
PHYSICAL REVIEW C 99, 061302(R) (2019)
Rapid Communications

Ab initio Gamow in-medium similarity renormalization group with resonance and continuum
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We have developed a novel ab initio Gamow in-medium similarity renormalization group (Gamow IMSRG) in
the complex-energy Berggren framework. The advanced Gamow IMSRG is capable of describing the resonance
and nonresonant continuum properties of weakly bound and unbound nuclear many-body systems. As test
grounds, carbon and oxygen isotopes have been calculated with chiral two- and three-nucleon forces from
the effective field theory. Resonant states observed in the neutron-dripline 24O are well reproduced. The halo
structure of the known heaviest Borromean nucleus 22C is clearly seen by calculating the density distribution in
which the continuum s channel plays a crucial role. Furthermore, we predict low-lying resonant excited states in
22C. The Gamow IMSRG provides tractable ab initio calculations of weakly bound and unbound open quantum
systems.
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Introduction. Thanks to advanced radioactive beam facili-
ties, loosely bound and unbound nuclei with extreme neutron-
to-proton ratios have been explored in an unprecedented way.
The nuclei belong to the category of open quantum systems
in which the coupling to the particle continuum profoundly
affects the behavior of the system [1,2]. Many novel phe-
nomena have been observed or predicted in the exotic nuclei,
such as halos [3,4], genuine intrinsic resonances [5,6], and
new collective modes [7,8]. To include the continuum effect,
several models have been developed, e.g., the continuum shell
model [1,9,10], the Gamow shell model [5,6], the complex
coupled cluster (CC) [11,12], and the continuum-coupled
shell model [13].

Current nuclear theory is pursuing ab initio calculations
which are based on realistic nuclear forces and rigorous
many-body methods. However, it is always a big challenge
to develop an ab initio method to efficiently describe the con-
tinuum. As one of the powerful ab initio renormalizations of
interacting Hamiltonians, the similarity renormalization group
(SRG) was proposed independently by Głazek and Wilson
[14] and by Wegner [15]. Later, Bogner et al. [16] and Hergert
and Roth [17] applied the SRG method to softening nuclear
forces for ab initio calculations. Recently, the SRG method
was developed as a new many-body method in nuclear con-
figuration space, named in-medium SRG (IMSRG) [18,19].
The IMSRG can directly give the ground-state properties
of closed-shell nuclei [18] and as well be used to derive
nonperturbative effective Hamiltonians for the descriptions
of excited states or open-shell nuclei [20,21]. The IMSRG
has been developed further, including multireference IMSRG
[22], IMSRG using an ensemble reference [23], equation-
of-motion IMSRG (EOM-IMSRG) [24,25], and the IMSRG
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merging no-core shell model [26]. The IMSRG has become
a powerful and predictive ab initio method. However, all the
existing IMSRG calculations are performed in the harmonic-
oscillator (HO) or real-energy Hartree-Fock (HF) basis (here
the real-energy HF means that the HF approach is performed
in the HO basis). The HO basis is bound and localized and,
hence, isolated from the environment of unbound scattering
states. The real-energy HF basis also cannot include the
continuum. It is lacking to include the continuum effect in
IMSRG.

The complex-energy Berggren basis provides an efficient
framework to treat bound, resonant, and nonresonant contin-
uum states on an equal footing [27,28]. Within the Berggren
basis, the Gamow shell model [5,6,29–31] and complex cou-
pled cluster [11,12] have been well developed. In this Rapid
Communication, we develop the IMSRG in the Berggren basis
and call it the Gamow IMSRG. As test grounds, we have
applied it to oxygen and carbon isotopes. The recent exper-
iments [32–35] highlight that 22C is the heaviest Borromean
halo nucleus observed. The experimental root-mean-squared
matter radius of 22C was deduced to be 3.44 ± 0.08 fm [35].
The coupling to continuum should play a role in producing the
extended density distribution. No information has been known
experimentally about 22C excited states which can provide
further understanding of the halo structure. Using the Gamow
IMSRG, we give a continuum-coupled calculation of the halo
22C from first principles for the first time.

Gamow Hartree-Fock. The intrinsic Hamiltonian of an A-
nucleon system reads

H =
A∑

i=1

(
1 − 1

A

)
pi

2

2m
+

A∑
i< j

(
VNN,i j − pi · p j

mA

)

+
A∑

i< j<k

VNNN,i jk, (1)
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where VNN and VNNN are the two-nucleon (NN) and three-
nucleon (NNN) interactions, respectively. The NN force
includes the Coulomb interaction between protons. In the
present Rapid Communication, we take the optimized chiral
NN interaction NNLOopt [36] and the NNLOsat which in-
cludes the chiral three-nucleon force [37,38]. The NNLOopt

potential gives good descriptions of nuclear structures includ-
ing binding energies, excitation spectra, dripline positions,
and the neutron matter equation of state without resorting
to three-body forces [36]. The NNLOsat potential optimizes
simultaneously the NN and NNN forces with low-energy
nucleon-nucleon scattering data and selected nuclear structure
data specially improving the calculations of nuclear radii [37].

In the Gamow calculations, it is a key step how to choose
a proper one-body potential to generate the resonance and
continuum Berggren basis. In many cases, the phenomeno-
logical Woods-Saxon potential is used [5,6,31,39]. In the
present Rapid Communication, we use the Gamow-Hartree-
Fock (GHF) [29,30] with the same chiral potentials to produce
the Berggren single-particle basis. This gives a more self-
consistent and ab initio calculation. In detail, we first perform
a HF calculation of Hamiltonian (1) in the HO basis, giving
the HF single-particle states,

|α〉 =
∑

p

Dpα|p〉, (2)

where |p〉 indicates the HO basis and the coefficients Dpα are
determined in the HF diagonalizing. After that, we obtain the
one-body HF potential U in the HO basis,

〈p|U |q〉 =
A∑

i=1

∑
rs

〈pr|VNN|qs〉D∗
riDsi

+ 1

2

A∑
i, j=1

∑
rstu

〈prt |VNNN|qsu〉D∗
riDsiD

∗
t jDu j . (3)

The one-body GHF Hamiltonian in the complex-momentum
(complex-k) space is given by

〈k|h|k′〉 =
(

1 − 1

A

)
h̄2k2

2m
δkk′ +

∑
pq

〈p|U |q〉〈k|p〉〈q|k′〉, (4)

where 〈k|p〉 is the HO basis wave-function |p〉 expressed in the
complex-k space 〈k|. In practical calculations, the momentum
is discretized in the contour of the Berggren complex-k plane
[31]. The bound, resonant, and continuum GHF basis can be
obtained by diagonalizing the complex-energy HF Hamilto-
nian (4).

Gamow IMSRG. Within the GHF basis, the Gamow IM-
SRG has been performed. The philosophy of the SRG is to
suppress off-diagonal matrix elements and drive the original
Hamiltonian H (0) = H [given by Eq. (1)] towards a band-
or block-diagonal form by means of the continuous similarity
transformation U (s) with U (s)U −1(s) = 1 [14,15,18,19],

H (s) = U (s)H (0)U −1(s). (5)

The Hamiltonian in the real-momentum space is Hermi-
tian H = H†, therefore, the similarity transformation U (s)
can be a unitary transformation in practice, U (s)U †(s) =

U (s)U −1(s) = 1, giving

H (s) = U (s)H (0)U †(s). (6)

The differential gives the operator flow equation [14,15],

dH (s)

ds
= [η(s), H (s)], (7)

with the anti-Hermitian generator η(s),

η(s) = dU (s)

ds
U †(s) = −η†(s). (8)

In the present Rapid Communication, we extend the SRG to
the complex-momentum Berggren basis in which the Hamil-
tonian becomes complex symmetric H = HT (here T indi-
cates the transpose) [2]. We perform a continuous orthogonal
transformation U (s)U T (s) = U (s)U −1(s) = 1 to make the
H (0) band [14] or block diagonal [18],

H (s) = U (s)H (0)U T (s). (9)

Correspondingly, the generator appearing in the operator flow
equation (7) becomes

η(s) = dU (s)

ds
U T (s) = −ηT (s). (10)

If the SRG is implemented in the configuration space of
an A-body system, it is called the IMSRG [18] as mentioned
in the Introduction. In the present paper, the IMSRG is de-
veloped in the complex-momentum Berggren basis (i.e., the
GHF basis described above). We name it the Gamow IMSRG.
The IMSRG itself contains many-body correlations and can
directly give the ground state of a closed-shell nucleus by
decoupling the Hamiltonian with the closed shell. To calculate
open-shell nuclei or excited states, we explore the Gamow
IMSRG with the EOM, named Gamow EOM-IMSRG. The
general framework of real-energy EOM-IMSRG can be found
in Refs. [24,25]. In the Gamow EOM-IMSRG calculations,
we truncate the excitation operator at a two-particle two-hole
level. The Magnus formulation [40] and the White generator
η(s) [19] are adopted to decouple the Hamiltonian. By using
the White generator, Eq. (10) can be satisfied easily. Besides,
with the White generator, the off-diagonal elements of the
Hamiltonian are suppressed with a decay scale (s − s0) [19].

Calculations and results. As mentioned above, the chiral
NNLOopt (NN) and NNLOsat (NN + NNN) have been used
in the present Gamow IMSRG calculations. The NNLOsat

interaction matrix elements were provided by the Oak Ridge
group with 13 major HO shells at h̄� = 22 MeV [37]. The
NNLOsat NNN force is fully taken in the HF calculation,
whereas in the IMSRG calculation, we take the normal-
ordered form of the NNN force which appears finally at a
two-body level, containing normal-ordered zero-, one-, and
two-body terms of the NNN force [41,42]. In the NNLOopt

calculations, it is a common use of a total of 12 major HO
shells with h̄� = 20 MeV [43–46].

As a test ground, we have investigated neutron-rich closed-
shell oxygen and carbon isotopes. Due to the huge compu-
tational cost (particularly when the continuum is included),
only the neutron d3/2 and s1/2 partial waves are treated in
the resonance and continuum GHF (Berggren) basis, whereas
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other neutron channels and all proton channels are handled
in the real-energy discrete HF basis (that is obtained in
the HO basis). Such handling has been adopted in other
Gamow many-body calculations, e.g., the no-core Gamow
shell model [30] and complex coupled cluster [12]. For the
sd shell, the neutron 0d3/2 is a narrow resonant orbit, and
the 1s1/2 orbit may have a significant effect on the extended
spatial distributions of loosely bound and unbound nuclei.
Therefore, the d3/2 and s1/2 continua should be explicitly in-
cluded in the valence model space of the Gamow many-body
calculations.

In Ref. [47], an IMSRG approximation named Magnus(2*)
was suggested in which a class of undercounted terms in
the normal-ordered two-body truncation are restored by in-
troducing an auxiliary one-body operator with hole-hole and
particle-particle excitations. Magnus(2*) includes more cor-
relations which are from intermediate three-body forces and
brings the two-body truncated IMSRG into agreement with
the CC single-double method [24,47,48]. We use the IMSRG
Magnus(2*) approximation to evolve the initial many-body
Gamow Hamiltonian to be decoupled with the ground state
of the closed-shell nucleus. This gives the ground state and
the decoupled Gamow IMSRG Hamiltonian for excited-state
calculations using EOM (i.e., Gamow EOM-IMSRG). With
the Gamow IMSRG Hamiltonian obtained thus, we perform
the EOM calculation for excited states. Only hole-hole ex-
citations are considered in the auxiliary one-body operator
of the Magnus(2*) approximation. In Ref. [49], it has been
shown that the contribution of particle-particle excitations is
significantly smaller than the hole-hole contribution.

Although Hamiltonian (1) is intrinsic, the IMSRG wave
function is expressed in the laboratory coordinate. One might
think of the correction from the center-of-mass (CoM) mo-
tion. In the HO basis, the CoM motion can be treated using
the Lawson method [50]. In the real-energy HF basis, an
approximation similar to the Lawson method was suggested
in the CC and IMSRG calculations [19,51]. Unfortunately,
the method cannot be used in the complex-energy Berggren
basis due to the fact that the R2 matrix elements (R is the CoM
position) cannot be regularized in resonance and continuum
states which are not square integrable.

In the previous work [31], we have discussed that the
CoM effect with an intrinsic Hamiltonian is small for low-
lying states. In the present Rapid Communication, we use
the approximation suggested in Refs. [19,51] to estimate the
CoM effect in the IMSRG calculation. In Fig. 1, we show the
real-energy EOM-IMSRG calculations (here real-energy indi-
cates that the calculation is performed in the real-energy HF
basis) without and with the multiplied CoM term βHCoM =
β( P2

2mA + 1
2 mA�̃2R2 − 3

2 h̄�̃). The value of the CoM vibration
frequency �̃ can be different from the frequency � of the
HO basis in which the HF equation is solved [19,51]. The
“best” �̃ value can be determined by minimizing the HCoM(�̃)
expectation value of the state (e.g., the ground state), although
the total energy of a state should not be sensitive to the �̃ value
[51]. We find that the minimized HCoM(�̃) expectation values
are approximately zero when �̃ ≈ 14.0 and 12.6 MeV in the
ground states of 24O and 22C, respectively. It is seen that, in
Fig. 1, the CoM effect is small.
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FIG. 1. 24O spectrum calculated with NNLOopt (NN) and
NNLOsat (NN + NNN). The left two columns give the real-energy
EOM-IMSRG calculations (indicated by R-IMSRG) without and
with the CoM treatment βHCoM. We take the multiplier β = 5.
The right three columns show the Gamow EOM-IMSRG calcula-
tions (indicated by G-IMSRG) and data [52,53]. Resonant states
are indicated by shading, and their widths (in MeV) are given
by the numbers nearby. The gray shading means the continuum
above the particle emission threshold. Hint indicates the intrinsic
Hamiltonian (1).

The detailed Gamow EOM-IMSRG calculations for 24O
are shown in Fig. 1 with the chiral NNLOopt (NN) [36] and
NNLOsat (NN + NNN) [37,38] interactions. The converged
calculations are independent of the choice of the contour
for the Berggren partial waves. We have tested that, for the
sd shell, 30 Gauss-Legendre mesh points for each of the
continuum channels is sufficient to provide the converged
calculations of the energies of nuclear states (including bind-
ing energies). The present calculations reproduce the exper-
imental excitation energies and resonances of the observed
states. The high excitation energy of the first 2+ state in 24O
supports the shell closure at N = 16 in the oxygen chain. The
calculations predict three resonant states around the excitation
energies of ∼8 MeV with Jπ = 2+–4+, corresponding to the
not-yet-clear experimental states around 7.6 MeV [53]. This
prediction is consistent with the complex CC calculation with
a schematic three-nucleon force [12].

The Borromean halo 22C is a challenging nucleus for many
theoretical calculations [54–56]. Our Gamow-Hartree-Fock
calculation gives that the neutron ν1s1/2 orbital is weakly
bound. The two-neutron configuration [ν1s1/2]2 is responsible
for the halo formation [32–35]. We have performed IMSRG
calculations for 22C. Figure 2 shows the ground-state density
obtained with an effective density operator. The operator is
derived self-consistently using the Baker-Cambell-Hausdorff
formulation [40] within the Magnus framework of IMSRG.
We see that the Gamow IMSRG calculation gives a long tail
in the density distribution, supporting the halo structure. Note
that more than 30 Gauss-Legendre mesh points would be
needed to obtain a converged and smooth tail in the density
distribution of the halo nucleus. In 22C, we find that 36 mesh
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FIG. 2. Calculated 22C ground-state densities displayed on the
logarithm scale. R-IMSRG indicates the real-energy IMSRG calcu-
lation, whereas G-IMSRG is the Gamow IMSRG calculation. The
inset details the densities in the central region of the nucleus with the
standard scale.

points can lead to a converged and smooth tail of the density
distribution. Calculations with more mesh points cost much
more computer time.

To see the effect from the continuum in 22C, we have ana-
lyzed the role of the s channel. Two types of Gamow IMSRG
calculations have been performed: (i) with discrete s states
which are obtained in the real-energy HF calculation, and (ii)
with the Berggren s states that are obtained in the complex-
energy GHF calculation. In both calculations, the neutron
d3/2 channel remains in the GHF basis. The Gamow IMSRG
calculation with adopting the discrete real-energy HF s states
gives a matter radius of 2.798 fm for the 22C ground state,
whereas the calculation with taking the continuum s wave
gives a larger radius of 2.928 fm. The similar calculations with
NNLOsat (NN + NNN) have also been performed. The ob-
tained radius is 2.983 fm with the real-energy discrete s states
and 3.139 fm with the continuum GHF s wave. The experi-
mental estimated matter radius was 5.4 ± 0.9 fm in an earlier
work [32], and it is 3.44 ± 0.08 fm [35] and 3.38 ± 0.10 fm
[57] in the later works. We see that the continuum s wave plays
an important role in the calculation of the radius and the halo
structure. The NNLOopt (NN) itself underestimates the radii of
carbon isotopes [58], whereas the NNLOsat (NN + NNN) give
good descriptions of radii [37,58]. A recent calculation of the
relativistic mean-field model with a continuum gives a radius
of 3.25 fm [56].

There have been no experimental data available for excited
states in 22C. Figure 3 gives the Gamow EOM-IMSRG pre-
dictions for possible low-lying states. The results are bench-
marked with the complex CC calculations [59]. We see that
the two types of calculations are consistent with each other.
The first 2+ state is bound in the present and CC calculations.
We find that the 2+

1 state is dominated by the proton 1p-1h
excitation from the π0p3/2 hole to π0p1/2 particle orbits. The
proton 2+ excited state is lower in energy than the neutron
2+ state that has been calculated by the real-energy shell
model with the 14C core [60,61]. The present real-energy
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FIG. 3. Excited states in 22C predicted by Gamow EOM-IMSRG
with NNLOopt (NN) and NNLOsat (NN + NNN), compared with the
complex CC calculation [59]. The channel(s) given at the top of the
panel indicates that the partial waves are treated in the resonance
and continuum Berggren representation. Other labels are similar to
Fig. 1.

IMSRG (see Fig. 3) gives a similar neutron 2+ energy to that
in Refs. [60,61], whereas the Gamow IMSRG and complex
CC predict a lower neutron 2+ energy by about 0.6 MeV. In
fact, there are superposed resonant states with Jπ = 1+–4+
at energies ∼3.5–4.0 MeV and widths ∼0.15–0.25 MeV. The
NNLOsat (NN + NNN) calculations give slightly higher exci-
tation energies and wider resonant widths for the superposed
states as shown in Fig. 3. The resonances are dominated by
neutron 1p-1h excitations from the ν0d5/2 hole to the ν0d3/2

particle.
Summary. We have developed the ab initio Gamow IM-

SRG which includes the continuum via the complex-energy
Berggren basis obtained by the Gamow-Hartree-Fock with
chiral interactions. Using the Gamow IMSRG, the continuum-
coupled Hamiltonian of a closed-shell nucleus is decoupled
first with the ground-state configuration, which meanwhile
gives the ground-state property of the nucleus. With the
decoupled IMSRG Hamiltonian, we perform the EOM cal-
culation to obtain excited states, which we call Gamow EOM-
IMSRG. The method provides a unified description of bound,
resonant, and continuum states of nuclei. As a test ground, we
have calculated the neutron-dripline nucleus 24O in which res-
onant states have been observed experimentally. The present
calculations reproduce well the experimental observations.
22C has also been investigated, giving the known halo struc-
ture. Low-lying resonant states in 22C are predicted, providing
useful information for future experiments. The calculation
shows that the continuum s wave leads to a large spatial
extension of the Borromean halo nucleus 22C.
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