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Polarization observables for elastic electron scattering off a moving nucleon
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General expressions for all parity-conserving polarization observables of elastic electron-nucleon scattering in
the one-photon exchange approximation are derived for a general frame of reference, i.e., not assuming scattering
off a nucleon at rest and not specializing to a specific system of coordinates. Essentially, the given expressions
are also valid for the inverse process, i.e., nucleon scattering off electrons.
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I. INTRODUCTION

The present study was initiated by recent experiments on
quasielastic electron-nucleus scattering �e (A, A′) �p, measuring
the polarization transfer from an incoming longitudinally po-
larized electron to an emitted proton [1]. The measured outgo-
ing proton polarization was then compared to the elementary
process �e + p → e′ + �p for the same squared four-momentum
transfer assuming the scattering off a proton at rest. However,
the bound proton, on which the electron scatters, is not at
rest at all because of the Fermi motion of the struck proton
inside the nucleus. Thus it appeared that a more appropriate
comparison should be done with the elementary process on
a moving proton, taking as momentum for the struck proton
the negative missing momentum as an approximation [2].
Indeed, it was found that the correction to the ratios of the
transverse and longitudinal polarization components of the
emitted proton to the ones of the elementary scattering due to
the initial motion was up to 20% at high missing momentum,
although the correction in the double ratio with respect to the
transverse over the longitudinal components was only a few
percent.

The study of polarization observables in elastic electron-
proton scattering has a long history, both theoretical and ex-
perimental. Early theoretical studies are found in Refs. [3–7]
and early reviews in Refs. [8,9], where specific types of polar-
ization observable were considered. Usually special reference
frames have been chosen for the consideration of specific
polarization observables. More recently, Gakh et al. [10] have
studied polarization effects in elastic proton-electron scatter-
ing, which on a formal basis is equivalent to electron-proton
scattering. They have considered three types of polarization
observables: outgoing proton polarization transferred either
from a polarized target electron or from an incoming polarized
proton, and the beam target asymmetry from polarized beam
and target. As reference frame they take the one in which the
target electron is at rest, and they use a special coordinate
system related to the scattering kinematics with respect to the
notation of Ref. [11].

It is the aim of the present work to derive explicit ex-
pressions for all possible parity conserving observables in a
general form without choosing a special frame of reference or

a special coordinate system, so that one can easily evaluate
any observable for an arbitrary reference frame and an arbi-
trary coordinate system. For that purpose I also introduce an
intuitive and compact general notation.

In Sec. II I introduce a general definition of an observable
of the scattering process as a trace over the spin degrees of
freedom of the initial and final states of a Hermitian quadratic
form in the T -matrix elements and associated density ma-
trices. Within the one-photon exchange approximation any
observables are then given as a contraction of a corresponding
lepton tensor with a hadron tensor. Their specific forms de-
pend on the type observables and they are presented in Sec. III.
Section IV is devoted to explicit expressions of the various
observables. A short summary and conclusions are given in
Sec. V. Some details are contained in three appendices. In
Appendix A the derivation of the lepton and hadron tensors
are sketched, and Appendix B lists explicit expressions of
the beam-target asymmetries of the final spin correlations.
The specialization to longitudinal polarized initial electrons
for the beam-target asymmetry and the electron-nucleon po-
larization transfer with explicit expressions for the laboratory
and Breit frames is presented in Appendix C.

II. GENERAL DEFINITION OF AN OBSERVABLE

In elastic electron-nucleon scattering

e(k) + N (p) → e′(k′) + N ′(p′), (1)

where k = (k0, �k ) and k′ = (k′
0,

�k ′) stand for the four-
momenta of incoming and scattered electron, respectively, and
p = (Ep, �p ) and p′ = (Ep′ , �p ′) for the corresponding quanti-
ties of the nucleon, any observable O—for example, unpo-
larized scattering cross section, beam and target asymmetries,
polarization transfer from polarized incoming electron to the
final nucleon, etc.—is defined by [9]

O dσ0

d�e′
= Fkin � f i(O), (2)

where dσ0/d�e′ denotes the unpolarized differential cross
section. The quantity � f i(O) depends on the type of observ-
able O and is given as a trace over all spin degrees of freedom
of initial and final electron and nucleon, as indicated by the
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superscript S at the trace symbol TrS

� f i(O) = Q4

4α2
TrS[T f iρi(O)T f i,†ρ f (O)]. (3)

Here, T f i denotes the T matrix of the scattering process and
ρ i/ f (O) denote the spin density matrices of the initial and
final states, which depend on the observable O, whether it
involves polarized or unpolarized initial particles and whether
the polarization of the final particles is analyzed. Further-
more, α denotes the fine structure constant and Q2 = −q2 the
squared four-momentum transfer with q = k − k′ = p′ − p.
The factor Q4/α2 has been included in view of the one-photon
exchange approximation for the T matrix.

The kinematic factor has the form1

Fkin = 22α2m2
em2

N k̄′

Q4
√

(k · p)2 − m2
em2

N

1

Ep′ |1 + dEp′/dk′
0|

= 22α2m2
em2

N k̄′2

Q4[k · p + g(p, k, k′)]
√

(k · p)2 − m2
em2

N

. (4)

where me and mN denote the masses of electron and nucleon,
respectively, and

g(p, k, k′) = (k̄′ − k′
0)[Ep′ − k̄′ + �ek′ · ( �p + �k)] (5)

with �ek′ = �k ′/k̄′ denoting the unit vector along �k ′. It is worth
noting that the same formal expressions apply for the inverse
process, i.e., nucleon-electron scattering [10]. One only has to
exchange k ↔ p, k′ ↔ p′, �e′ ↔ �p′ , and me ↔ mN . In the
high energy limit (me/k0 ≈ 0) g(p, k, k′) tends to zero, and
the kinematic factor becomes

F̃kin = 22α2m2
em2

N k̄′2

Q4 k · p
√

(k · p)2 − m2
em2

N

. (6)

In the one-photon exchange approximation, used through-
out in this work, the T matrix is given by the contraction of
the leptonic current Je and the hadronic one JN , i.e.,2

T f i
se′ ,sN ′ ,se,sN

= α

Q2
Je,μ(k′, se′ ; k, se)Jμ

N (p′, sN ′ ; p, sN ). (7)

The spin density matrices ρ i/ f (O) are given as products
of electron and nucleon spin operators depending on the rest
frame spins �s i/ f

e and �s i/ f
N of initial and final electrons and

nucleons, respectively, i.e.,

ρ i
(
k,�s i

e; p,�s i
N

)
(O) = ρ i

e

(
k,�s i

e;O)
ρ i

N

(
p,�s i

N ;O)
, (8)

ρ f
(
k′,�s f

e ; p′,�s f
N

)
(O) = ρ f

e

(
k′,�s f

e ;O)
ρ

f
N

(
p′,�s f

N ;O)
. (9)

Their specific form depends on the polarization state of the
corresponding particle, i.e., unpolarized or polarized as re-
quired by the specific observable. For example, for the density

1The symbol v̄ means |�v| where it is needed to distinguish it from
the four-vector v = (v0,�v ).

2I use the Einstein convention for summations over greek indices
of four-vectors and four-tensors.

matrix of the initial electron

ρ i
e

(
k,�s i

e;O)
s′

ese
= ūe(k, s′

e)S i
e(O)ue(k, se) (10)

with ue(k, s) as electron Dirac spinor, one has two possibilities
for the Dirac operator S i

e(O), namely

S i
e(O) =

{
14, unpolarized,

γ5/S
i
e

(
k,�s i

e

)
, polarized.

(11)

The relativistic spin four-vector S i
e (k,�s i

e ) is related to the spin
three-vector �s i in the electron’s rest frame by

S i
e

(
k,�s i

e

) =
(

�s i
e · �k
me

,�s i
e + �s i

e · �k
me(k0 + me)

�k
)

. (12)

It is obtained from the electron’s spin four-vector S i
e (0,�s i

e ) =
(0,�s i

e ) in the rest system by a Lorentz boost L(�β ), i.e.,

S i
e

(
k,�s i

e

) = L(�β ) S i
e

(
0,�s i

e

)
, (13)

where �β = �k/k0. The relativistic spin operator obeys the
following properties:

Se(k,�se) · Se(k,�se) = −1, (14)

Se(k,�se) · k = 0. (15)

Corresponding expressions hold for the densitiy matrices of
the final electron with the spin operator S f

e and for the initial
and final nucleons with Si/ f

N , respectively, as function of the
observable O.

In view of the separation of the T matrix [Eq. (7)] and
the density matrices [Eqs. (8) and (9)] into a leptonic and
a hadronic part, the trace � f i(O) can be represented as the
contraction of a leptonic tensor ηO

μν (J f i
e ) and a hadronic one

ηO
μν (J f i

N )

� f i(O) = ηO
μν

(
J f i

e

)
ηO,μν

(
J f i

N

)
, (16)

where the tensors are given as traces over the corresponding
spin degrees of freedom, i.e., for a ∈ {e, N}

ηO
μν

(
J f i

a

) = 1
2 TrS

(
J f i

a,μρ i
a(O)J f i,†

a,ν ρ f
a (O)

)
. (17)

III. LEPTON AND HADRON TENSORS

According to the two possibilities for the density matrices
of initial and final particles, i.e., whether they are unpolarized
or polarized [see Eq. (11)], one finds four types of tensors for
both the lepton and the hadron sector, namely initial and final
particles unpolarized, one initial or final particle polarized,
and both particles polarized. The derivation of these tensors
is sketched in Appendix A.

Here I list the resulting explicit expressions, where I intro-
duce for convenience as a shorthand for the relativistic spin
four-vectors of initial and final electrons,

Si/ f
e = Se

(
k/k′,�s i/ f

e

)
, (18)
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and corresponding notations for the nucleon spin vectors (Si/ f
N ). If the spin three-vector in the particle’s rest frame �s i/ f has to be

specified I use Si/ f
e (�s i/ f ). Furthermore, I introduce two symmetric four-tensors

�μν = q2gμν − qμqν, (19)

�a,2;μν = Si
a;μS f

a;ν + Si
a;νS f

a;μ, (20)

with a ∈ {e, N}, and the spin dependent scalars

�a,0 = 1
2�

μ
a,2;μ = Si

a · S f
a , (21)

�a,2(v) = 1
2vμ�

μν
a,2vν = v · Si

a v · S f
a , (22)

for a four-vector v. Then, as shown in Appendix A, one obtains with P = p + p′ and q = p′ − p for the hadron tensors

ηN,0
μν (p′, p) = 1

4m2
N

(
G2

E + τG2
M

1 + τ
PμPν + G2

M�μν

)
, (23)

η
N,�s i/ f

N
μν (p′, p) = − iGM

2mN

[
GE − GM

4m2
N (1 + τ )

(Pμεναβγ − (μ ↔ ν))Pγ + GMεμναβ

]
Si/ f ;α

N qβ, (24)

η
N,�s i

N ,�s f
N

μν (p′, p) = G2
M

4m2
N

[2�N,2(q)gμν − �N,0(�μν + PμPν ) + q2 �N,2;μν + ((Pμ�N,2;νρPρ − qμ�N,2;νρqρ ) + (μ ↔ ν))]

+GM (GE − GM )

4m2
N (1 + τ )

[(Pμ�N,2;νρPρ + (μ ↔ ν)) − 2�N,0 PμPν] − (GE − GM )2

16m4
N (1 + τ )2

(2�N,2(q) +�N,0P2)PμPν,

(25)

where εμναβ denotes the four-dimensional totally antisymmetric Levi-Civita tensor. The expression in Eq. (25) can be simplified,
yielding

η
N,�s i

N ,�s f
N

μν (p′, p) = 1

4m2
N

{
G2

M[2�N,2(q)gμν − �N,0�μν + q2 �N,2;μν − (qμ�N,2;νρqρ + (μ ↔ ν))]

−
[

G2
E + τG2

M

1 + τ
�N,0 + (GE − GM )2

2m2
N (1 + τ )2

�N,2(q)

]
PμPν + GM (GE + τGM )

1 + τ
(Pμ�N,2;νρPρ + (μ ↔ ν))

}
. (26)

The lepton tensors are obtained from the above ones by the replacements p → k and p′ → k′, i.e., P → K = k + k′, and
q → −q = k′ − k, Si/ f

N → Si/ f
e , and furthermore mN → me and GE = GM = 1, yielding

ηe,0
μν (k′, k) = 1

4m2
e

(KμKν + �μν ), (27)

ηe,�s i/ f
e

μν (k′, k) = i

2me
εμναβSi/ f ;α

e qβ, (28)

ηe,�s i
e,�s f

e
μν (k′, k) = 1

4m2
e

{[2�e,2(q)gμν − �e,0(�μν + KμKν ) + q2 �e,2;μν + ((Kμ�e,2;νρKρ − qμ�e,2;νρqρ ) + (μ ↔ ν))]}, (29)

where Si/ f
e = Si/ f

e (k/k′,�s i/ f
e ).

I would like to point out that the hadron single-spin ten-

sors η
N,�s i/ f

N
μν (p′, p) as well as the lepton single spin tensors

ηe,�s i/ f
e

μν (k′, k) formally have the same structure except for the

replacements Si
N → S f

N and Si
e → S f

e , respectively.

IV. OBSERVABLES

Now I will consider all possible observables, distinguish-
ing between parity conserving and nonconserving ones, where
the latter ones are listed only. As mentioned above, to each
observable O is associated a pair of specific lepton and
hadron tensors as determined by the corresponding density

matrix operators S i/ f
e/N (O) according to Eqs. (8) through (11).

Observables, density matrix operators, and tensors are listed
in Table I for the parity conserving observables and in Table II
for the parity nonconserving ones.

A. Differential scattering cross section

The general differential cross section including the beam-
target asymmetries Ae, j;N,l with respect to the initial electron
and nucleon spins �s i

e and �s i
N , respectively, has the form

dσ

d�e
= dσ0

d�e

⎛⎝1 +
∑

jl

si
e; j s

i
N ;lA

e, j;N,l

⎞⎠. (30)
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TABLE I. Listing of parity conserving observables O, corre-
sponding density matrix operators S i/ f

e/N (O), and tensors ηe/N
μν (O).

O S i
e(O) S f

e (O) ηe
μν (O) S i

N (O) S f
N (O) ηN

μν (O)

1 14 14 ηe,0
μν 14 14 ηN,0

μν

AeN γ5/S
i
e 14 η

e,�s i
e

μν γ5/S
i
N 14 η

N,�s i
N

μν

Pe
e′ γ5/S

i
e γ5/S

f
e η

e,�s i
e ,�s f

e
μν 14 14 ηN,0

μν

PN
e′ 14 γ5/S

f
e ηe,�s f

e
μν γ5/S

i
N 14 η

N,�s i
N

μν

Pe
N ′ γ5/S

i
e 14 η

e,�s i
e

μν 14 γ5/S
f
N η

N,�s f
N

μν

PN
N ′ 14 14 ηe,0

μν γ5/S
i
N γ5/S

f
N η

N,�s i
N ,�s f

N
μν

Pe′N ′ 14 γ5/S
f
e ηe,�s f

e
μν 14 γ5/S

f
N η

N,�s f
N

μν

PeN
e′N ′ γ5/S

i
e γ5/S

f
e η

e,�s i
e ,�s f

e
μν γ5/S

i
N γ5/S

f
N η

N,�s i
N ,�s f

N
μν

The unpolarized cross section is given by
dσ0

d�e
= Fkin �0

f i, (31)

with

�0
f i =

∑
μν

ηe,0
μν ηN,0;μν

= 1

24m2
em2

N

[
G2

E + τG2
M

1 + τ
((K · P)2 − Q2P2)

+ 2G2
MQ4

(
1 − 2m2

e

Q2

)]
. (32)

For the high energy limit and an initial nucleon at rest ( �p = 0)
one obtains, with

F̃kin = 4α2m2
ek′2

Q4k2
and (K · P)2 − Q2P2 = 4m2

N Q2 cot2 θe/2

(33)

and thus

�0
f i = Q2

4m2
e

(
G2

E + τG2
M

1 + τ
cot2 θe/2 + 2τG2

M

)
, (34)

the high energy standard differential cross section for the
laboratory frame:

dσ0

d�e
= α2k′2

Q2k2

(G2
E + τG2

M

1 + τ
cot2 θe/2 + 2τG2

M

)
. (35)

TABLE II. Listing of parity nonconserving observables O, cor-
responding density matrix operators S i/ f

e/N (O), and tensors ηe/N
μν (O).

O S i
e(O) S f

e (O) ηe
μν (O) S i

N (O) S f
N (O) ηN

μν (O)

Ae γ5/S
i
e 14 η

e,�s i
e

μν 14 14 ηN,0
μν

AN 14 14 ηe,0
μν γ5/S

i
N 14 η

N,�s i
N

μν

Pe′ 14 γ5/S
f
e ηe,�s f

e
μν 14 14 ηN,0

μν

PeN
e′ γ5/S

i
e γ5/S

f
e η

e,�s i
e ,�s f

e
μν γ5/S

i
N 14 η

N,�s i
N

μν

PN ′ 14 14 ηe,0
μν 14 γ5/S

f
N η

N,�s f
N

μν

PeN
N ′ γ5/S

i
e 14 η

e,�s i
e

μν γ5/S
i
N γ5/S

f
N η

N,�s i
N ,�s f

N
μν

Pe
e′N ′ γ5/S

i
e γ5/S

f
e η

e,�s i
e ,�s f

e
μν 14 γ5/S

f
N η

N,�s f
N

μν

PN
e′N ′ 14 γ5/S

f
e ηe,�s f

e
μν γ5/S

i
N γ5/S

f
N η

N,�s i
N ,�s f

N
μν

The beam-target asymmetries are given by

Ae, j;N,l = 1

�0
f i

∑
μν

η
e,�e j
μν ηN,�el ;μν, (36)

where �e j and �el denote unit vectors of a chosen coordinate
system for a given reference frame. Using the tensors of
Eqs. (24) and (28),

η
e,�e j
μν ηN,�el ;μν = GM

2memN

[
GE�

(
Si

e(�e j ), Si
N (�el )

)
− τ (GM − GE )

(1 + τ )
�

(
Si

e(�e j ), Si
N (�el )

)]
, (37)

where the notation

�(Se, SN ) = �μνSμ
e Sν

N

= q2 Se · SN − q · Se q · SN , (38)

�(Se, SN ) = P · Se P · SN (39)

has been introduced, one obtains

Ae, j;N,l = GM

2memN�0
f i

[
GE �

(
Si

e(�e j ), Si
N (�el )

)
− τ (GM − GE )

1 + τ
�

(
Si

e(�e j ), Si
N (�el )

)]
. (40)

In case where parity nonconservation is considered, two
more vector observables will appear, namely beam and target
asymmetries �Ae and �AN , respectively:

dσ PV

d�e
= dσ0

d�e

(�s i
e · �Ae +�s i

N · �AN
)
. (41)

B. Polarization of one of the final particles

The polarization �Pa′ (a′ ∈ {e′, N ′}) of one of the outgoing
particles a′ is governed by the polarization transfer from one
of the initial particles a ∈ {e, N} to the final one:

Pa′, j
dσ

d�e
= dσ0

d�e

∑
l

(
si

e,lP
e,l
a′, j + si

N,lP
N,l
a′, j

)
. (42)

Here Pe/N,l
a′, j denotes the polarization transfer from an initial

electron or nucleon polarized along �el to the polarization
component along �e j of a final particle a′.

Polarization transfer Pe,l
N ′, j from electron to nucleon has

formally the same structure as Ae, j;N,l in Eq. (40) except for
the replacements Si

e(�e j ) → Si
e(�el ) and Si

N (�el ) → S f
N (�e j ). Thus

it is given by

Pe,l
N ′, j = 1

�0
f i

∑
μν

ηe,�el
μν ηN,�e j ;μν

= GM

2memN�0
f i

[
GE �

(
Si

e(�el ), S f
N (�e j )

)
− τ (GM − GE )

1 + τ
�

(
Si

e(�el ), S f
N (�e j )

)]
. (43)
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From this expression one obtains the nucleon-electron spin transfer by exchanging the initial and final states [(e, i) → (N, i) and
(N, f ) → (e, f )]:

PN,l
e′, j = 1

�0
f i

∑
μν

η
e,�e j
μν ηN,�el ;μν = GM

2memN�0
f i

[
GE �

(
Si

N (�el ), S f
e (�e j )

) − τ (GM − GE )

1 + τ
�

(
Si

N (�el ), S f
e (�e j )

)]
. (44)

As expected, the polarization transfer from electron to nucleon is formally equivalent to the transfer from nucleon to electron.
The spin transfer from the initial to the final electron Pe,l

e′; j is given by

Pe,l
e′; j = 1

�0
f i

∑
μν

η
e,�el ,�e j
μν ηN,0;μν

= 1

24m2
em2

N�0
f i

{
G2

E +τG2
M

1 + τ
[2P2 �e,2(q)+2q2 �e,2(P) − (q2P2 + (K · P)2)�e,0 + 2K · P �e,2;μνPμKν] − 4m2

eq2G2
M�e,0

}
.

(45)

Similarly, the spin transfer from the initial to the final nucleon PN,l
N ′; j with Si

N = Si
N (p,�el ) and S f

N = S f
N (p′,�e j ) is

PN,l
N ′; j = 1

�0
f i

∑
μν

ηe,0
μν ηN,�el ,�e j ;μν

= 1

24m2
em2

N�0
f i

[
−

{
4m2

eq2G2
M + (P2q2 + (K · P)2)

G2
E + τG2

M

1 + τ

}
�N,0

+2

{
4m2

eG2
M + (K · P)2

4m2
N

(GE − GM )2

(1 + τ )2
− q2 G2

E + τG2
M

1 + τ

}
�N,2(q)

+2q2 �N,2(K ) G2
M + 2K · P �N,2;μνPμKν GM (GE + τGM )

1 + τ

]
. (46)

Again for parity nonconservation one has P0
a′, j and Pe,l;N,r

a′, j
as additional observables:

PPV
a′, j

dσ

d�e
= dσ0

d�e

(
P0

a′, j +
∑

lr

si
e,l s

i
N,rPe,l;N,r

a′, j

)
. (47)

C. Spin correlations between both outgoing particles

The spin correlations between the polarization components
of both outgoing particles are determined by two contribu-
tions,

Pe′,l;N ′, j
dσ

d�e
= dσ0

d�e

(
P0

e′,l;N ′, j +
∑

rt

se
rsN

t Pe,r;N,t
e′,l;N ′, j

)
. (48)

The first, P0
e′,l;N ′, j , denotes a spin correlation for an unpolar-

ized initial state, and Pe,r;N,t
e′,l;N ′, j denotes a beam-target asymme-

try of a spin correlation, if both initial particles are polarized.
P0

e′,l;N ′, j is obtained from Pe,l
N ′, j in Eq. (43), replacing Si

e by S f
e ,

i.e.,

P0
e′,l;N ′, j = 1

�0
f i

∑
μν

ηe,�el
μν ηN,�e j ;μν

= GM

2memN�0
f i

[
GE �

(
S f

e (�el ), S f
N (�e j )

)
− τ (GM − GE )

1 + τ
�

(
S f

e (�el ), S f
N (�e j )

)]
. (49)

This expression resembles formally the beam-target asymme-
try of the cross section in Eq. (40), replacing the initial by
the final spins. The beam-target asymmetry of the final spin
correlation Pe,r;N,t

e′,l;N ′, j is more complicated, and thus it is listed
in Appendix B.

The parity violating part is determined by two contribu-
tions, Pe/N,r

e′,l;N ′, j , a beam or target asymmetry of the final spin
correlation, if one of the initial particles is polarized:

PPV
e′,l;N ′, j

dσ

d�e
= dσ0

d�e

∑
r

(
si

e,rPe,r
e′,l;N ′, j + si

N,rPN,r
e′,l;N ′, j

)
. (50)

This concludes the explicit presentation of the various parity
conserving polarization observables. All of the above results
are valid for any reference frame.

As an application I consider in Appendix C the case of lon-
gitudinally polarized initial electrons for two interesting ob-
servables, i.e., beam-target asymmetry and electron-nucleon
polarization transfer, with further specialization to laboratory
and Breit frames.

V. CONCLUSIONS

In the present work I have derived explicit expressions for
all possible parity conserving observables of electron-nucleon
elastic scattering in the one-photon exchange approximation
for the scattering matrix without resorting to a special frame
of reference. These expressions are easily evaluated for a
given frame of reference with a corresponding choice of
a coordinate system. The compact notation allows an easy
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implementation into a computer code. Essentially, all results
apply also to the inverse process of elastic nucleon scattering
off electrons.
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APPENDIX A: DERIVATION OF THE LEPTONIC
AND HADRONIC TENSORS

The starting point for the evaluation of the tensors is
Eq. (17). First I consider the general form of a Dirac current
for a nucleon

J f i
N,μ(p′, s′; p, s) = ūN (p′, s′)

(
Aγμ + B

mN
Pμ

)
uN (p, s), (A1)

where uN (p, s) denotes a nucleon Dirac spinor, P = p′ + p,
and

A = GM (Q2), (A2)

B = 1

2(1 + τ )
(GE (Q2) − GM (Q2)), (A3)

with τ = Q2/(4m2
N ), and electric (GE ) and magnetic (GM )

Sachs form factors as functions of the squared four-
momentum transfer Q2.

Introducing

jN,μ(p′, s′; p, s) = ūN (p′, s′)γμuN (p, s), (A4)

ρN (p′, s′; p, s) = ūN (p′, s′)uN (p, s), (A5)

one obtains

J f i
N,μ(p′, s′; p, s) = A jN,μ(p′, s′; p, s) + B

mN
PμρN (p′, s′; p, s). (A6)

For the electron current one has to substitute p → k, p′ → k′, uN (p/p′, s/s′) → ue(k/k′, s/s′), A = 1, and B = 0.
In view of the two terms of the current, one obtains three contributions to the tensor ηN

μν :

ηN
μν (p′, p,O) = A2η̄μν (p′, p;O) + AB η̃N

μν (p′, p;O) + B2η̂N
μν (p′, p;O), (A7)

where

η̄N
μν (p′, p;O) = 1

2

∑
s′ss̄′ s̄

jμ(p′, s′; p, s)ρ i(p,�s i;O)ss̄ j†
μ(p′, s̄ ′; p, s̄)ρ f (p′,�s f ;O)s̄ ′s′

= 1

2

∑
s′ss̄′ s̄

ū(p′, s′)γμu(p, s)ū(p, s)S i
N (O)u(p, s̄)ū(p, s̄)γνu(p′, s̄ ′)ū(p′, s̄ ′)S f

N (O)u(p, s′). (A8)

The expressions for η̃N
μν (p′, p;O) and η̂N

μν (p′, p;O) will be presented below. Using the property

UN (p) =
∑

s

uN (p, s)ūN (p, s) = 1

2mN
(/p + mN ), (A9)

the trace over the spin degrees of freedom becomes a trace over Dirac matrices (indicated by the superscript D),

η̄N
μν (p′, p;O) = 1

2 TrD
(
γμUN (p)S i

N (O)UN (p)γνUN (p′)S f
N (O)UN (p′)

)
. (A10)

The complete electron tensor ηe
μν (k′, k;O) is obtained from this expression by the substitutions (p, p′) → (k, k′), UN (p/p′) →

Ue(k/k′), and S i/ f
N (O) → S i/ f

e (O), while for the nucleon tensor one has two further contributions, i.e.,

η̃N
μν (p′, p;O) = 1

mN
(Pμτν (p′, p;O) + Pν τ̃μ(p′, p;O)), (A11)

η̂N
μν (p′, p;O) = 1

m2
N

PμPν ρ0(p′, p;O), (A12)

with

τN
μ (p′, p;O) = 1

2 TrD(U (p)S i
N (O)U (p)γμU (p′)S f

N (O)U (p′)), (A13)

τ̃N
μ (p′, p;O) = 1

2 TrD(γμU (p)S i
N (O)U (p)U (p′)S f

N (O)U (p′))

= 1
2 TrD(U (p′)S f

N (O)U (p′)γμU (p)S i
N (O)U (p)) = τμ(p, p′;O)|�s i

N ↔�s f
N
, (A14)

ρN
0 (p′, p;O) = 1

2 TrD(U (p)S i
N (O)U (p)U (p′)S f

N (O)U (p′)). (A15)
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According to Eq. (11) (see also Table I) one has for S i/ f
e/N two possibilities depending on the observable, i.e., whether the

corresponding initial or final state is polarized or not, resulting in four types of tensors η̄x
μν (p′, p) (x ∈ {0;�s i;�s f ;�s i,�s f }):

η̄N0
μν (p′, p) = 1

2
TrD(γμU (p)U (p)γνU (p′)U (p′))

= 1

4m2
N

[PμPν − (p′ − p)μ(p′ − p)ν + (p′ − p)2gμν]

= 1

4m2
N

(PμPν + �μν ), (A16)

η̄
N,�s i

N
μν (p′, p) = 1

2
TrD(γμU (p)γ5/S

i
NU (p)γνU (p′)U (p′))

= i

2mN
εμναβ (p′ − p )αSi;β

N , (A17)

η̄
N,�s f

N
μν (p′, p) = 1

2
TrD

(
γμU (p)U (p)γνU (p′)γ5/S

f
NU (p′)

)
= i

2mN
εμναβ (p′ − p )αS f ;β

N , (A18)

η̄
N,�s i

N ,�s f
N

μν (p′, p) = 1

2
TrD

(
γμU (p)γ5/S

i
NU (p)γνU (p′)γ5/S

f
NU (p′)

)
= 1

4m2
N

[−(
2p′ · Si

N p · S f
N + (p − p′ )2 Si

N · S f
N

)
gμν − 2Si

N · S f
N (pμ p′

ν + pν p′
μ)

+(p − p′ )2 (
Si

N ;μS f
N ;ν + Si

N ;νS f
N ;μ

) + 2p · S f
(
Si

N ;μ p′
ν + Si

N ;ν p′
μ

) + 2p′ · Si
(
S f

N ;μ pν + S f
N ;ν pμ

)]
= 1

4m2
N

[2 �N,2(q) gμν + �0 (�μν − PμPν ) + q2�N,2;μν + ((Pμ�N,2;νρPρ − qμ�N,2;νρqρ ) + (μ ↔ ν))]. (A19)

One should note that η̄N,0
μν (p′, p) and η̄N,�s i,�s f

μν (p′, p) are

even under the interchange μ ↔ ν while η̄N,�s i/�s f

μν (p′, p) are
odd. Furthermore, the interchange i ↔ f , i.e., p ↔ p′ and
�s i

N ↔ �s f
N , leaves η̄N,0

μν (p′, p) and η̄N,�s i,�s f

μν (p′, p) unchanged and,

finally, η̄N,�s i

μν (p′, p) and η̄N,�s f

μν (p′, p) have formally the same
structure. These properties apply also to η̃N

μν (p′, p;O) and
η̂N

μν (p′, p;O).
I now will turn to the other two contributions η̃N

μν (p′, p;O)
and η̂N

μν (p′, p;O), which in addition contribute to the hadronic
tensor only. First one obtains for τN

μ (p′, p;O)

τN,0
μ (p′, p) = 1

2mN
Pμ, (A20)

τN,�s i/�s f

μ (p′, p) = i

4m2
N

εμαβγ Si/ f ;α
N qβ Pγ , (A21)

τN,�s i,�s f

μ (p′, p) = 1

2mN
(�N,2;μρPρ − �N,0 Pμ), (A22)

and

ρN,0
0 (p′, p) = 1

4m2
N

P2 = 1 + τ, (A23)

ρN,�s i

0 (p′, p) = ρN,�s f

0 (p′, p) = 0, (A24)

ρN,�s i,�s f

0 (p′, p) = − 1

4m2
N

[2 �N,2(q) + �N,0P2]. (A25)

This then yields for η̃μν (p′, p;O)

η̃ N,0
μν (p′, p) = 1

m2
N

PμPν, (A26)

η̃ N,�s i/�s f

μν (p′, p) = i

4m3
N

(Pμεναβγ − Pνεμαβγ )Si/ f ;α
N qβPγ ,

(A27)

η̃ N,�s i,�s f

μν (p′, p) = 1

2m2
N

([Pμ�N,2;νρPρ + (μ ↔ ν)]

−2�N,0 PμPν ). (A28)

Again η̃ N,0
μν and η̃ N,�s i,�s f

μν are even and η̃ N,�s i/�s f

μν are odd under
the exchange μ ↔ ν. For η̂μν (p′, p;O) one finds

η̂ N,0
μν (p′, p) = P2

4m4
N

PμPν = 1 + τ

m2
N

PμPν, (A29)

η̂ N,�s i

μν (p′, p) = η̂ N,�s f

μν = 0, (A30)

η̂ N,�s i,�s f

μν (p′, p) = − 1

4m4
N

(2 �N,2(q) + �N,0 P2)PμPν . (A31)
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TABLE III. Listing of operators Oa,r
μν and coefficients ca

r with a ∈ {e, N}.

r Oe,r
μν ce

r ON,r
μν cN

r

1 gμν 2�e,2(q) gμν 2G2
M�N,2(q)

2 �μν −�e,0 �μν −G2
M�N,0

3 KμKν −�e,0 PμPν −(G2
E + τG2

M )�N,0/(1 + τ )

−(GM − GE )2�N,2(q)/[2m2
N (1 + τ )]

4 �e,2;μν q2 �N,2;μν G2
Mq2

5 qμ�e,2;νρqρ + (μ ↔ ν ) −1 qμ�N,2;νρqρ + (μ ↔ ν ) −G2
M

6 Kμ�e,2;νρKρ + (μ ↔ ν ) 1 Pμ�N,2;νρPρ + (μ ↔ ν ) GM (GE + τGM )/(1 + τ )

APPENDIX B: THE BEAM-TARGET ASYMMETRIES
OF THE FINAL SPIN CORRELATIONS

Here I evaluate the more complex beam-target asymme-
tries of the final spin correlations:

Pe,m;N,n
e′,l;N ′, j = 1

�0
f i

∑
μν

ηe,�em,�el
μν ηN,�en,�e j ;μν. (B1)

In view of the more involved operator structure of both tensors
in Eqs. (26) and (29), I first write them as sums over six op-
erators Oe/N,r

μν (r = 1, . . . , 6) with corresponding coefficients
ce/N

r :

η
N,�s i

N ,�s f
N

μν = 1

4m2
N

∑
r=1,6

cN
r

(�s i
N ,�s f

N

)
ON,r

μν

(�s i
N ,�s f

N

)
, (B2)

ηe,�s i
e,�s f

e
μν = 1

4m2
e

∑
r=1,6

ce
r

(�s i
e,�s f

e

)
Oe,r

μν

(�s i
e,�s f

e

)
. (B3)

The operators Oa,r
μν are symmetric four-tensors. They and

the corresponding coefficients are listed in Table III. The
notations �μν , �e/N,0, �e/N,2(v), and �e/N,2;μν are defined in
Eqs. (19) through (22).

Then the contraction of the tensors reads∑
μν

ηe,�s i
e,�s f

e
μν ηN,�s i

N ,�s f
N ;μν =

∑
r,s=1,6

ce
rcN

s Ce,N
r,s , (B4)

where the various operator contractions are denoted by

Ce,N
r,s

(�s i
e,�s f

e ;�s i
N ,�s f

N

) = Oe,r
μν

(�s i
e,�s f

e

)
ON,s;μν

(�s i
N ,�s f

N

)
. (B5)

They are listed in Table IV with the additional notations

�eN,0 = �e,2;μν�
μν
N,2, (B6)

�eN,2(v′, v) = v′μ�e,2;μν�
νρ
N,2vρ, (B7)

�eN,2(v) = �eN,2(v, v). (B8)

Collecting the various contributions, one obtains finally

Pe,m;N,n
e′,l;N ′, j = 1

42m2
em2

N�0
f i

∑
r,s=1,6

ce
r (�em,�el )c

N
s (�en,�e j )Ce,N

r,s

× (�em,�el ;�en,�e j ). (B9)

APPENDIX C: BEAM-TARGET ASYMMETRY AND SPIN
TRANSFER FOR LONGITUDINALLY POLARIZED

ELECTRONS AT HIGH ENERGY

In view of the recent analysis of final proton polarization
in electron scattering �e (A, �p )A′ in Refs. [1,2], I will now spe-
cialize to the case of electron-to-nucleon polarization transfer
with longitudinally polarized electrons at high energies. In
addition, I also consider the beam-target asymmetry of the
cross section, which is formally similar.

For longitudinally polarized electrons, i.e., �se = �ek = �k/k̄,
the spin vector Se has the form

Se(k,�ek ) = 1

me
(k̄, k0�ek ). (C1)

According to Eq. (15) Se has the Lorentz invariant property

Se(k,�ek ) · k = 0. (C2)

TABLE IV. Listing of contractions Ce,N
r,s .

r\s 1 2 3 4 5 6

1 4 3q2 P2 2�N,0 2�N,2(q) 2�N,2(P)

2 3q2 3q4 q2P2 2(q2�N,0 − �N,2(q) 0 2q2�N,2(P)

3 K2 q2K2 (K · P)2 �N,2(K ) 0 2K · P �N,2(K, P)

4 2�e,0 2[q2�e,0 − �e,2(q)] �e,2(P) �eN,0 2�eN,2(q) 2�eN,2(P)

5 2�e,2(q) 0 0 2�eN,2(q) 2[q2�eN,2(q) 2�e,2(q, P)�N,2(q, P)

+�e,2(q)�N,2(q)]
6 2�e,2(K ) 2q2�e,2(K ) 2K · P �e,2(K, P) 2�eN,2(K ) 2�e,2(q, K )�N,2(q, K ) 2[(K · P)�eN,2(K, P)

+�e,2(K, P)�N,2(K, P)]
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For electrons of sufficiently high energy such that the electron
mass can be neglected, i.e., k̄ � me or k̄ ≈ k0, the expression
in Eq. (C1) simplifies. In that case one finds

Se(k,�ek ) ≈ k̄

me
(1,�ek ) ≈ k

me
, (C3)

which means the electron spin four-vector equals approxi-
mately its four-momentum divided by its mass.

Evaluating the expressions in Eqs. (38) and (39)

�

(
k

me
, Si

N

)
= 1

me

(
q2k · Si

N − k · q q · Si
N

)
= q2

2me
K · Si

N , (C4)

�

(
k

me
, Si

N

)
= − 1

me
k · P q · Si

N , (C5)

where I have used k · q = q2/2 and P · Si
N = −q · Si

N , one
obtains for the beam-target asymmetry [see Eq. (40)]

Ae,long,N, j = 1

4m2
emN�0

f i

GM

[
GE q2 K · Si

N (�e j )

+ 2
τ (GM − GE )

1 + τ
k · P q · Si

N (�e j )

]
, (C6)

and for the polarization transfer component [see Eq. (43)]
Pe,long

N ′; j = Pe,�ek
N ′; j ,

Pe,long
N ′, j = 1

4m2
emN�0

f i

GM

[
GE q2 K · S f

N (�e j )

+ 2
τ (GM − GE )

1 + τ
k · P q · S f

N (�e j )

]
. (C7)

As mentioned before, these results are valid for any reference
frame.

As special cases I will now consider these observables in
the laboratory and Breit frames, using the standard coordinate
system [11], i.e., the z axis along the three-momentum transfer
�q, the y axis along �k × �k ′, and the x axis to form a right-handed
system. The unit vectors will be denoted by �e j .

1. The laboratory frame

All laboratory frame quantities will be denoted by a sub-
script L. Since the initial nucleon is at rest, the final nucleon
momentum is

p′
L = (E ′

L, �qL ) with E ′
L =

√
m2

N + q̄2
L. (C8)

Furthermore, from the Bjorken condition

xB j = Q2/2q · p = Q2/(E ′
L − mN )2mN = 1, (C9)

one finds E ′
L − mN = Q2/2mN , from which follows

q̄2
L = Q2 + (E ′

L − mN )2 = Q2(1 + τ ). (C10)

With the nucleon spin �e j in the nucleon’s rest frame (eq j =
�eq · �e j) the initial and final nucleon spin four-vectors are

Si
N (pL,�e j ) = (0,�e j ), (C11)

S f
N (p′

L,�e j ) =
(

q̄L

mN
eq j,�e j + 2τeq j�eq

)
. (C12)

For the scalar products appearing in Eqs. (C6) and (C7) one
has

Si
N (pL,�e j ) · qL = −q̄Leq j,

Si
N (pL,�e j ) · KL = −�e j · �KL, (C13)

S f
N (p′

L,�e j ) · qL = −q̄Leq j,

S f
N (p′

L,�e j ) · KL = Q2

mN q̄L
(k̄L + k̄′

L )eq j − �e j · �KL, (C14)

where I have used

�eq · �KL = Q2

2mN q̄L
(k̄L + k̄′

L ). (C15)

Then, using q̄L = Q
√

1 + τ and kL · PL = mN (k̄L + k̄′
L ), one

finds for the beam-target asymmetry and the electron-nucleon
spin transfer

Ae,long,N, j
L = GM

4m2
emN�0

[
GE Q2 �KL · �e j

− (GM − GE )
2mNτQ√

1 + τ
(k̄L + k̄′

L )eq j

]
, (C16)

Pe,long
N, j;L = − GM

4m2
emN�0

[
GE Q2

(
Q(k̄L + k̄′

L )

mN
√

1 + τ
eq j − �KL · �e j

)
+ (GM − GE )

2mNτQ√
1 + τ

(k̄L + k̄′
L )eq j

]
= Ae,long,N, j

L − GMGE

m2
e�0

τQ(k̄L + k̄′
L )√

1 + τ
eq j . (C17)

This gives for the j = x component using eqx = 0 and

�ex · �KL = 2(k̄Lk̄′
L/q̄L ) sin θL = Q√

1 + τ
cot(θL/2), (C18)

with θL as scattering angle in the laboratory frame,

Ae,long,N,x
L = Pe,long

N,x;L = mNτQ cot(θL/2)

m2
e�0

√
1 + τ

GMGE . (C19)

Correspondingly, for the z component [eqz = 1 and �ez · �KL =
(k̄L + k̄′

L )Q2/(2mN q̄L )]

Ae,long,N,z
L = τQ(k̄L + k̄′

L )

2m2
e�0

√
1 + τ

GM (2GE − GM ). (C20)

Pe,long
N,z;L = − τQ(k̄L + k̄′

L )

2m2
e�0

√
1 + τ

G2
M . (C21)
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Thus, one finds for the ratios of the x over the z components

Ae,long,N,x
L

Ae,long,N,z
L

= 2mN

(k̄L + k̄′
L )tan(θL/2)

GE/GM

2GE/GM − 1
, (C22)

Pe,long
N,x;L

Pe,long
N,z;L

= − 2mN

(k̄L + k̄′
L )tan(θL/2)

GE

GM
. (C23)

The latter result is well known. Thus measuring the beam-
target asymmetry is, in a certain sense, i.e., with respect to the
ratio GE/GM , equivalent to a measurement of the polarization
transfer.

2. The Breit frame

The Breit or “brick wall” frame is defined by the condition
�p ′

B = −�pB , which means q0 = 0 and therefore Q2 = q̄2
B, and

one finds, denoting all Breit frame quantities by a subscript B,

pB = (EB,−�qB/2), p′
B = (EB, �qB/2),

qB = (0, �qB ), PB = (2EB,�0 ), (C24)

where EB = mN
√

1 + τ . The initial and final nucleon spin
four-vectors with rest frame spin in the direction of the unit
vector �s i/ f

N = �e j are given by

Si/ f
N (pB/p′

B,�e j ) =
(

∓ q̄Beq j

2mN
,�e j + 1

mN
(EB − mN )eq j�eq

)
.

(C25)

Then one obtains with EB = mN
√

1 + τ and q̄B = Q and �eq ·
�KB = 0

Si/ f
N (pB/p′

B,�e j ) · qB = −QEB

mN
eq j, (C26)

Si/ f
N (pB/p′

B,�e j ) · KB = ∓ Qk̄B

mN
eq j − �e j · �KB. (C27)

With these expressions and �kB · �PB = 2k̄BEB one finds

Ae,long,N, j
B = mNτ

m2
e�0

GM

[
GE �KB · �e j

+ (2GE − GM )
Qk̄B

mN
eq j

]
, (C28)

Pe,long
N, j;B = − mNτ

m2
e�0

GM

[
GE �KB · �e j − GM

Qk̄B

mN
eq j

]
= −Ae,long,N, j

B + 2τQk̄Beq j

m2
e�0

GMGE . (C29)

This gives for the j = x components using eqx = 0 and �ex ·
�KB = 2k̄B cos (θB/2), with θB as scattering angle in the Breit
frame,

Ae,long,N,x
B = −Pe,long

N,x;B = 2mNτ k̄B cos (θB/2)

m2
e�0

GMGE , (C30)

and for the j = z components, with eqz = 1 and �ez · �KB = 0,

Ae,long,N,z
B = τQk̄B

m2
e�0

GM (2GE − GM ), (C31)

Pe,long
N,z;B = τQk̄B

m2
e�0

G2
M . (C32)

Thus the ratios of the x over the z components of the beam-
target asymmetry and the polarization transfer become

Ae,long,N,x
B

Ae,long,N,z
B

= 2mN cos(θB/2)

Q

GE/GM

2GE/GM − 1
, (C33)

Pe,long
N,x;B

Pe,long
N,z;B

= −2mN cos(θB/2)

Q

GE

GM
. (C34)

The corresponding laboratory frame quantities can also be
obtained from the foregoing Breit frame ones by a Lorentz
boost to the laboratory frame [12].
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