impact on pairing correlations.
This effect is reflected by the intricate behavior shown along
the fission path, including many regions of very weak static
pairing, which points out the possible crucial role of dynamic
pairing correlations in the studies of fission.

In order to account for such effects, beyond-mean field
calculations involving the restoration of the particle number
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of the nuclear wave function are required. Unfortunately
the computational cost of beyond-mean-field calculations has
limited so far their application to fission studies, keeping the
impact of dynamic pairing correlations unexplored. Moreover,
to properly address the role of dynamic pairing correlation
one should account for all those effects that may mitigate
the effective pairing strength and that are usually neglected
for the sake of computational time, for instance Coulomb
antiparing [28], which is the name given to the destructive
effect of the repulsive Coulomb interaction in the proton’s
pairing correlations. If proton and neutron pairing strengths
are independently adjusted to experimental data in the region
of interest [29], Coulomb antipairing is taken into account in
an effective way by the fitted pairing strengths. Conversely, in
forces like Gogny [30] the neutron pairing strength is fitted
to experimental data (for instance in the tin isotopic chain)
and the proton pairing strength comes from isospin invari-
ance. In those cases, Coulomb antipairing must be explicitly
taken into account to avoid the self-energy problem and the
breaking of the Pauli principle in particle number projected
calculations. The Coulomb antipairing effect can reduce the
proton’s pairing gap by 20-30% [31,32], with a strong impact
on observables such as moments of inertia [28,33], but its
effect is usually neglected due to the enormous computational
cost associated with the evaluation of Coulomb’s pairing field
[28].

In the light of this discussion, it is possible to conclude
that the inclusion of dynamic pairing will have a twofold
effect: On the one hand, collective inertias driving fission
dynamics, with their inverse dependence on the square of
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the pairing gap [1,12,34,35], are expected to increase when
the Coulomb antipairing effect is considered, increasing the
collective action and leading to longer fission lifetimes fgg.
On the other hand, dynamic pairing correlations are expected
to increase the pairing gap reducing thereby the collective
inertias. The outcome of these competing effects is uncertain
and it is the purpose of this paper to clarify this situation and
establish a step forward in the study of beyond-mean-field
effects in fission calculations.

In previous studies, angular momentum projection [36] has
been used to compute fission barrier heights. However, the
results are almost indistinguishable from the ones obtained
with rotational correction [2,37]. Parity projection has also
been considered in the reflection asymmetric section of the
fission path [16,38], with little or no impact at all. Finally, the
impact of particle number projection on fission barrier heights
has been considered in [16]. A change of at most 0.5 MeV
is obtained in all the cases.

In this paper we are considering the contribution to dy-
namic pairing correlation coming from a restricted variation
after projection for particle number projection. The evolution
of the pairing properties of the nucleus as it evolves towards
fission will be studied as a function of the axial quadrupole
moment g = (Q9). We will analyze the impact of dynamic
pairing correlations on the potential energy surface, computed
with the particle number projected wave function |V (g)) =
P"|p(g)), and on the collective inertia computed with the
intrinsic state [¢(g)).

II. METHODOLOGY

Dynamic pairing correlations require a beyond-mean-field
framework involving the restoration of the particle quan-
tum number of the nuclear wave function. In order to gain
more correlations, the intrinsic mean field wave function
has to be determined by minimizing the projected energy
in the so- called variation after projection (VAP) method.
In this paper we use the restricted variation after projec-
tion (RVAP) [39] particle number projection (PNP) method
[40]. The RVAP-PNP method has been shown to be superior
to other alternatives like the Lipkin-Nogami method com-
monly used in the literature [39]. In the RVAP-PNP method
the variational subspace is formed by projecting onto good
particle number (protons and neutrons separately) intrinsic
wave functions obtained from a HFB calculation constrain-
ing the particle number fluctuation for protons and neutrons
|®((AZ%),, (AN?),)).! Henceforth, we will use new vari-
ables f, = (AN?) and f, = (AZ?) to alleviate notation. The
RVAP intrinsic state |®(f,, f,)) corresponds to the minimum
of the projected energy
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"The constraint on (AN?) involves the two-body operator ANZ.
The implementation of this constraint is straightforward when using
the gradient method to solve the HFB equation [41].
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FIG. 1. In the left (right) panels contour plots of the HFB (PNP)
energy as a function of f, = (AN?) and f, = (AZ?) are given
for three different quadrupole moments, namely, Q, = 14b (ground
state) [panels (a) and (b)], O, = 28b (first fission barrier) [panels
(c) and (d)], and Q, = 42b (fission isomer) [panels (e) and (f)]. The
results are obtained with the Gogny D1M force for the nucleus 2*’Pu.
The minima are marked by a dot and the color range spans 5 MeV.

as a function of the f, and f, variables. The minimum of
the two-dimensional function E% N (f;, f,) is determined by
a simple gradient method in two dimensions. The potential
energy surface for fission is obtained by introducing an addi-
tional constraint on the quadrupole moment Qg of the axially
symmetric intrinsic state and is given by the projected energy
of the RVAP for each Q,y value. We could also introduce
easily additional constrains like the octupole moment or the
necking operator to form multidimensional potential energy
surfaces (PESs) which are so popular in fission studies, but
this is not the purpose of the present work. An example of
both the HFB and PNP potential energy surfaces obtained
as a function of f, and f; is given in Fig. 1, where those
energies, computed with the Gogny DIM parametrization
[42], are plotted for the nucleus 240py and three different

064301-2



ROLE OF DYNAMIC PAIRING CORRELATIONS IN ...

PHYSICAL REVIEW C 99, 064301 (2019)

values of the quadrupole moment (see caption for details).
The chosen quadrupole moments correspond to the ground
state, first fission barrier, and fission isomer. Both the HFB
and PNP energies show a parabolic behavior as a function
of (fr, f,) that is slightly distorted in both cases. In the
figure, it is clearly observed how the minimum of the PNP
energy is shifted to higher f, and f; values as compared
to the HFB ones. This is in agreement with the expectation
that the RVAP method provides intrinsic states with more
pairing correlations than those intrinsic states obtained by the
HFB method. This has important consequences for fission
dynamics, as the collective inertia strongly depends upon the
amount of pairing correlations.

The other quantity required to study the dynamics of
spontaneous fission is the collective inertia associated with
the collective variables used to drive the nucleus from its
ground state to fission. The collective inertia plays a crucial
role in several fission observables, such as the spontaneous
fission lifetimes #sg obtained within the Wenzel-Kramers-
Brillouin (WKB) formula and the fission fragments distri-
butions obtained in both time dependent frameworks [21,43]
and stochastic Langevin approaches [22,24]. For instance, the
tsp has an exponential dependence on the collective inertia
than can amount to changes of several orders of magnitude
in this quantity [10-12]. As mentioned before, the magnitude
of the collective inertia depends on the amount of pairing
correlations in a way that can be quantified as an inverse de-
pendence on the square of the pairing gap. This dependence on
the amount of pairing correlations implies that the larger the
pairing correlations are, the smaller the collective inertia (and
therefore #sp) is. Therefore, we expect a strong dependence
of the collective inertia on the combined action of both the
Coulomb antipairing effect and the PNP.

There are two types of collective inertias: the one com-
ing from adiabatic time dependent Hartree-Fock-Bogoliubov
(ATDHFB) theory and the one coming for the Gaussian over-
lap approximation (GOA) to the generator coordinate method
(GCM) [2]. Unfortunately, so far none of these schemes has
been generalized to the case of non-HFB states like the PNP
ones considered in this paper. In these respect, the GCM-GOA
framework is more promising since its formalism is not inti-
mately rooted to the HFB method. However, the perturbative
cranking approximation (where the linear response matrix is
approximated by its diagonal both in the expressions of the
inertia and in the definition of the collective momentum [44]),
required to alleviate the computational cost of the evaluation
of the collective inertias, is not easy to implement in the PNP
case. Therefore we take a pragmatic approach and use for the
PNP case the perturbative cranking inertias computed with
the intrinsic state |®) obtained in the RVAP. Work to obtain
a sound and easy way to compute the inertia for PNP wave
functions is under way and will be reported elsewhere.

To avoid the appearance of divergences in the calculation
of the PNP energy with the Gogny force, we computed the
exchange, direct, and pairing channels for each of the terms of
the interaction [40]. The required Hamiltonian and norm over-
lap between the HFB state |®) and the one rotated in gauge
space, e'®rZei®N | ®), are computed using the methodology of

—————— !

Neutron (c)

-1775

-1780

Eprg (MeV)

= Epnp
T HFBHVAP
—— HFBcep
— HFB,

0 50 100 150
Q;, ()

-1785

FIG. 2. In panel (a) the potential energies obtained in the dif-
ferent approaches discussed in the text are plotted as as function
of the quadrupole moment of the intrinsic state. The color code
and the labels are described in the main text. In panels (b) and
(c) the particle-particle correlation energy %TrATKT for protons and
neutrons, respectively, is given. The octupole, hexadecapole and
neck parameters are given in panel (d). Finally, in panel (e) the
ATDHFB quadrupole collective inertia computed in the perturbative
approximation is given.

the generalized Wick theorem as developed in [45,46]. For the
density dependent part of the interaction we use the so-called
PNP projected density prescription that is commonly used for
particle number projection [40,47] (be aware, however, of the
fundamental difficulties encountered when using the projected
density prescriptions in the context of spatial symmetries
restoration [48]).

III. RESULTS

We have considered three nuclei as prototypical examples
illustrating the issues discussed in the previous section. The
first nucleus studied is the light actinide 236y, characterized
by a double humped potential energy surface (PES) with high
and wide barriers. Reflection symmetry is broken right after
the fission isomer and therefore asymmetric fragment mass
distribution is expected for this nucleus. In Fig. 2 we show
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TABLE I. On the left-hand side, spontaneous fission half-lives
(in seconds) computed with two different sets of collective inertias
(ATDHFB and GCM) and for the four different sets of calculations
for the nuclei considered. On the right-hand side, the values of the
fission barrier heights By, Bj;, and fission isomer excitation energy
E;; (in MeV) are also given.

Isp
ATDHFB GCM B, E; By

(s) (s) (MeV) (MeV) (MeV)

> HFB, 3.0 x 108 2.4 x 10*? 9.07 4.05 10.22
£ HFBg, 3.1x10% 12x10° 982 488 1097
HFBgryap 8.3 x 10*' 1.1 x 10* 9.64 4.77 10.74
PNP 1.0 x 10¥ 1.4 x 10* 9.74 4.69 10.72

:9:" HFB, 7.4 %108  75x10® 1023 4.39 10.20
& HFBc, 2.0x 10°* 24 x10¥ 1091 4.94 10.75
HFBryap 3.0 x 107 9.5x 10% 1074 474  10.57
PNP 28 x 107 12x10® 1083 4.79 10.63

& HFB, 23%102 17x10% 1118  3.71 777
&  HFBcep 7.6 x 10%* 29 x10® 11.60 3.45 6.86
HFBgvap 7.8 x 10" 2.5 x 10V 11.19 3.40 7.09
PNP 1.9 x 10" 6.2 x 10" 1122 3.71 7.49

the most relevant quantities for a theoretical understanding
of fission. In panel 2(a) potential energy surfaces (to be dis-
cussed below) are shown as a function of the quadrupole mo-
ment. The corresponding particle-particle correlation energies
%Tr(Af/cI) (with T = p, n) are shown in panels 2(b) and 2(c).
In panel 2(d) the self-consistent octupole and hexadecapole
moments are also shown along with the neck parameter given
by the mean value of the neck operator Qy = exp[—(z —
zO)z/ag] with zo = 0 and gy = 1.0 fm. Finally, in panel 2(e)
the collective inertia computed in the traditional perturbative
ATDHFB scheme is displayed.

Panel 2(a) shows the potential energy surfaces for four dif-
ferent calculations. The black solid line (HFB;) corresponds
to the traditional HFB calculation where Coulomb exchange is
evaluated in the Slater approximation and Coulomb and spin-
orbit antipairing are neglected. The dashed red line (HFBcep)
corresponds to a HFB calculation where both Coulomb ex-
change and antiparing are fully considered. Comparing the
predicted isomer energies (E;;) and inner (B;) and outer
(Byy) fission barrier heights (see Table I) we notice that
HFBcep predicts values that are 0.75-0.83 MeV larger. This
increase is an expected behavior when pairing correlations
get reduced [11,16]. Also, more pronounced structures are
observed in HFBcep, particularly at large quadrupole defor-
mations, which can be traced back to the reduced pairing
correlations [49] associated with the presence of Coulomb
antipairing. These changes in the potential energy surface
are partially washed out in the HFB calculation obtained
with intrinsic RVAP states (HFBgryap, blue dashed line).
The HFBryap barriers heights and isomer excitation energy
are 0.52-0.55 larger than the HFB,, and the potential en-
ergy surfaces at large deformations are also similar. This
result suggests that pairing correlations induced by the RVAP
partially cancel out the effect of the Coulomb antipairing

quenching (see below). Finally, the blue full curve with
symbols corresponds to the RVAP projected energy (Epnp)-
This energy is around two MeV deeper than the intrin-
sic energies, the fission parameters being 0.50-0.64 MeV
larger than the HFB, results.

In order to better understand the impact of dynamic corre-
lations on fission, it is worthwhile to analyze the changes in
the other quantities depicted in Fig. 2. Proton particle-particle
correlation energies are shown in panel 2(b) for the HFB,,
HFBcep, and HFBgryap intrinsic states (this quantity is mean-
ingless in the PNP case). Coulomb antipairing quenches the
particle-particle proton correlation energy, but the quenching
is softened by the effect of the PNP-RVAP, the latter results
being closer to the HFB, ones. In the neutron case, shown
in panel 2(c), no significant differences are observed between
the HFB, and HFBc,, cases as expected. The effect of PNP-
RVAP is to increase neutron pairing correlations, bringing
the particle-particle correlation energy of the intrinsic state
above the other two curves. The quadrupole, octupole, and
necking shape parameters are shown in panel 2(d). For each
of the three parameters, the results obtained with the three
different types of intrinsic states lie each on top of the other.
The impact on the deformation parameters of using different
types of treatments for the pairing correlation is negligible.
Finally, in panel 2(e) the ATDHFB perturbative collective
inertias for the three intrinsic states are shown. Compared
to the HFB; reference calculation, the HFBc., inertia is
larger as a consequence of the quenched pairing. Overall,
the HFB,, inertia is around two times larger than the HFB,
one. It also shows more pronounced structures in the form
of high peaks. On the other hand, the increase of pairing
correlations associated with PNP-RVAP brings the HFBryap
intrinsic inertia back to the range of the HFB, curve. It is worth
mentioning that the HFBryap inertia looks a bit smoother
than the HFB; one. From this comparison we conclude that
the HFB; inertia (i.e., without Coulomb exchange, and, what
is more important, without Coulomb antipairing) represents
a good approximation, in the case of the Gogny force, to
the inertia obtained from the PNP-RVAP intrinsic states. It is
worth mentioning that this cancellation is typical of the Gogny
forces and is not expected in calculations where the strength
of the pairing interaction is fitted separately for protons and
neutrons to experimental data [S0]. In this case, the effect
of Coulomb antipairing is taken into account by the fitted
pairing strength, and therefore a reduction of a factor of 2
in the inertias has to be expected in the PNP-RVAP case.
This reduction could be mitigated if the fitting of the pairing
strength is carried out at the PNP-RVAP level.

Finally, we have computed the spontaneous fission half-life
tsp using the traditional WKB formula (see Refs. [2,11] for
details and applications) with an E;, parameter of 1 MeV.
The results for the HFB, and HFBce, cases are computed
with the corresponding PES and collective inertias, whereas
the PNP-RVAP is computed with the PNP PES but using the
collective inertia of the HFBgryap intrinsic state. The results
are summarized in Table I along with the values of Ej;, B;, and
By discussed above. The effect of Coulomb antipairing on the
inertia is to increase fsg by 20 (14) orders of magnitude in the
ATDHFB (GCM) cases, but this huge impact is canceled out
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FIG. 3. Same as Fig. 2 but for the nucleus »>Cf.

by the dynamic pairing effect associated with RVAP-PNP. The
final RVAP-PNP fgr values are very close to the HFB, ones. It
is important to emphasize that the RVAP-PNP fgr values are
lower than the HFB, ones in spite of the larger fission barrier
heights. This is due to the smaller values of the inertias in the
projected case.

The results obtained for the nucleus *°Pu look qualita-
tively the same as those obtained for 23®U, the small differ-
ences observed being mostly due to shell effects associated
with the different proton and neutron numbers. The values
of Ey;, By, and By; are given in Table 1. The most notorious
difference is in the larger values of B;, which are around
1 MeV higher than in the *°U case. The impact of Coulomb
antipairing on fsg is 16 (10) orders of magnitude for the ATD-
HFB (GCM) inertias and, as in the uranium case, the inclusion
of dynamical pairing correlations reduces substantially fsp
and brings it closer to the traditional HFB, value. As in the
previous case, we conclude that dynamic pairing compensates
for the Coulomb antipairing effect, and the tsp values obtained
in the traditional HFB approach are very similar to the ones
obtained in the RVAP-PNP context.

We have also carried out calculations for the heavier *>2Cf
isotope. The potential energy surfaces, particle particle energy
correlations, deformation parameters and ATDHFB collective
inertias are shown in Fig. 3. In all the cases, the PESs show

a rather high inner barrier (see Table I for the values of the
different parameters). The reflection symmetric fission isomer
lies at around 3.7 MeV excitation energy, whereas the slightly
reflection asymmetric outer barrier is around 7 MeV high. In
this particular nucleus the impact of the different theoretical
schemes used in the calculation of the outer barrier is stronger,
with changes in its height of more than 1 MeV. It turns out that
in the region of the outer barrier the HFB, PES is very flat with
several coexisting minima, but one of them is clearly favored
when Coulomb antipairing is considered. The particle-particle
correlation energy for protons looks similar to the one of 236U
for the HFBcep and HFBryap cases but differs significantly
from the HFB, value around the outer barrier region. The
reason for this behavior is the same reason that explains the
discrepancies in the PESs in that region. The E,, for neutrons
follows the same pattern as in the uranium case and only
small differences are noticed in the outer barrier region. The
same observation is valid for the deformation parameters of
panel 3(d). The behavior of the ATDHFB inertia in panel 2(e)
is qualitatively similar to the one of 2*6U.

Concerning fsg, we observe longer values when Coulomb
antipairing is considered, but the difference amounts to 2 (0)
orders of magnitude in the ATDHFB (GCM) case. This is
in strong contrast with the 2*°U and 2*°Pu cases. A possible
explanation is the reduction of the outer barrier height of
more than 1 MeV seen in this particular case. Considering
dynamical pairing lowers tsg by 5 (3) orders of magnitude in
the ATDHFB (GCM) cases as compared to the HFBcep result.
The net effect of these opposite trends is to yield final values
for the RVAP-PNP calculation which are, again, pretty close
to the HFB; ones.

IV. CONCLUSIONS

In this paper we studied the impact of dynamical pairing
correlations in the theoretical estimation of fission properties.
We found that particle number projection in the restricted vari-
ation after projection framework (using (AN?) for protons and
neutrons as variational parameters) has a profound impact on
some of the quantities related to fission, such as spontaneous
fission half-lives. The parameters defining the potential energy
surface, like the fission barrier heights and fission isomer
location, are little affected by particle number projection in
the three examples analyzed. On the other hand, the increase
in pairing correlations due to particle number restoration leads
to a quenching of the collective inertia by a factor of the order
of 2. The consequences for the spontaneous fission half-life
depend on the nucleus, but it is quantified to be large and can
reach a reduction of 20 orders of magnitude. This reduction
is compensated by the Coulomb antipairing effect, which is
often neglected in mean field calculations but is required
in particle number projection to avoid the self-energy and
self-pairing problems. The reduction of pairing correlations
associated with Coulomb antipairing increases the collective
inertias by a factor of around 2 in the examples considered and
can increase the calculated s up to 20 orders of magnitude.
On the other hand, the consequences of an exact treatment
of the Coulomb exchange potential in the potential energy
surface are relatively small and have a relatively less important

064301-5



R. BERNARD, S. A. GIULIANI, AND L. M. ROBLEDO

PHYSICAL REVIEW C 99, 064301 (2019)

impact on fgg. The two opposite effects, Coulomb antiparing
and dynamical pairing correlations, tend to suppress each
other, and the final outcome turns out to be similar to the
results obtained omitting both of them. This result is relevant
for calculations with nuclear forces (Gogny among them),
where the nuclear pairing interaction is isospin invariant and
Coulomb antipairing has to be considered. The effect of
dynamical pairing correlations alone is relevant for other in-
teractions where the pairing strength for protons and neutrons
used at the mean field level is fitted to experimental data.

For future work, the evaluation of the collective inertias
with particle number projected wave functions is the next

step to consider. Also, the consequences of particle number
projection on induced fission half-lives and properties of the
fission fragments could be an interesting subject of research.
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