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The effect of strange interactions in neutron star matter and the role of the strange meson-hyperon couplings
are studied in a relativistic quark model where the confining interaction for quarks inside a baryon is represented
by a phenomenological average potential in an equally mixed scalar-vector harmonic form. The hadron-hadron
interaction in nuclear matter is then realized by introducing additional quark couplings to σ , ω, ρ, σ ∗, and
φ mesons through mean-field approximations. The meson-baryon couplings are fixed through the SU(6) spin-
flavor symmetry and the SU(3) flavor symmetry to determine the hadronic equation of state (EoS). We find
that the SU(3) coupling set gives the potential depth between �′s around −5 MeV and favors a stiffer EoS.
Using the stiffest EoS from the SU(3) we determine the tidal Love number k2, the tidal deformability λ, and the
dimensionless tidal deformability �D. We obtain a value of �D = 483 corresponding to a 1.4M� star while the
weighted tidal deformability �̃ = 624 for a symmetric binary system of chirp mass M = 1.188M�. The radius
for the canonical neutron star is found to be 13.1 km.
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I. INTRODUCTION

The recent observation of gravitational waves from a bi-
nary neutron star coalescence by the Advanced LIGO and
Virgo gravitational wave detectors, i.e., event GW170817 [1],
has provided new insight on the maximum mass as well as
the radii distribution of neutron stars [2–6]. Studies based on
the GW170817 observation have put forth a stringent limit
on the radius corresponding to a 1.4M� mass neutron star,
between 9.9 < R1.4 < 13.6 km. Such a limit sets a strong
constraint on the equation of state (EoS) of dense matter.
The EoS plays a crucial role in determining the composi-
tion of dense matter relevant to neutron stars, the relation
between the mass and radius of neutron stars, as well as
other macroscopic properties such as the tidal deformability
and stellar moment of inertia. In particular, limits have been
set on the dimensionless deformability parameter �D and the
combined dimensionless tidal deformability �̃ of the binary
system. The value [1] for �D(1.4M�) has been restricted to
�D(1.4M�) � 800 while the limit on �̃ has been updated [7]
to 70 � �̃ � 720.

In light of such recent advances in multimessenger obser-
vations and the availability of precise observational data, the
composition of neutron stars can be modeled so as to lie within
the new constraints. The composition of dense matter relevant
to neutron stars consists not only of nucleons and leptons
but also several exotic components such as hyperons, mesons
as well as quark matter in different forms and phases. Since
very high density is energetically favorable for the creation
of particles with strange content, it is expected that hyperons
may appear in the inner core of neutron stars at densities
2–3 times the normal saturation density ρ0 = 0.15 fm−3. The
onset of this new degree of freedom softens the EoS and

lowers the maximum mass [8–11], leading to the hyperon
puzzle. In the present work we study the properties of isolated
and binary neutron stars with strange interactions within a
relativistic quark model, alternatively called the modified
quark meson coupling model (MQMC) [12–15]. The MQMC
model is based on a confining relativistic independent quark
potential model rather than a bag to describe the baryon
structure in vacuum. In such a picture the quarks inside the
baryon are considered to be independently confined by a
phenomenological average potential with an equally mixed
scalar-vector harmonic form. Such a potential has character-
istically simplifying features in converting the independent
quark Dirac equation into a Schrödinger-like equation for
the upper component of Dirac spinor, which can be solved
easily. The implications of such potential forms in the Dirac
framework have been studied earlier [16,17].

In an earlier work [14] we studied hyperon stars in the
MQMC model where the baryon-baryon interaction was re-
alized through σ , ω, and ρ meson exchanges and the strange
quarks were considered as spectators. Recently, this model
was applied for the study of properties of � and �0 hyper-
nuclei [18] as well as in developing an EoS [19] within the
constraints set by GW170817 event. In the present attempt
we incorporate an additional pair of hidden strange mesons
σ ∗ and φ [20] which couple only to the strange quark and
the hyperons of nuclear matter. The relevant parameters of
the interaction are obtained self-consistently by realizing the
saturation properties such as binding energy and pressure. The
hyperon couplings to the strange mesons are quite uncertain.
In the present work we tried with three different sets: first with
SU(6) spin flavor symmetry [21], the second one by using the
available hyperon-nucleon interaction potential at saturation
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density for the �, 	, and � hyperons to U� = −28 MeV,
U	 = 30 MeV, and U� = −18 MeV respectively to deter-
mine the hyperon couplings to the vector ω meson [14], and
the third one with SU(3) symmetry [22] where couplings are
expressed in terms of the mixing angle θν . The main objective
in the consideration of such sets is to get the neutron star’s
maximum mass. We observe that the SU(3) coupling set gives
a massive neutron star. To add a greater credence to our choice
of SU(3), we determine the tidal deformability and moment of
inertia of hyperonic stars within the MQMC framework.

The paper is organized as follows: In Sec. II, a brief outline
of the model describing the baryon structure in vacuum is
discussed and the baryon mass is then realized by appropri-
ately taking into account the center-of-mass correction, pionic
correction, and gluonic correction. The EoS with the inclusion
of hyperon-hyperon interaction mediated through the σ ∗ and
φ mesons in three different coupling frameworks is developed
in Sec. III. In Sec. IV we briefly describe the formalism to
determine the tidal deformability and the moment of inertia of
neutron stars. The results and discussions are made in Sec. V.
We summarize our findings in Sec. VI.

II. MODIFIED QUARK-MESON COUPLING MODEL

The modified quark-meson coupling model has been
broadly applied for the study of the bulk properties of sym-
metric and asymmetric nuclear matter. In an earlier work [14]
this model was used to study the role of hyperons in neutron
stars without taking in to consideration the contribution of
the hyperon-hyperon interactions. We now extend this model
to study the effect of strangeness in dense nuclear matter by
including the contribution of the hidden strange mesons σ ∗
and φ. We begin by considering baryons as composed of three
constituent quarks in a phenomenological flavor-independent
confining potential, U (r), in an equally mixed scalar and
vector harmonic form inside the baryon [12], where

U (r) = 1
2 (1 + γ 0)V (r),

with

V (r) = (ar2 + V0), a > 0. (1)

Here (a,V0) are the potential parameters. The confining in-
teraction provides the zeroth-order quark dynamics of the
hadron. In the medium, the quark field ψq(r) satisfies the
Dirac equation[

γ 0
(
εq − Vω − 1

2τ3qVρ − Vφ

) − �γ · �p
−(mq − Vσ − Vσ ∗ ) − U (r)

]
ψq(�r) = 0, (2)

where Vσ = gq
σ σ0, Vω = gq

ωω0, Vρ = gq
ρb03, Vφ = gq

φφ0, and
Vσ ∗ = gq

σ ∗σ ∗
0 . Here σ0, ω0, b03, σ ∗

0 , and φ0 are the classical
meson fields, and gq

σ , gq
ω, gq

ρ , gq
σ∗ , and gq

φ are the quark
couplings to the σ , ω, ρ, σ ∗, and φ mesons respectively. mq

is the quark mass and τ3q is the third component of the Pauli
matrices. We can now define

ε′
q = (ε∗

q − V0/2) and m′
q = (m∗

q + V0/2), (3)

where the effective quark energy, ε∗
q = εq − Vω − 1

2τ3qVρ −
Vφ , and effective quark mass, m∗

q = mq − Vσ − Vσ ∗ . We now

introduce λq and r0q as

(ε′
q + m′

q) = λq and r0q = (aλq)−
1
4 . (4)

The ground-state quark energy can be obtained from the
eigenvalue condition

(ε′
q − m′

q)

√
λq

a
= 3. (5)

The solution of Eq. (5) for the quark energy ε∗
q immediately

leads to the mass of baryon in the medium in zeroth order
as

E∗0
B =

∑
q

ε∗
q . (6)

Corrections due to spurious center-of-mass motion, εc.m.,
as well as those due to other residual interactions, such as
the one-gluon exchange at short distances, (�EB)g, and quark-
pion coupling arising out of chiral symmetry restoration, δMπ

B ,
have been considered in a perturbative manner, described
explicitly in Refs. [12,14], to obtain the effective baryon mass.

Treating these energy corrections independently, the effec-
tive mass of the baryon in the medium becomes

M∗
B(σ, σ ∗) = E∗0

B − εc.m. + δMπ
B + (�EB)E

g + (�EB)M
g . (7)

III. THE EQUATION OF STATE

To describe the properties of the core of a neutron star,
we extend the usual Lagrangian density in the relativistic
mean field approximation to include not only the σ , ω, and
ρ mesons but also the strange mesons, namely the isoscalar,
scalar (σ ∗), and vector (φ) mesons. The Lagrangian density is,
thus, chosen to be

L =
∑

B

ψ̄B[iγ μ∂μ − M∗
B(σ, σ ∗) − gωBγ μωμ

− gφBγ μφμ − gρBγ μ�ρμ · �IB]ψB

+ 1

2

(
∂μσ∂μσ − m2

σ σ 2
) + 1

2

(
∂μσ ∗∂μσ ∗ − m2

σ ∗σ
∗2)

+ 1

2
m2

ωωμωμ − 1

4
�μν�

μν + 1

2
m2

φφμφμ − 1

4
�μν�

μν

+ 1

2
m2

ρ
�bμ · �bμ − 1

4
�Bμν · �Bμν + �vg2

ωg2
ρ (ωμωμ)(�bμ · �bμ)

+
∑

l

ψ̄l [iγ
μ∂μ − ml ]ψl , (8)

where

�μν = ∂μων − ∂νωμ,

�μν = ∂μφν − ∂νφμ,

�Bμν = ∂μ
�bν − ∂ν

�bμ, (9)

with ψB(l ) the baryon (lepton) field and �IB the isospin matrix
for the baryon and ml the lepton mass. The hadronic matter is
described using a mean field approach in which the meson
fields are treated as classical fields and the field operators
are replaced by their expectation values. The meson field
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equations in uniform matter are given by

m2
σ σ0 =

∑
B

gσBCB(σ )ρs
B, (10)

m2
σ ∗σ

∗
0 =

∑
B

gσ ∗BCB(σ ∗)ρs
B, (11)

m∗
ω

2
ω0 =

∑
B

gωBρB, (12)

m∗
ρ

2b03 =
∑

B

gρBI3BρB, (13)

m2
φφ0 =

∑
B

gφBρB, (14)

where

m∗
ω

2 = m2
ω + 2�νg2

ρg2
ωb2

03,

m∗
ρ

2 = m2
ρ + 2�νg2

ρg2
ωω2

0. (15)

Here, I3B is the isospin projection and �ν is a nonlinear ω-ρ
coupling term [23] which gives rise to effective masses for
the ω and ρ mesons. The scalar density, ρs

B, and the baryon
density, ρB, are given as

ρs
B = γ

2π2

∫ kB

0

M∗
B√

k2 + M∗2
B

k2dk, (16)

ρB = γ

2π2

∫ kB

0
k2dk = γ

6π2
k3

B, (17)

where γ = 2 is the spin degeneracy. In the above equa-
tions kB is the Fermi momentum of the baryon species
B (B = N, �, 	±, 	0, �−, �0) respectively and gσBCB(σ )
and gσ ∗BCB(σ ∗) are given as

gσBCB(σ ) = −∂M∗
B(σ, σ ∗)

∂σ
,

gσ ∗BCB(σ ∗) = −∂M∗
B(σ, σ ∗)

∂σ ∗ . (18)

The total energy density (ε) and pressure (p) at a partic-
ular baryon density for the nuclear matter in β equilibrium,
consisting of the baryon octet and the leptons l = e, μ can be
found as

ε = 1

2
m2

σ σ 2
0 + 1

2
m2

σ ∗σ
∗2
0 + 1

2
m2

ωω2
0 + 1

2
m2

φφ2
0

+ 1

2
m2

ρb2
03 + γ

2π2

∑
B

∫ kB

0
k2dk

√
k2 + M∗

B
2

+ 3g2
ωg2

ρ�vb2
03ω

2
0 +

∑
l

1

π2

∫ kl

0
k2dk

√
k2 + m2

l ,

(19)

p = −1

2
m2

σ σ 2
0 − 1

2
m2

σ ∗σ
∗2
0 + 1

2
m2

ωω2
0

+ 1

2
m2

φφ2
0 + 1

2
m2

ρb2
03 + g2

ωg2
ρ�vb2

03ω
2
0

+ γ

6π2

∑
B

∫ kB

0

k4 dk√
k2 + M∗

B
2

+ 1

3

∑
l

1

π2

∫ kl

0

k4dk[
k2 + m2

l

]1/2 . (20)

The chemical potentials, necessary to define the β-
equilibrium conditions, are given by

μB =
√

k2
B + M∗

B
2 + gωω0 + gρI3Bb03 + gφφ0. (21)

The positive real solutions of (k2
e + m2

e )1/2 = μe and (k2
μ +

m2
μ)1/2 = μμ give the lepton Fermi momenta.
Since we consider the octet baryons, the presence of

strange baryons in the matter plays a significant role. We
define the strangeness fraction as

fs = 1

3

∑
i |si|ρi

ρ
. (22)

Here si refers to the strangeness number of baryon i and ρi is
defined as ρi = γ k3

Bi/(6π2).
The composition of neutron star matter with strongly in-

teracting baryons is determined by the requirements of charge
neutrality and β-equilibrium conditions under the weak pro-
cesses. The charge neutrality condition after deleptonization
is given by

qtot =
∑

B

qB
γ k3

B

6π2
+

∑
l=e,μ

ql
k3

l

3π2
= 0, (23)

where qB corresponds to the electric charge of baryon species
B and ql corresponds to the electric charge of lepton species l
in a star. The equilibrium composition of the star is obtained
by solving Eqs. (10) to (11) in conjunction with the charge
neutrality condition, given in Eq. (23), at a given total bary-
onic density ρ = ∑

B ρB. The effective masses of the baryons
are obtained self-consistently in this model.

The net strangeness is determined by the condition of β

equilibrium which for baryon B is given by μB = bBμn −
qBμe, where μB is the chemical potential of baryon B and bB

its baryon number, and qB is the charge of the baryon under
consideration. Thus the chemical potential of any baryon
can be obtained [24] from the two independent chemical
potentials μn and μe of neutron and electron respectively.

A. Baryon-meson coupling constants

The Baryon-Meson coupling constants are given by

gωB = xωBgωN , gρB = xρBgρN ,

where xωB and xρB are equal to 1 for the nucleons and acquire
different values in different parametrizations for the other
baryons. We note that the s quark is unaffected by the σ and
ω mesons, i.e., gs

σ = gs
ω = 0. To take into account the effect

of the strange quark, we include the strange mesons σ ∗ and φ

with couplings gσ ∗ and gφ respectively. The isoscalar-scalar
and isoscalar-vector couplings gq

σ and gω are fitted to the
saturation density and binding energy for nuclear matter. The
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isovector vector coupling to the nucleon gρ is set by fixing the
symmetry energy at J = 32.0 MeV.

The vector-meson couplings to the hyperons are fixed
using three different approaches to get three parameter sets,
Set I, Set II, and Set III. In the first set we use the SU(6)
spin-flavor symmetry [25,26] as follows:

1

3
gωN = 1

2
gω� = 1

2
gω	 = gω�,

gρN = gρ� = 1

2
gρ	 = gρ�, (24)

2gφ� = 2gφ	 = gφ� = −2
√

2

3
gωN ,

with gφN = 0.
In Set II, we adjust the ω-hyperon coupling strengths (xω�,

xω	 , and xω�) to the hyperon-nucleon interaction potential at
saturation density for the �, 	, and � hyperons with U� =
−28 MeV, U	 = 30 MeV, and U� = −18 MeV respectively
[22,27] using the relation UB = −(MB − M∗

B) + xωBgωω0 for
B = �, 	, and �. The φ-baryon coupling is kept the same as
that in Set I and the ρ coupling to the hyperons is fixed to be
the same as that of the nucleons.

For Set III, we use the more general SU(3) flavor sym-
metry. The SU(3) group with three flavors of quarks (up,
down, strange) is regarded as the symmetry group for strong
interactions. We follow the scheme given in Refs. [22,28–31]
using the matrix representations for the baryon octet and
meson nonet (singlet state and octet state). In such a scheme,
the ω and φ mesons are described in terms of the pure singlet,
|1〉, and octet, |8〉, states as

ω = cos θν |1〉 + sin θν |8〉
φ = − sin θν |1〉 + cos θν |8〉, (25)

with θν being the mixing angle. The mixing angle is fixed
using the Nijmegen extended-soft-core (ESC) model [28].
The values of the θν and z (z ≡ g8/g1, coupling ratio of the
octet to singlet coupling constants), suggested in the ESC
model are given as

θν = 37.50◦, z = 0.1949. (26)

Then the relations of the vector-meson–hyperon coupling
constants in SU(3) are defined as

gω� = gω	 = 1

1 + √
3z tan θν

gωN ,

gω� = 1 − √
3z tan θν

1 + √
3z tan θν

gωN (27)

gφN =
√

3z − tan θν

1 + √
3z tan θν

gωN ,

gφ� = gφ	 = − tan θν

1 + √
3z tan θν

gωN , (28)

gφ� = −
√

3z + tan θν

1 + √
3z tan θν

gωN .

In all the three sets considered above we have fixed g∗
σ =

2 considering a weak hyperon-hyperon coupling. The meson

mean fields σ0, ω0, b03, φ0, and σ ∗
0 are determined through

self-consistently using the field equations (10)–(14).
The relation between the mass and radius of a star with its

central density can be determined by integrating the Tolman-
Oppenheimer-Volkoff (TOV) equations [32–34] given by

d p

dr
= −G(mc2 + 4πr3 p)(ε + p)

rc4(r − 2Gm/c2)
, (29)

dm

dr
= 4πr2 ε

c2
, (30)

with G as the gravitational constant, c is the speed of light,
and m representing the mass interior to the radius r. Using
the EoS obtained from the three different parameter sets and
integrating the TOV equations from the origin as an initial
value problem for a given choice of the central energy density,
ε0, we determine the maximum mass of a star. The surface of
the star is defined from the value of r(=R), where the pressure
vanishes. It may be noted here that we have used the standard
Baym-Pethick-Sutherland (BPS) EoS [35] for the low density.

IV. NEUTRON STAR TIDAL DEFORMABILITY
AND MOMENT OF INERTIA

The in-spiral phase of two merging neutron stars creates
strong tidal gravitational fields resulting in the deformation of
the multipolar structure of the star. Such deforming effects are
quantified through the tidal deformability parameter λ, which
relates the induced mass quadruple moment Qi j to the time-
independent external tidal field Ei j through the relation

Qi j = −λEi j . (31)

For a static spherically symmetric star of mass M and radius R,
the tidal deformation parameter λ can be expressed in terms
of the dimensionless Love number k2 (for the leading order
l = 2) as

λ = 2
3 k2R5. (32)

The tidal Love number k2 is given by [36–38],

k2 = 8
5β5(1 − 2β )2[2 − yR + 2β(yR − 1)]

×{2β[6 − 3yR + 3β(5yR − 8)]

+ 4β3[13 − 11yR + β(3yR − 2)

+ 2β2(1 + yR)] + 3(1 − 2β )2[2 − yR

+ 2β(yR − 1)] ln(1 − 2β )}−1, (33)

where β ≡ GM/Rc2 is the dimensionless compactness param-
eter. The quantity yR ≡ y(R) satisfies the first-order differen-
tial equation

dy

dr
= −y2

r
− y − 6

r − 2Gm/c2
− rQ, (34)

with

Q = 4πG

c4

(5 − y)ε + (9 + y)p + (ε + p)/c2
s

1 − 2Gm/c2

−
[

2G(m + 4π pr3/c2)

r(rc2 − 2Gm)

]2

, (35)
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TABLE I. The potential parameter V0 for different baryons ob-
tained for the quark mass mu = md = 200 MeV, ms = 300 MeV, with
a = 0.722 970 fm−3.

Baryon MB (MeV) V0 (MeV)

N 939 5.44
� 1115.6 28.00
	 1193.1 43.29
� 1321.3 54.17

where c2
s = dε/d p is the squared speed of sound.

Equation (34) needs to be integrated self-consistently along
with the TOV equations (30) with the boundary conditions at
r = 0 such that y(0) = 2, m(0) = 0, and p(0) = pc.

Since the accumulation of phase difference of the gravita-
tional waves determines the tidal deformability, a dimension-
less deformability parameter �D appearing in the dimension-
less phase may be defined as [1,36,39],

�D = 2

3

k2

β5
. (36)

For a binary system comprising of two component stars
having masses M1 and M2 (M1 � M2) with mass ratio q =
M2/M1, the chirp mass is given by

M = (M1M2)3/5

(M1 + M2)1/5
. (37)

For such a system the mass weighted average dimensionless
tidal deformability �̃ is defined as

�̃ = 16

13

(M1 + 12M2)M4
1�1 + (M2 + 12M1)M4

2�2

(M1 + M2)5
, (38)

where �1 and �2 are the tidal deformabilities of the compo-
nent masses M1 and M2 respectively.

For a uniformly slowly rotating star the moment of inertia
can be determined using

I = wRR3

6 + 2wR
, (39)

where wR is the solution, at the surface R, of the differential
equation

dw

dr
= 4πG

c2

r(ε + p)(4 + w)

c2 − 2Gm
− w(3 + w)

r
(40)

with the condition w(0) = 0.

TABLE II. The quark meson couplings gq
σ , gω, and gρ for nuclear

matter at quark mass mq = 200 MeV. gρ is determined keeping
nonlinear coupling fixed at �ν = 0.05. Also shown are the values of
the nucleon effective mass and the nuclear matter incompressibility
K .

mq gq
σ gω gρ M∗

N/MN K
(MeV) (MeV)

200 4.36839 7.40592 9.39956 0.83 242.41

TABLE III. xωB determined for parameter Set II by fixing the
potentials for the hyperons.

mq xω� xω	 xω�

(MeV) U� = −28 MeV U	 = 30 MeV U� = −18 MeV

200 0.81316 1.43857 0.43399

V. RESULTS AND DISCUSSION

A. EoS and the mass-radius relations

In the following we first discuss the results of the in-
clusion of the strange interaction in the MQMC for the
three different coupling sets. There are two potential pa-
rameters in the relativistic quark model, a and V0 which
are obtained by fitting the nucleon mass MN = 939 MeV
and charge radius of the proton 〈rN 〉 = 0.84 fm in free
space. Keeping the value of the potential parameter a
same as that for nucleons, we obtain V0 for the �, 	,
and � baryons by fitting their respective masses to M� =
1115.6 MeV, M	 = 1193.1 MeV and M� = 1321.3 MeV.
The mass of the u, d quarks is fixed at 200 MeV and the
mass of the s quark is fixed at 300 MeV, keeping in view
the experimental constraints available for the nuclear matter
incompressibility and the radius corresponding to a 1.4M�
(R1.4) neutron star (9.9 < R1.4 < 13.6 km). The set of poten-
tial parameters for the baryons are given in Table I.

The incompressibility K of symmetric nuclear matter for
quark mass 200 MeV comes out to be 242.41 MeV. Recent
measurements [40] extracted from doubly-magic nuclei like
208Pb constrain the value of K to be around 240 ± 20. The
quark meson couplings gq

σ , gω = 3gq
ω, and gρ = gq

ρ are fitted
self-consistently for the nucleons to obtain the correct satura-
tion properties of nuclear matter binding energy, EB.E . ≡ B0 =
ε/ρB − MN = −15.7 MeV, pressure, p = 0, and symmetry
energy J = 32.0 MeV at saturation density, ρ0 = 0.15 fm−3.

We have taken the standard values for the meson masses;
namely, mσ = 550 MeV, mω = 783 MeV, mρ = 763 MeV,
mσ ∗ = 980 MeV, and mφ = 1020 MeV. The values of the
quark meson couplings, gq

σ , gω, and gρ at quark masses
200 MeV are given in Table II. The value of the ω-ρ coupling
term �ν , which affects the gρ coupling [14], is fixed at �ν =
0.05. In fact, such a nonlinear ω-ρ term gives rise to effective
masses for the ω and ρ mesons, thus softening the vector fields
at large densities [41], as given in Eq. (12).

As discussed in the previous section, we use three types
of parameter sets for the nonstrange and strange meson cou-
plings to the hyperons. For Set I we use the SU(6) spin-flavor

TABLE IV. Effect of variation of gσ∗ on the U (�)
� and mass-radius

relation.

gσ∗ M (M�) R (km) U (�)
� (ρ0/5)

4 1.88 11.3 −3.88
3 1.89 11.3 −3.88
2 1.90 11.2 −3.88
1 1.90 11.2 −3.93
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FIG. 1. Effective mass of baryons as a function of baryon density.
The interactions involving only σ is shown with B(σ ) while those
with both (σ, σ ∗) are shown as B(σ, σ ∗).

symmetry. For Set II we follow a mixed scheme where the
hyperon couplings to the ω meson are fixed by determining
xωB. The value of xωB is obtained from the hyperon potentials
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FIG. 2. Total pressure as a function of the energy density at
quark mass mq = 200 MeV. Panel (a) shows Set I and Set II of
the MQMC model as compared to the QMC, FSUGold, and GM3
parametrizations in SU(6) while (b) shows the comparison of Set
III EoS of the MQMC model with QMC, FSUGold, and GM3
parametrizations in SU(3).
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FIG. 3. Particle fraction for the three parameter sets.

in nuclear matter, UB = −(MB − M∗
B) + xωBgωω0 for B = �,

	, and � as −28, 30, and −18 MeV respectively. For the
quark mass 200 MeV the corresponding values for xωB are
given in Table III. The value of xρB = 1 is fixed for all baryons
in this parameter set. For Set III we use the SU(3) flavor
symmetry to fix the couplings of the ω and φ mesons with
the hyperons. As indicated from the Nagara event [42], which
suggests the depth of the potential between two �′s is about
−5 MeV, we choose the coupling of the strange meson σ ∗ to
be weak at 2.0. In fact, using parameter Set III we determine

055803-6



NEUTRON STAR MATTER WITH STRANGE INTERACTIONS … PHYSICAL REVIEW C 99, 055803 (2019)

0

 0.02

 0.04

 0.06

 0.08

 0.1

0  0.2  0.4  0.6  0.8 1  1.2

f s

ρΒ (fm-3)

Set I
Set II
Set III

FIG. 4. Strangeness fraction as a function of density for
Sets I, II, and III.

the value of the potential U (�)
� for � in �-hyperon matter as

U (�)
� = −gσ�σ

(�)
0 − gσ ∗�σ

∗(�)
0 + gω�ω

(�)
0 + gφ�φ

(�)
0 ,

(41)
which comes out as −5.28 MeV at saturation density ρ0.
Recent studies on hypernuclear matter [43–45] provide a
range of −14 to +9 MeV for U (�)

� (ρ0) implying thereby a
range for U (�)

� (ρ0/5) between −5 and −11 MeV [44]. Hence
our value U (�)

� as well as U (�)
� (ρ0/5) = −3.88 MeV lie within

the expected range according to [43–45]. Again we further
notice that the effect of minor variation of the strength of gσ∗
does not significantly change the value of U (�)

� (ρ0/5), as can
be seen in the Table IV.

Figure 1 shows the effective baryon mass, M∗
B/MB, as a

function of baryon density. At saturation density ρ0 the value
of M∗

B/MB is 0.83 for nucleons. The effect of the inclusion of
strange meson σ ∗ on the baryon mass can be observed in the
figure. The dotted lines indicate the variation in baryon mass
in the absence of the σ ∗ meson while the continuous lines
show the variation with the inclusion of σ ∗. The additional

TABLE V. Mass and radius for different parameter sets of
MQMC and other considered RMF models using SU(3) symmetry.
Also shown is the radius corresponding to the canonical mass 1.4M�.

Set M (M�) R (km) R1.4 (km)

MQMC-Set I 1.66 11.2 12.7
MQMC-Set II 1.79 11.3 12.7
MQMC-Set III 1.90 11.2 13.1
QMC-SU(3) 1.93 11.8 13.6
FSUGold-SU(3) 1.79 11.2 12.8
GM3-SU(3) 1.85 11.4 13.3
GM1-SU(3) 2.14 12.2 13.9

strange interaction affects only the hyperons as σ ∗ interacts
only with strange baryons and decreases the effective mass of
the hyperons.

The EoS for the different parameter sets I, II, and III
in the MQMC model is shown in Figs. 2(a) and 2(b) and
also compared with the results [22] from QMC [46], FSUG-
old [47], GM1, and GM3 [8] calculations. Recently various
studies [48–50] have comprehensively analysed a wide set
of relativistic mean field (RMF) models with nucleonic and
hyperonic composition to study stellar properties. The results
for the present work are compared with the extended ver-
sion [22] of the QMC, FSUGold, GM1, and GM3 models
which consider iso-scalar, vector-meson couplings to the octet
baryons in both SU(3) and SU(6) symmetry. Out of these
only FSUGold uses a nonlinear ω-ρ coupling term �ν = 0.03
while QMC, GM1, and GM3 do not use such an interaction.
It is observed that parameter Set II gives the stiffest EoS
when compared to other SU(6) models. We also observe that
EoS from SU(3) sets are comparatively more stiff than those
from SU(6). This occurs due to the enhanced vector-meson
couplings to the baryons in SU(3) symmetry.

Figure 3 shows the particle fractions for the three types of
parameter sets in β-equilibrated matter. Hyperons appear in
all the sets chosen, though their threshold density of produc-
tion differs with different meson-hyperon coupling sets. 	−
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FIG. 5. Star mass as a function of radius for (a) Sets I and II and (b) Set III at mq = 200 MeV along with the plots for the QMC, FSUGold,
GM1, and GM3 models.
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FIG. 6. Love number as a function of (a) compactness β and (b) mass of star for Set III and matter with only nucleons, represented by
MQMC-N.

production is preferred in SU(3) coupling Set III, indicating
suppression of � fields at higher densities. Parameter Set II
fixes a repulsive 	-hyperon potential resulting in the absence
of the 	 hyperon in the matter distribution.

Figure 4 shows the strangeness fraction for the three types
of sets considered in the present model. It is observed that the
strangeness fraction increases at lower densities for Set I with
complete SU(6) couplings. Between Sets II and III, though the
strangeness appears earlier in Set III, there is sharper increase
in the fraction for Set II, indicating more strangeness content
at lower densities. This is reflected in the EoS plot where the
EoS for Set II is softer than that for Set III.

In Fig. 5 we plot the mass-radius relations for the dif-
ferent parameter sets. It is clearly observed that SU(6)
sets fail to achieve the maximum mass limit of the pul-
sar PSR J1614-2230. Matter composed only of nucleons
(MQMC-N) with no strange matter gives the highest mass of
2.0M�. However, with the inclusion of strange interactions,
Set III employing the SU(3) coupling scheme is able to
achieve a maximum mass of 1.90M� with a corresponding
radius of 11.2 km. The radius corresponding to the canonical

1.4M� star for Set III is 13.1 km. For Sets I and II, the
maximum mass is much lower, but the canonical radius is
12.7 km. The mass and radius for all the three sets as well
as of the models QMC, FSUGold, GM1, and GM3 are shown
in Table V. It is observed that GM1 provides the most massive
star as compared to the other relativistic mean field mod-
els. However, its R1.4 value exceeds the range 9.9 < R1.4 <

13.6 km suggested from the recent GW170817 event.

B. Tidal deformability and the I-Love universal relation

The recent detection of event GW170817 [1] and the
consequent studies involving radius measurements constrain
the radii of 1.4M� mass neutron stars, between 9.9 < R1.4 <

13.6 km. In the present work we obtain R1.4 at 13.1 km which
lies within the predicted range. Furthermore, we observe
that in the present model the SU(3) set is favorable for a
massive star of 1.90M� even with the inclusion of hyperons
and strange interactions. Since the tidal deformabilities are
measurable macroscopic quantities from gravitational wave
observations, the EoS obtained using Set III (MQMC-Set
III) is used to determine the Love number k2 and the tidal
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FIG. 7. (a) The tidal deformability parameter λ (×1036 g cm2s2) and (b) the dimensionless tidal deformability �D as a function of mass of
star for Set III and MQMC-N.
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TABLE VI. Mass, radius, and dimensionless tidal deformability
�D for MQMC EoS compared with another hyperonic and nucleonic
EoS. Also shown is the radius corresponding to the canonical mass
1.4M�.

Set M (M�) R (km) R1.4 (km) �D1.4

MQMC-N 2.00 11.1 13.1 484
MQMC-Set III 1.90 11.2 13.1 483
V18(N+Y) 1.65 9.0 11.9 302
DBHF 2.31 11.2 13.1 274

deformabilities λ and �D as per the formalism given above. In
Fig. 6(a) the Love number k2 as a function of the compactness
parameter β is shown for MQMC EoS composed only of the
nucleons (MQMC-N) and the MQMC EoS obtained using Set
III (MQMC-Set III). We compare these with the results from
the many-body forces model involving strange interactions
[51] and the momentum-dependent interaction (MDI) model
[52] which uses a parameter x to account for the density
dependence of nuclear symmetry energy. It is observed that
the Love number decreases rapidly for higher values of β

as well as for small values (β < 0.1). Figure 6(b) shows the
variation of k2 with stellar mass. It is observed that the value
k2 peaks near 1M�. For masses above and below the 1M�
range the k2 value is lower due to less contribution of the tidal
deformation on the quadrupole moment.

Figure 7(a) shows the tidal deformation parameter λ as a
function of the stellar mass. It is observed that λ becomes
larger for stars with a mass range of 0.5–1.0M�. The di-
mensionless tidal deformability �D as a function of the star
mass is shown Fig. 7(b). We observe that �D decreases as
the neutron star mass increases. However, for a 1.4M� star,
the value of �D = 483 satisfies the constraint of �D < 800
obtained from GW170817. The values of M, R, R1.4, and �D

for the MQMC EoS is compared with the V18 (N+Y) [53]
and DBHF [54] EoS in Table VI.

Analysis of the GW170817 event also puts a constraint
on the tidal effects in the in-spiral of two neutron stars

through the mass weighted tidal deformability �̃ determined
using Eq. (38). Using the chirp mass M = 1.188+0.004

−0.002 M�
corresponding to a symmetric binary system with M1 = M2 =
1.365M�, we obtain �̃ = 624, which lies within the limit
70 < �̃ < 720 [7]. We calculate the neutron star moment of
inertia using the MQMC-Set III and MQMC-N EoS con-
sidering slow rotation regimes using Eq. (39). In particular,
we determine the dimensionless moment of inertia Ī = I/M3

which can be related to the dimensionless deformability �D

through EoS independent universal relations [55–57], referred
to as the I-Love universal relations. The moment of inertia
as a function of stellar mass is shown in Fig. 8(a). Since the
neutron star radius remains nearly constant before reaching
the maximum mass for a given EoS, the moment of inertia
increases almost linearly with stellar mass. A sharp drop arises
when the maximum mass is reached. In Fig. 8(b) we show
the correlation between the dimensionless moment of inertia
Ī = I/M3 and the dimensionless tidal deformability �D and
compare it with the universal fit [58] given by

I

M3
≡ 0.8134β−1 + 0.2101β−2

+ 0.003175β−3 − 0.0002717β−4. (42)

We observe very minute deviations of the MQMC EoS from
the universal fit.

VI. CONCLUSION

In the present work we have developed the EoS using a
relativistic quark model which considers the baryons to be
composed of three independent relativistic quarks confined by
an equal admixture of a scalar-vector harmonic potential in
a background of scalar and vector mean fields. Appropriate
corrections to the center-of-mass motion and to pionic and
gluonic exchanges within the nucleon are calculated to obtain
the effective mass of the baryon. The baryon-baryon interac-
tions are realized by the quark coupling to the σ , ω, and ρ

mesons through a mean field approximation. To include the
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FIG. 8. (a) The moment of inertia as a function of the stellar mass. (b) The correlation between the dimensionless moment of inertia
Ī = I/M3 and the dimensionless tidal deformability �D compared with a fit given by Eq. (42).
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contribution of strangeness, the hyperon-hyperon interaction
mediated by σ ∗ and φ mesons is introduced.

The strange and nonstrange meson couplings to the hy-
perons are fixed using three different techniques based on
symmetry considerations and the available hyperon-nucleon
potentials. The EoS is analyzed for three different sets of
coupling constants and the effect of such couplings on the
strangeness fraction is studied. The variations of the maxi-
mum mass and radius in the present set of parametrizations
are determined and it is observed that an extension of SU(6)
spin-flavor symmetry to SU(3) flavor symmetry is favorable
to obtain massive yet compact stars. Using the EoS obtained
from the SU(3) set we determine the tidal love number k2 and
the tidal deformabilities λ and �D. We further evaluate the

weighted average tidal deformability �̃ in a binary system
of observed chirp mass 1.188M�. We find that the MQMC
EoS with hyperonic matter and strange interactions satisfies
all the recent constraints set by the GW170817 event. We
further determine the moment of inertia of the neutron star
and compare it with the available universal fits. We observe
very minor deviations between the fits and our data.
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