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Results are presented for an updated multichannel energy-dependent partial-wave analysis of πN scattering.
Our earlier work incorporated single-energy amplitudes for πN → πN , γ N → πN , πN → ππN , πN → ηN ,
and πN → K�. The present work incorporates new single-energy solutions for γ p → ηp up to a center-of-mass
(c.m.) energy of 1990 MeV, γ p → K+� up to a c.m. energy of 2230 MeV, and γ n → ηn up to a c.m. energy
of 1885 MeV, as well as updated single-energy solutions for πN → ηN , πN → K�, and γ N → πN . In this
paper, we present and discuss the resonance parameters obtained from a combined fit of all these single-energy
amplitudes. Our determined energy-dependent amplitudes provide an excellent description of the corresponding
measured observables.
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I. INTRODUCTION

According to quark models, the baryon is typically viewed
as a particle composed of three constituent quarks. With
sufficient energy, one or more of the quarks can be excited,
giving rise to a spectrum of particles called resonances. The
primary experimental method used to search for resonances
has been to analyze πN reactions including πN → πN
and γ N → πN . This search has yielded many well-known
and established resonances. The first observed resonance,
the P33(1232), was followed by many others, including the
S11(1535), S11(1650), and F15(1680).

In the literature, there are also many theoretical models
[1–5] that attempt to explain the interactions of the quarks
inside of baryons. Each of these theoretical models has one
thing in common: they predict more resonances than have
been experimentally found. One possible explanation is that
these predicted resonances decouple from the πN channel.
This idea has led to recent experimental efforts using photon
beams and meson photoproduction reactions aimed at search-
ing for these resonances.

To aid in the interpretation of the new data, groups such as
the Excited Baryon Analysis Center of Jefferson Lab (EBAC-
JLab) [6], Bonn-Gatchina (BnGa) [7], The George Washing-
ton University (GWU)/SAID [8], and Kent State University
(KSU) [9] have all developed multichannel formalisms to
analyze experimental data in a self-consistent framework.
The EBAC-JLab group uses a coupled-channel approach that
contains the channels πN , ππN , ηN , and K�, and pion pho-
toproduction. BnGa uses a K-matrix formalism with Breit-
Wigner resonances and includes πN → πN , γ N → ππN , as
well as channels ηN , K�, and K�. The GWU/SAID model
is also based on a K-matrix approach that focuses on analyses
of πN → πN [8] and γ N → πN [10], but more recent efforts
have allowed the inclusion of πN → ηN as well.

The KSU model [9] used in this work is based on a
generalized energy-dependent Breit-Wigner parametrization
of amplitudes that treats all channels on an equal footing,

and also takes full account of nonresonant backgrounds. Pre-
vious fits using this model included partial-wave amplitudes
for πN → πN , πN → ππN , γ N → πN , πN → ηN , and
πN → K� [11]. The current work updates and supersedes
this earlier work by adding single-energy amplitudes for the
photoproduction reactions γ p → ηp and γ n → ηn [12] and
γ p → K+� [13]. Our previous single-energy πN → ηN and
πN → K� amplitudes [14] were also updated [15] to be self-
consistent with new experimental data for photoproduction
reactions having the same final states.

Section II briefly discusses the formalism behind the gen-
eralized K-matrix approach. Section III discusses the fitting
procedure used to obtain a fit of the partial-wave amplitudes
for each reaction. Section IV discusses results describing the
determined resonance structure. Appendix A summarizes de-
tails of the KSU model, which is the parametrization used for
our multichannel energy-dependent fits. Appendix B contains
tables of partial widths, branching fractions, and resonant am-
plitudes. It also contains Argand diagrams showing the final
dimensionless energy-dependent partial-wave amplitudes.

II. THEORETICAL MODEL

In the KSU model [9], the unitary and symmetric partial-
wave scattering matrix S, or S-matrix, is given by

S = BTRB, (1)

where BT is the transpose of B, which is parametrized as a
product of unitary, symmetric background matrices

B = B1B2 · · · Bm (2)

and R represents the resonant part of the scattering amplitude
or s-channel process. Consequently, B itself is unitary but not
necessarily symmetric whereas S is both unitary and sym-
metric. This is equivalent to the conservation of probability
and time-reversal symmetry. The matrix R is constructed by
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writing

R = I + 2iTR

= I + 2iK(I − iK)−1

= (I + iK)(I − iK)−1,

(3)

where K is a Hermitian K-matrix, K = K†, and I is an identity
matrix. To satisfy time-reversal symmetry, K also must be
symmetric. TR is called the resonant transition matrix, or
T -matrix for short. Each of the resonances corresponds to a
pole in TR and, therefore, also in the total S-matrix.

In constructing the background, a “distant poles” approx-
imation was used. In this approximation, the functional be-
havior used for the background was a modified Breit-Wigner
form where the mass was kept negative and usually large (the
majority have magnitudes greater than 3000 MeV, with many
larger than 104 MeV). This ensured that the background poles
exist far from the physical region of the complex plane. The
background terms were also allowed very large widths (on
the order of 104 MeV). These features guaranteed that the
background had the correct threshold behavior, was slowly
varying, and was flexible enough in form to allow the fitting
of a large number of potential functional behaviors.

Because scattering can happen off attractive and repulsive
potentials, separate background terms were used for each
process. An attractive (repulsive) background was ensured
by using a positive (negative) width for the background, as
explained in Ref. [16]. In the absence of resonance terms, an
attractive (repulsive) background term alone exhibits counter-
clockwise (clockwise) motion on an Argand diagram, but such
background amplitudes (unlike resonant amplitudes) do not
cross the imaginary axis.

All amplitudes used in the parametrization are dimension-
less by construction, while the single-energy photoproduction
amplitudes [12,13] have dimensions of mfm (milli-fermi =
attometer). Once an initial single-energy fit has been per-
formed, the dimensioned single-energy amplitudes are con-
verted to dimensionless amplitudes using [16]

Ẽl+ = CI

√
kq(l + 1)(l + 2) El+, (4a)

Ẽ(l+1)− = CI

√
kql (l + 1) E(l+1)−, (4b)

M̃l+ = CI

√
kql (l + 1) Ml+, (4c)

and

M̃(l+1)− = CI

√
kq(l + 1)(l + 2) M(l+1)−, (4d)

where the multipoles with a tilde denote the dimensionless
amplitudes. Here CI is an isospin coefficient. For γ N →
ηN and γ N → K�, C1/2 = 1 and C3/2 = 0. For γ N → πN ,
C1/2 = −√

3 and C3/2 = √
2/3. For γ N → πN , k and q are

the center-of-mass (c.m.) momentum for the incoming γ N
and outgoing πN , respectively, and similarly for γ N → ηN
and γ N → K�.

The model contains resonance and background cou-
plings for the reactions πN → πN , πN → ππN , πN →
ηN , πN → K�, γ p → ηp, γ n → ηn, and γ N → πN , all
of which have single-energy amplitudes determined. It also

includes channels that have not been analyzed to date (such
as ρ�, ωN , and πN∗), which are included in fits as “dummy
channels” to satisfy unitarity and prevent over-saturating cou-
plings for measured channels. Further details are presented in
Appendix A.

III. FITTING PROCEDURE

The fitting procedure for obtaining resonance parameters
consisted of a two-step process. The first step was to deter-
mine single-energy partial-wave amplitudes independent of
any resonance structure by fitting observables data in specified
energy bins. The single-energy amplitudes for a given partial
wave (e.g., S11 or P11) were then fitted as real and imaginary
parts with our energy-dependent parametrization to update the
resonance parameters and determine corresponding energy-
dependent amplitudes. This procedure was iterated until the
energy-dependent solution provided a good description of
the observables data. The procedure used for fitting was the
standard χ2 minimization technique.

To gain confidence in both model stability and reaching a
global χ2 minimum, two techniques were used. The first was
to start from a number of distinct solutions and test for conver-
gence in the solution. For this procedure, a local minimum for
each starting point was found using the two-step convergence
procedure. Each minimum could then be compared to other
local minima previously obtained for both a single reaction
as well as for all combined reactions. An optimal solution is
then one that is sufficiently close to a global minimum for
each individual reaction as well as for all reactions combined.
The second technique was a randomization process that was
devised as follows. A group of resonance parameters was
selected to be randomly varied, with each parameter’s random
variation independently determined and small. (For instance,
the parameters might be all couplings to all P11 resonances.)
The random change for the parameters was kept small, usu-
ally less than 20% of their starting values. By performing
these techniques hundreds of times on different subsets of
parameters over the course of the analysis, a large region of
parameter space was analyzed and checked. This technique
also led to confidence that the determined error bars were
reasonable.

To determine final error bars for the single-energy ampli-
tudes, the moduli for each of the partial-wave amplitudes over
all newly added photoproduction reactions were treated as free
parameters and allowed to vary one final time while the phases
were kept fixed in a “zero-iteration” fit. This is described in
greater detail in the papers describing the single-energy anal-
ysis [12,13]. The next step was to put these single-energy am-
plitudes with their final error bars into the energy-dependent
code to generate final error bars for all resonance parameters.
In this fit, parameter values were not actually varied and the
only purpose of the “fit” was to calculate error bars taking into
account all the various correlations between free parameters.
The single-energy points that generated a large contribution
to χ2 had their error bars scaled up until the χ2 contribution
from those points equaled four. This scaling was done to keep
individual points from dominating the results for the fits. Then
a full error matrix was calculated with a zero-iteration fit to
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TABLE I. Comparison of S11, P11, P13, and D13 resonance masses, widths, and pole positions for isospin-1/2 amplitudes. The widths listed
are the energy-dependent Breit-Wigner total widths evaluated at the resonance masses. Uncertainties in the pole positions should be similar to
those in the corresponding Breit-Wigner parameters. Star rating is that found in the RPP [22]. Comparisons are made with works by Rönchen
et al. [18], Anisovich et al. [19], and Workman et al. (SAID) [20].

Mass Width Re Pole −2 Im Pole Analysis Mass Width Re Pole −2 Im Pole Analysis
(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

S11(1535)**** S11(1650)****

1525(2) 147(5) 1496 119 This work 1666(3) 133(7) 1656 130 This work
1499 104 Rönchen 1672 137 Rönchen

1547 188(14) Workman 1635 115(14) Workman
1519(5) 128(14) 1501(4) 134(11) Anisovich 1651(6) 104(10) 1647(6) 103(8) Anisovich

S11(1895)**** P11(1440)****

2000(29) 466(72) 1956 449 This work 1417(4) 257(11) 1360 186 This work
Rönchen 1355 215 Rönchen
Workman 1485(1) 284(4) Workman

1895(15) 90+30
−15 1900(15) 90+30

−15 Anisovich 1430(8) 365(35) 1370(4) 190(7) Anisovich

P11(1710)**** P11(1880)***

1648(16) 195(46) 1615 169 This work 1967(20) 500(77) 1880 429 This work
1651 121 Rönchen 1747 323 Rönchen

Workman Workman
1710(20) 200(18) 1687(17) 200(25) Anisovich 1870(35) 235(65) 1860(35) 250(70) Anisovich

P11(2100)*** P13(1720)****

2221(92) 545(170) 2217 545 This work 1711(4) 229(22) 1654 100 This work
Rönchen 1710 219 Rönchen
Workman 1764 210 Workman
Anisovich 1690+70

−35 420(100) 1660(30) 450(100) Anisovich

P13(1900)**** P13(2040)*

1911(6) 292(16) 1856 241 This work 2244(30) 530(89) 2231 529 This work
Rönchen Rönchen
Workman Workman

1905(30) 250+120
−50 1900(30) 200+100

−60 Anisovich Anisovich

D13(1520)**** D13(1700)***

1512.0(1.5) 121(3) 1500 117 This work 1653(5) 81(13) 1647 79 This work
1512 89 Rönchen Rönchen

1515 104 Workman Workman
1517(3) 114(5) 1507(3) 111(5) Anisovich 1790(40) 390(140) 1770(40) 420(180) Anisovich

D13(1875)*** D13(2120)***

2005(12) 321(21) 1993 319 This work 2353(29) 503(62) 2357 503 This work
Rönchen Rönchen
Workman Workman

1880(20) 200(25) 1860(25) 200(20) Anisovich 2150(60) 330(45) 2110(50) 340(45) Anisovich

give the final error bars with all parameters treated as free
parameters, but not actually varied. Finally, the uncertainties
in the resonance parameters were scaled by

√
χ2/ν, where ν

was the number of degrees of freedom for the fit.

IV. RESULTS

This section is laid out as follows. Section IV A contains
information about each of the isospin-1/2 amplitudes and
tables of their respective resonance parameters and helic-

ity couplings. Section IV B contains information about the
isospin-3/2 amplitudes and tables of their respective reso-
nance parameters and helicity couplings.

A. Results for isospin-1/2 amplitudes

The following section discusses results for the isospin-
1/2 amplitudes. Tables I and II list the Breit-Wigner masses
(M) and total widths (�(M )) of each isospin-1/2 resonance
with errors on the last reported significant figure shown
in parentheses. These tables also list pole positions that
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TABLE II. Comparison of D15, F15, F17, G17, and G19 resonance masses, widths, and pole positions for isospin-1/2 amplitudes. The widths
listed are the energy-dependent Breit-Wigner total widths evaluated at the resonance masses. Uncertainties in the pole positions should be
similar to those in the corresponding Breit-Wigner parameters. Star rating is that found in the RPP [21]. Comparisons are made with works by
Rönchen et al. [18], Anisovich et al. [19], and Workman et al. (SAID) [20].

Mass Width Re Pole −2 Im Pole Analysis Mass Width Re Pole −2 Im Pole Analysis
(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

D15(1675)**** D15(2060)***

1669(2) 161(8) 1646 146 This work 2111(17) 499(70) 2010 395 This work
1646 125 Rönchen Rönchen

1674(1) 147 Workman Workman
1664(5) 152(7) 1654(4) 151(5) Anisovich 2060(15) 375(25) 2040(15) 390(25) Anisovich

F15(1680)**** F15(1860)**

1681.0(1) 123(3) 1668 118 This work 1928(21) 376(58) 1871 337 This work
1669 100 Rönchen Rönchen

1680 128 Workman Workman
1689(6) 118(6) 1676(6) 113(4) Anisovich 1860+120

−60 270+140
−50 1830+120

−60 250+150
−50 Anisovich

F17(1990)** F17(2200) new

2028(19) 490(110) 1913 163 This work 2219(16) 519(94) 2106 385 This work
1738 188 Rönchen Rönchen

Workman Workman
2060(65) 240(50) 2030(65) 240(60) Anisovich Anisovich

G17(2190)**** G19(2250)****

2222(15) 442(40) 2162 407 This work 2200(10) 343(51) 2127 262 This work
2074 327 Rönchen 2062 403 Rönchen

Workman Workman
2180(20) 335(40) 2150(25) 330(30) Anisovich 2280(40) 520(50) 2195(45) 470(50) Anisovich

were calculated numerically with the procedure discussed
in Ref. [17] using the actual energy dependence of the
Breit-Wigner widths, which is discussed in Appendix A.
Only masses are quoted for resonances above 2300 MeV
because their widths and couplings are not reliable at this
stage of analysis. Tables III and IV show helicity couplings
to the isospin-1/2 resonances. Comparisons are made in
each table with Refs. [19,20]. Additional comparisons can be
found in the Review of Particle Physics (RPP) [21]. Partial
widths, branching fractions, and resonant amplitudes (

√
xxi)

are listed in Appendix B. For a given resonance, the partial
widths and quantities directly derived from them (e.g., total
widths and branching fractions) in Appendix B were all
calculated from energy-dependent partial widths evaluated at
the Breit-Wigner mass of the resonance. Finally, the energy-
dependent fits for each reaction and resonance are shown in
Figs. 1–27.

1. S11

This amplitude required four resonances within the fit-
ting region. The first two are the well-known S11(1535) and
S11(1650) and are clearly seen in πN , K�, and ηN photopro-
duction. The properties of the third state, S11(1895), especially
its mass, were primarily constrained by the πN → πN and
the πN → ηN reactions and it was the πN → ηN reaction
that required the resonance. The S11(1895) was listed as a

two-star resonance in the 2016 edition of the RPP [21], but
it was promoted to a four-star resonance in the 2018 edition
[22]. A fourth resonance at 2400 MeV was used to constrain
the high-energy behavior of the K� channels and remains
inconclusive. At this stage of the analysis, its parameters are
not reliable and are not quoted.

In general, our parameter values for the S11(1535) and
S11(1650) are in agreement with results from other works.
The primary exception is the S11(1535) helicity-1/2 coupling
found in this work, which is larger than the result by Shrestha
et al. [11] but is now in agreement with other more recent
results. However, results for the S11(1895) are still not in good
agreement between the different groups. For instance, a few
groups find a width less than 150 MeV, which is quite narrow,
while this and other works find a width in excess of 400 MeV,
which is quite large. While the helicity-1/2 couplings show
different signs, early indications suggest the resonance has a
weak photocoupling. Our fit of the S11 amplitudes contained
no dummy channels, meaning that S11 inelasticity can be
explained by the measured reactions.

2. P11

P11 required four resonances, including the well-known
Roper resonance P11(1440). The Roper resonance shows up
in this analysis with a lower mass and width than most current
groups seem to find, as well as a larger helicity-1/2 coupling
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TABLE III. Comparison of S11, P11, P13, and D13 helicity-1/2 and -3/2 amplitudes for both the proton and neutron. Star rating is that found
in the RPP [22]. Comparisons are made with works by Anisovich et al. [19] and Workman et al. (SAID) [20].

Ap
1
2

An
1
2

Ap
3
2

An
3
2

Analysis Ap
1
2

An
1
2

Ap
3
2

An
3
2

Analysis

(GeV−1/2) (GeV−1/2) (GeV−1/2) (GeV−1/2) (GeV−1/2) (GeV−1/2) (GeV−1/2) (GeV−1/2)

S11(1535)**** S11(1650)****

+0.107(3) −0.055(6) This work +0.048(3) +0.001(6) This work
+0.128(4) Workman +0.055(30) Workman
+0.105(10) −0.093(11) Anisovich +0.033(7) +0.025(20) Anisovich

S11(1895)**** P11(1440)****

+0.017(5) +0.002(13) This work −0.091(7) +0.013(12) This work
Workman −0.056(1) Workman

−0.011(6) +0.013(6) Anisovich −0.061(8) +0.043(12) Anisovich
P11(1710)**** P11(1880)***

+0.014(8) +0.0053(3) This work +0.119(15) +0.016(10) This work
Workman Workman

+0.052(15) −0.40(20) Anisovich −0.013(3) +0.034(11) Anisovich
P11(2100)*** P13(1720)****

+0.032(14) +0.026(13) This work +0.068(4) −0.064(6) +0.028(3) −0.004(6) This work
Workman +0.095(2) −0.048(2) Workman
Anisovich +0.110(45) −0.080(50) +0.150(30) −0.140(65) Anisovich

P13(1900)**** P13(2040)*

+0.040(4) +0.007(14) −0.094(7) +0.007(11) This work +0.038(7) +0.025(21) +0.078(10) −0.091(20) This work
Workman Workman

+0.026(15) +0.000(30) −0.065(30) −0.060(45) Anisovich Anisovich
D13(1520)**** D13(1700)***

−0.034(3) −0.072(3) +0.142(3) −0.123(6) This work +0.032(5) +0.005(11) +0.034(6) −0.094(17) This work
−0.019(2) +0.141(2) Workman Workman
−0.022(4) −0.049(8) +0.131(10) −0.113(12) Anisovich +0.041(17) +0.025(10) −0.034(13) −0.032(18) Anisovich

D13(1875)*** D13(2120)***

−0.013(8) +0.050(9) −0.093(9) +0.141(22) This work +0.047(9) −0.020(13) +0.001(7) −0.00(2) This work
Workman Workman

+0.018(10) +0.010(6) −0.009(5) −0.020(15) Anisovich +0.110(45) +0.040(30) Anisovich

about twice as large. The results for the P11(1710) are also
quite different from other groups because it was never clearly
seen in any reaction. In this work it shows up as a clear reso-
nance bump in the reaction γ p → ηp with a well-determined
mass and width. Its mass in this work is smaller than that
found by other works, while its width is similar to more
recent results. Only BnGa finds a large helicity coupling to
the resonance (both to the proton and neutron). The agreement
between groups for the P11(1880) resonance is also poor. The
P11(1880) was listed as a two-star resonance in the 2016
edition of the RPP [21], but it was promoted to a three-star
resonance in the 2018 edition [22]. This work finds a strong
helicity-1/2 coupling to the proton for the P11(1880), which
disagrees with other results. The large resonance coupling
was a stable feature of our analysis and was suggested in
both the γ p → ηp and γ p → K+� reactions. Evidence for
a strong coupling is strengthened by the fact that, even when

the amplitude was started small and then varied, plots of
the modulus showed a distinct bump, which is a signature
of a resonance. A fourth P11 resonance at 2200 MeV was
included to help explain the high-energy behavior, but nothing
conclusive can be said about its properties. This state is listed
in the tables as P11(2100). The P11(2100) was listed as a
one-star resonance in the 2016 edition of the RPP [21], but
it was promoted to a three-star resonance in the 2018 edition
[22]. Our fit of the P11 amplitudes used two ρ� dummy
channels.

3. P13

P13 required three resonances. It is also the dominant
amplitude above the S11(1650) resonance for the reac-
tions γ p → K+� and π− p → K0�. The mass and width
of the P13(1720) were determined by both γ p → ηp and
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TABLE IV. Comparison of D15, F15, F17, G17, and G19 helicity-1/2 and 3/2 amplitudes for both the proton and neutron. Star rating is that
found in the RPP [22]. Comparisons are made with works by Anisovich et al. [19] and Workman et al. (SAID) [20].

Ap
1
2

An
1
2

Ap
3
2

An
3
2

Analysis Ap
1
2

An
1
2

Ap
3
2

An
3
2

Analysis

(GeV−1/2) (GeV−1/2) (GeV−1/2) (GeV−1/2) (GeV−1/2) (GeV−1/2) (GeV−1/2) (GeV−1/2)

D15(1675)**** D15(2060)***

+0.026(2) −0.069(5) +0.005(2) −0.031(5) This work −0.019(5) +0.069(17) +0.039(5) −0.023(20) This work
+0.013(1) +0.016(1) Workman Workman
+0.024(3) −0.060(7) +0.025(7) −0.088(10) Anisovich +0.067(15) +0.025(11) +0.055(20) −0.037(17) Anisovich

F15(1680)**** F15(1860)**

−0.026(4) +0.005(4) +0.112(5) −0.061(4) This work −0.022(20) +0.021(29) −0.032(34) +0.070(35) This work
−0.007(2) +0.140(2) Workman Workman
−0.013(3) +0.034(6) +0.135(6) +0.044(9) Anisovich −0.019(11) +0.021(13) +0.048(18) +0.034(17) Anisovich

F17(1990)** F17(2200) new

+0.006(3) −0.027(24) −0.055(8) +0.051(20) This work −0.000(5) +0.035(36) −0.128(13) +0.031(31) This work
Workman Workman

+0.040(12) −0.045(20) +0.057(12) −0.052(27) Anisovich Anisovich
G17(2190)**** G19(2250)****

+0.001(2) −0.01(2) +0.015(3) −0.023(22) This work +0.0006(37) +0.013(4) This work
Workman Workman

−0.065(8) −0.015(13) +0.035(17) −0.052(27) Anisovich Anisovich

γ p → K+�. This is in stark contrast to other analyses that
find little or no need for P13 in the reactions involving ηN .
For the P13(1720), the helicity-3/2 coupling to the proton
is still in poor agreement between different groups as some
works find a small negative value while others (including this
work) find a small positive value. Also, BnGa found a large
negative helicity-3/2 coupling to the neutron, while other
groups (including this work) find a small negative value. The
P13(1900) was first seen in the ππN channels [17], but its
properties are constrained by γ p → K+�. The P13(1900) was
listed as a three-star resonance in the 2016 edition of the RPP
[21], but it was promoted to a four-star resonance in the 2018
edition [22]. Its mass and helicity parameters are now in good
agreement between groups, but its width shows disagreement
between this work and others such as Ref. [11]. A third P13

resonance at 2244 MeV was used to fit the data above 2000
MeV for the reaction γ N → πN . The dummy channels for
our fit of the P13 amplitudes were ρ�, ωN , and K�.

4. D13

D13 required four resonances. The D13(1520) is clearly
seen in the πN elastic and photoproduction reactions. For
this reason, groups generally agree on its parameters. The
D13(1700) resonance was initially seen in πN → ππN , but
this work also finds evidence in the reactions γ p → ηp and
γ n → ηn. Due to its lack of a strong coupling to a single chan-
nel, the resonance has a poorly determined mass and width.
The D13(1875) resonance is hinted at in η photoproduction
but with poorly determined properties due to lack of data near
1875 MeV. Its mass in this work is higher than that found in

other works except Höhler et al. [23] and its width and helicity
couplings are in poor agreement among most groups with a
width ranging from 180 to 900 MeV. A fourth D13 resonance
at 2353 MeV, listed in the tables as D13(2120), was included
due to some indication of its existence in the reaction γ p →
K+�. The D13(2120) was listed as a two-star resonance in
the 2016 edition of the RPP [21], but it was promoted to
a three-star resonance in the 2018 edition [22]. No dummy
channels were used in our fit of the D13 amplitudes.

5. D15

This partial wave required two resonances, the D15(1675)
and the D15(2060). The D15(1675) has well-defined param-
eters due to the resonance having a strong coupling to both
the πN channel and ππN channels. It also contains very
little background contributions in most reactions. The main
exceptions are the photoproduction reactions on the proton.
This is due to the Moorhouse selection rule [24], which states
that the first D15 resonance should not couple to γ p. The
D15(2060) is seen in the data for the reaction γ p → K+� and
was necessary to obtain a good fit to differential cross-section
data above 2000 MeV. The D15(2060) was listed as a two-star
resonance in the 2016 edition of the RPP [21], but it was
promoted to a three-star resonance in the 2018 edition [22].
The only dummy channel for our fit of the D15 amplitudes
was a ρ� channel.

6. F15

F15 needed three resonances, including the F15(1680) and
F15(1860). The F15(1680) is well determined from pion
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reactions and groups agree on its parameters. The F15(1860)
is less clear but necessary to fit the high-energy behavior
of η photoproduction. There is also a hint of a resonance
in πN → πN where a small bump does appear. However,
a good fit of the bump proved difficult as improvements
in the fit to the imaginary part degraded fits to the real
part. This may be one reason groups tend to agree on its
mass but not its width. A third resonance at 2320 MeV
was clear in the magnetic amplitude for the reaction γ p →
K+�. No dummy channels were used in our fit of the F15

amplitudes.

7. F17

F17 needed two resonances, namely, the F17(1990) and
F17(2200). The F17(1990) has poorly determined parameters
and was not conclusively seen in any reaction, although there
are hints that it is necessary in γ p → ηp, γ p → K+�, and
perhaps πN → πN . The F17(2200) is a new state that was
added to fit the indication of a higher-lying resonance in
πN → πN where the imaginary part starts increasing above
2000 MeV. Based on the single-energy solution, it appears
it will peak just above 2300 MeV. This work also finds the
F17(2200) has a strong coupling to K�. This is in agreement
with quark-model predictions from Ref. [25]. A reliable deter-
mination of its parameters would most likely require data up
to 2400 MeV in a number of reactions, including πN → πN .
This amplitude was also critical for describing the forward-
angle shape of the differential cross section at energies above
1800 MeV for the reaction π− p → ηn. The dummy channels
in our fit of the F17 amplitudes were K�, ωN , and ρ�.

8. G17 and G19

The G17(2190) and G19(2250) resonances were used in the
higher amplitudes and are seen primarily in πN → πN . Both
resonances had negligible helicity coupling and are not seen in
any photoproduction reaction. Groups generally agree on the
resonance parameters for G17(2190) because it clearly appears
in πN → πN ; however, the properties of G19(2250) show
significant disagreement between groups. The only agreement
is that its mass is most likely above 2200 MeV. An ωN dummy
channel was used in our fit of the G17 amplitudes while a ρN
dummy channel was used in our fit of the G19 amplitudes.

B. Results for isospin-3/2 amplitudes

The following section discusses results for the isospin-3/2
amplitudes. Table V lists the Breit-Wigner masses (M) and to-
tal widths (�(M )) for each isospin-3/2 resonance with uncer-
tainties on the last reported significant figure shown in paren-
theses. The tables also list pole positions that were calculated
numerically with the procedure discussed in Ref. [17] using
the actual energy dependence of the Breit-Wigner widths,
which is discussed in Appendix A. Table VI shows helicity-
3/2 couplings for each resonance. The partial widths (�i),
branching fractions (Bi), and resonant amplitudes (

√
xxi) for

each amplitude’s included channels are listed in Appendix B.
For a given resonance, the partial widths and quantities di-
rectly derived from them (e.g., total widths and branching

fractions) in Appendix B were all calculated from energy-
dependent partial widths evaluated at the Breit-Wigner mass
of the resonance.

1. S31

For this partial wave, two resonances were used. Our
results for the S31(1620) are in good agreement with those
of other groups despite the large repulsive background that
appears at low energies in the πN → πN amplitude, which
could potentially distort its properties. The S31(1900) was
listed as a two-star resonance in the 2016 edition of the RPP
[21], but it was promoted to a three-star resonance in the 2018
edition [22]. The S31(1900) mass and width found in this work
are significantly larger than values found by other groups. The
helicity couplings found in this work for both resonances now
agree with other recent results except Shrestha et al. [11].
One surprise in the results from this work is the strength of
the S31(1900) helicity-1/2 coupling. While the size of the
coupling is large, there is no significant indication in the
single-energy solution for pion photoproduction that it should
be significantly smaller and an overall coupling was important
to fit the differential cross-section data in the reaction γ N →
πN , which other groups are unable to fit [15]. No dummy
channels were needed to fit the S31 amplitudes.

2. P31

P31 needed two resonances, the P31(1910) and a new
high-mass state. This partial wave shows significant repulsive
background in the πN → πN amplitude. The mass of the
P31(1910) resonance was lower than that found by other recent
analyses but in agreement with results by older analyses. One
concern with this amplitude is the size of the helicity-1/2
coupling. The single-energy solution suggests that perhaps
the overall coupling is too large, but the existence of a few
points above the energy-dependent fit that also have smaller
error bars makes it difficult to obtain any definitive conclusion.
The πN coupling to the resonance is in very good agreement
with results by other groups [21], which implies that there is
no obvious reason to increase its value while decreasing the
helicity coupling. A new resonance, P31(2250), was used to
fit the πN → πN amplitude at energies above 2000 MeV and
was also used to fit the real part of the pion photoproduction
amplitude. A ρ� dummy channel was used for our fit of the
P31 amplitudes.

3. P33

P33 needed three resonances, including the P33(1232) and
the P33(1600). Our results for the P33(1232) are in good
agreement with other groups, which is to be expected due to its
dominance in the elastic and pion photoproduction reactions.
The P31(1600) was listed as a three-star resonance in the
2016 edition of the RPP [21], but it was promoted to a four-
star resonance in the 2018 edition [22]. The P33(1600) was
needed for the ππN reactions and various groups disagree
about its properties. A few groups such as BnGa and Höhler
et al. [23] find masses near 1510 MeV, while other works,
including this one, find a mass above 1600 MeV. The positive
helicity couplings found in this work agree with results by
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TABLE V. Comparison of resonance masses, widths, and pole positions for isospin-3/2 amplitudes. The widths listed are the energy-
dependent Breit-Wigner total widths evaluated at the resonance masses. Uncertainties in the pole positions should be similar to those in the
corresponding Breit-Wigner parameters. Comparisons are made with works by Rönchen et al. [18], Anisovich et al. [19], and Workman et al.
(SAID) [20].

Mass Width Re Pole −2 Im Pole Analysis Mass Width Re Pole −2 Im Pole Analysis

(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

S31(1620)**** S31(1900)***

1589(3) 107(7) 1577 101 This work 1989(22) 457(60) 1957 447 This work

1600 65 Rönchen Rönchen

1615 147 Workman Workman

1600(8) 130(11) 1597(4) 130(9) Anisovich 1840(30) 300(45) 1845(25) 300(45) Anisovich

P31(1910)**** P31(2250) new

1846(18) 260(57) 1801 224 This work 2250(30) 320(120) 2250 320 This work

1799 648 Rönchen Rönchen

Workman Workman

1860(40) 350(55) 1850(40) 350(45) Anisovich Anisovich

P33(1232)**** P33(1600)****

1230.8(4) 110.9(8) 1212.4 96.8 This work 1664(16) 322(46) 1619 295 This work

1218 92 Rönchen 1552 350 Rönchen

1233 119 Workman Workman

1228(2) 110(3) 1210.5(10) 99(2) Anisovich 1510(20) 220(45) 1498(25) 230(50) Anisovich

P33(1920)*** D33(1700)****

1976.0(49) 509(170) 1910 472 This work 1720(5) 226(14) 1693 213 This work

1715 882 Rönchen 1677 305 Rönchen

Workman 1695 376 Workman

1900(30) 310(60) 1890(30) 300(60) Anisovich 1715+30
−15 310+40

−15 1680(10) 305(15) Anisovich

D33(1940)** D35(1930)***

2137(13) 400(43) 2139 400 This work 1988(32) 500(160) 1863 260 This work

Rönchen 1836 724 Rönchen

Workman Workman

1995+105
−60 450(100) 1990+100

−50 450(90) Anisovich Anisovich

F35(1905)**** F37(1950)****

1866(9) 289(20) 1819 253 This work 1913(4) 241(10) 1871 206 This work

1795 247 Rönchen 1874 239 Rönchen

1858 321 Workman Workman

1861(6) 335(18) 1805(10) 300(15) Anisovich 1915(6) 246(10) 1890(4) 243(8) Anisovich

Shrestha and Manley [11] in sign and magnitude, while other
groups find negative values. A third resonance at 2250 MeV
has parameter values that differ significantly between groups,
which shows that its properties are still poorly determined.
Figure 22 for the πN elastic channel shows that the reaction
saturates the unitary bound nearly up to 1500 MeV where
ππN channels become important. We included ρ� and K�

as dummy channels for our fit of the P33 amplitudes.

4. D33

D33 needed two resonances. The D33(1700) is well known
and our values for its mass and width agree well with prior
analyses. In addition, our value for its helicity-1/2 coupling
is in agreement with more recent results. This work found
a second D33 resonance at 2137 MeV. Its parameters in
general differ from those of other works, and some groups,
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TABLE VI. Comparison of S31, P31, P33, D33, D35, F35, and F37 helicity-1/2 and -3/2 amplitudes for both the proton and neutron. Star rating
is that found in the RPP [21]. Comparisons are made with works by Anisovich et al. [19] and Workman et al. (SAID) [20].

AN
1
2

AN
3
2

Analysis AN
1
2

AN
3
2

Analysis

(GeV−1/2) (GeV−1/2) (GeV−1/2) (GeV−1/2)

S31(1620)**** S31(1900)***

+0.0124(7) This work +0.212(29) This work
+0.029(3) Workman Workman
+0.052(5) Anisovich +0.059(16) Anisovich

P31(1910)**** P31(2250) new

+0.203(56) This work −0.054(28) This work
Workman Workman

+0.022(9) Anisovich Anisovich

P33(1232)**** P33(1600)****

−0.146(2) −0.250(2) This work +0.0082(14) +0.048(14) This work
−0.139(2) −0.262(3) Workman Workman
−0.131(4) −0.254(5) Anisovich −0.050(9) −0.040(12) Anisovich

P33(1920)*** D33(1700)****

−0.028(10) −0.043(14) This work +0.156(17) +0.0125(16) This work
Workman +0.105(5) +0.092(4) Workman

+0.130+30
−60 −0.115+25

−50 Anisovich +0.160(20) +0.165(25) Anisovich

D33(1940)** D35(1930)***

+0.1614(31) −0.209(23) This work −0.043(8) −0.020(17) This work
Workman Workman
Anisovich Anisovich

F35(1905)**** F37(1950)****

+0.077(10) −0.053(29) This work −0.047(2) −0.074(2) This work
+0.019(2) −0.038(4) Workman −0.083(4) −0.096(4) Workman
+0.025(5) −0.049(4) Anisovich −0.071(4) −0.094(5) Anisovich

including SAID [10], do not include a second resonance in
their fits, despite this work having found significant evidence
for its existence in γ N → πN . Interestingly, the helicity-
1/2 coupling found in this work agrees with the work by
Sokhoyan et al. [26], but the helicity-3/2 coupling differs in
sign. No dummy channels were needed for our fit of the D33

amplitudes.

5. D35

This partial wave needed only the D35(1930) resonance.
Its mass is similar to that found by other works except Arndt
et al. [8], while its width varies significantly among the
different analyses. The helicity couplings also show differ-
ing signs and strengths among the different analyses. This
work found a significant negative helicity-1/2 coupling to the
resonance, while other groups have found a small coupling.

A ρ� dummy channel was used for our fit of the D35

amplitudes.
6. F35

This partial wave needed the F35(1905) resonance and a
higher-mass state. The mass, width, and helicity couplings
of F35(1905) are in good agreement among the different
analyses, in part because there is a clear indication for its
existence in πN → πN . A second F35 state was needed at
2340 MeV to fit the high-energy behavior of the πN → πN
amplitude and the suggestion of a structure appearing in pion
photoproduction. No dummy channels were needed in our fit
of the F35 amplitudes.

7. F37

F37 needed two resonances, the F37(1950) and F37(2390).
The F37(1950) has mass, width, and helicity couplings that are
in good agreement among the different analyses and clearly
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appears in the πN → πN amplitude. The second resonance is
located at 2390 MeV and was used to constrain the amplitudes
at high energies, but there currently is only weak evidence for
its existence. This state is listed as a one-star resonance in the
2018 edition of the RPP [22]. We included ρ� and K� as
dummy channels in our fit of the F37 amplitudes.

8. G37 and G39

Our fits of the G37 and G39 amplitudes included only a
single resonance with masses of 2330 and 2300 MeV, respec-
tively. Due to their high masses, their individual parameters
are poorly determined and are not quoted.

V. SUMMARY AND CONCLUSIONS

An updated multichannel, partial-wave analysis was per-
formed by including newly determined single-energy ampli-
tudes for the reactions γ p → ηp, γ p → K+�, and γ n → ηn
in our energy-dependent fits of the various partial waves. The
proton helicity coupling to the S11(1535) is now in agreement
with results from other works. Also, a new F17 resonance near
2200 MeV was needed to fit the πN → πN , γ N → πN , and
γ p → K+� reactions. This is consistent with quark-model
predictions from Ref. [5] that an F17 resonance couples to
K�. Additional data at energies above 2200 MeV are needed
to both confirm its existence and determine its properties.
In addition to our updated determination of resonance pa-
rameters, our fits yield a new energy-dependent solution for
all the various partial-wave and multipole amplitudes. This
energy-dependent solution provides an excellent description
[12,13] of the observables data used to determine the final
single-energy amplitudes.
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APPENDIX A: KSU MODEL

As noted in Sec. II, the KSU model parametrizes the
partial-wave S-matrix by

S = BTRB, (A1)

where R represents the resonant part of the S-matrix and
B represents background contributions. The matrix R is a
phenomenological representation of scattering contributions
from s-channel exchange processes while B is a phenomeno-
logical representation of contributions from t- and u-channel
exchange processes. The matrix R is constructed by writing

R = I + 2iTR = (I + iK)(I − iK)−1, (A2)

where K is a symmetric Hermitian K-matrix, K = K†. It
follows that the resonant T-matrix is

TR = K + iTRK, (A3)

so that the matrix elements are related by

TR i j = Ki j + i
n∑

k=1

TR ikKkj, (A4)

where n is the number of reaction channels.
It is convenient to introduce functions Tα defined as

Tα = sin �αei�α = tan �α

1 − i tan �α

, (A5)

where we write

tan �α = γα

Mα − W
, (A6)

where W is the total c.m. energy and Mα and γα are functions
of W . In the KSU model, we use the parametrization

Ki j =
N∑

α=1

tan �αxα
i xα

j , (A7)

where N is the number of resonances in the energy range
of the fit. The energy dependence of �α is determined in a
nontrivial way to facilitate the determination of pole positions
in the corresponding R matrix. Each resonance corresponds
to a simple pole in R and, therefore, also in the full S-matrix.
The factors xα

i are constructed to satisfy the condition

n∑
i=1

(
xα

i

)2 = 1. (A8)

We also define

εαβ = εβα =
n∑

i=1

xα
i xβ

i . (A9)

If we drop the resonance superscript (α), we identify xi =
εi

√
�i/�total, where �i is the energy-dependent partial width

for the resonance to decay into the ith channel, �total =∑n
i=1 �i is the energy-dependent total width, and εi = ±1 is

the sign of the coupling of the resonance to the ith channel. By
using these properties, it is possible to determine an explicit
expression for TR i j in terms of the functions tan �α and the
xα

i .

1. One-resonance case

For the simple case of a single resonance, the matrix TR
has elements

TR i j = T1x1
i x1

j = γ1

M1 − W − iγ1
x1

i x1
j , (A10)

where here, M1 is identified as the Breit-Wigner mass param-
eter and γ1 = �1/2, where �1 is the Breit-Wigner energy-
dependent total width of the resonance.
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2. Two-resonance case

For the case of two resonances, the matrix TR has elements

TR i j = D−1
2

[
T1x1

i x1
j + T2x2

i x2
j + iε12T1T2

(
x1

i x2
j + x2

i x1
j

)]
,

(A11)

where D2 = 1 + ε2
12T1T2. The poles of TR occur at complex

energies where D2 = 0. When this equation is written in terms
of the set of functions (M1, M2; γ1, γ2), a quadratic equation
in W results. This equation may be rewritten in factorized
form as (W − Wa)(W − Wb) = 0, where Wa = Ma − iγa and
Wb = Mb − iγb with the Breit-Wigner parameters being the
set (Ma, Mb; �a, �b), where γa = �a/2 and γb = �b/2. The
relationship between the energy-dependent K-matrix parame-
ters (M1, M2; γ1, γ2) and the Breit-Wigner TR-matrix param-
eters (Ma, Mb; γa, γb) is given by the following set of coupled
equations:

M1 + M2 = Ma + Mb,

γ1 + γ2 = γa + γb,

M1γ2 + M2γ1 = Maγb + Mbγa,

M1M2 − (
1 − ε2

12

)
γ1γ2 = MaMb − γaγb. (A12)

When ε2
i j = ε2

ji � 1 (i �= j), it is possible to reach the approx-
imate analytic solution:

M1 ≈ Ma + ε2
12γaγb

(Ma − Mb)2 + (γa − γb)2
(Ma − Mb),

M2 ≈ Mb + ε2
21γbγa

(Mb − Ma)2 + (γb − γa)2
(Mb − Ma),

γ1 ≈ γa − ε2
12γaγb

(Ma − Mb)2 + (γa − γb)2
(γa − γb),

γ2 ≈ γb − ε2
21γbγa

(Mb − Ma)2 + (γb − γa)2
(γb − γa). (A13)

3. Arbitrary number of resonances

A detailed discussion of the cases for three and four reso-
nances can be found in Ref. [27]. For an arbitrary number N
of resonances, the relationship between the energy-dependent
K-matrix parameters (M1, M2, . . . ; γ1, γ2, . . .) and the Breit-
Wigner TR-matrix parameters (Ma1 , Ma2 , . . . ; γa1 , γa2 , . . .) is
approximately given by

Mi ≈ Mai +
N∑
j �=i

ε2
i jγaiγa j(

Mai − Maj

)2 + (
γai − γa j

)2

(
Mai − Maj

)
,

γi ≈ γai −
N∑

j �=i

ε2
i jγaiγa j(

Mai − Maj

)2 + (
γai − γa j

)2

(
γai − γa j

)
,

(A14)

for i = 1, . . . , N . We have determined that this approximation
gives excellent agreement with a direct numerical solution
of the coupled nonlinear equations that relate the K-matrix
parameters and the TR-matrix parameters.

4. Parametrization of energy-dependent partial widths

In the KSU model, the energy-dependent Breit-Wigner
partial width for the rth resonance to decay into the ith
channel was parametrized as �ir (W ) = λrδi(W ), where λr is
a constant and δi(W ) is a phase-space factor that is defined
below. If Mr is the Breit-Wigner mass (a fitting parameter) of
the resonance and if δi(Mr ) �= 0, then the partial width of the
rth resonance to decay into the ith channel can be rewritten as

�ir (W ) = �ir (Mr )
δi(W )

δi(Mr )
, (A15)

where �ir (Mr ) is the partial width for the decay of the rth
resonance into the ith channel, evaluated at W = Mr . The
actual fitting parameters are the Breit-Wigner masses Mr and
the signed couplings

√
�ir (Mr ), where signs were determined

relative to the πN channel. Our fitted values of the Breit-
Wigner masses Mr and the partial widths �ir (Mr ) are tabulated
in Appendix B.

For the two-body decay of a resonance into an ith channel
with two “stable” particles (e.g., γ N , πN , ηN , or K�), the
phase-space factor is parametrized as

δi(W ) = qi

W
B2

�i
(qiR), (A16)

where qi is the linear momentum of the two particles in
their center-of-momentum frame, B�i is a Blatt-Weisskopf
barrier penetration factor [28], and �i is the orbital angular
momentum of the two particles. The range parameter R was
fixed at 1 fm. If the masses of the two particles in the ith
channel are m and M, then the c.m. energy is

W =
√

q2
i + m2 +

√
q2

i + M2, (A17)

which gives

qi =
√

[W 2 − (m − M )2][W 2 − (m + M )2]

2W
. (A18)

The first few Blatt-Weisskopf factors are given by [28]

B2
0(x) = 1,

B2
1(x) = x2

1 + x2
,

B2
2(x) = x4

9 + 3x2 + x4
,

(A19)

B2
3(x) = x6

225 + 45x2 + 6x4 + x6
,

B2
4(x) = x8

11025 + 1575x2 + 135x4 + 10x6 + x8
.

As qi → 0, B�i ∼ (qiR)� and δi(W ) ∼ q2�+1
i . As qi → ∞, B�i

approaches unity and δi(W ) becomes constant. These proper-
ties ensure that the energy-dependent partial widths have the
proper analytic threshold behavior and also remain finite at
large energies.

Resonances do not always decay into channels with two
stable particles. Sometimes they decay instead into a stable
particle and an isobar, or into two isobars. For a quasi-two-
body decay of a resonance into an ith channel consisting of
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a stable particle of mass m and an isobar (e.g., π� or ρN)
of mass M, the phase-space factor δi(W ) is calculated by
averaging the ordinary two-body phase-space factor over the
mass of the isobar, which is assumed to decay into stable
particles with masses m1 and m2:

δi(W ) =
∫ W −m

m1+m2

σ (M )
qi

W
B2

�i
(qiR)dM. (A20)

Note that qi is now a function of M. For simplicity, the
distribution function σ (M ) is parametrized by a Breit-Wigner
line shape,

σ (M ) = 1

π

�/2

(M − M0)2 + (�/2)2
, (A21)

where here M0 and � are the nominal mass and width of the
isobar. In establishing the integration limits, we consider the
expression for the mass of the isobar, M, as a function of
the masses of its decay products, m1 and m2, and their relative
c.m. momentum q12:

M =
√

q2
12 + m2

1 +
√

q2
12 + m2

2. (A22)

To get the lower limit, observe that the minimum value of
M coincides with the value q12 = 0. This yields the lower
integration limit of Mmin = m1 + m2. The maximum value
of M must coincide with the maximum value of q12. Now
(q12)max occurs when qi = 0 in Eq. (A17), giving the upper
integration limit Mmax = W − m. The integration was carried
out numerically using Simpson’s rule.

For a quasi-two-body decay of a resonance into an ith
channel consisting of two isobars (e.g., ρ�), δi(W ) is calcu-
lated by averaging the ordinary two-body phase-space factor
over the masses M1 and M2 of each of the isobars assumed
to decay into stable particles with masses m1, m2 and m3, m4,
respectively. This leads to the double integral

δi(W )=
∫ W −m3−m4

m1+m2

∫ W −M1

m3+m4

σ (M1)σ (M2)
qi

W
B2

�i
(qiR)dM2dM1.

(A23)

Here, qi is a function of M1 and M2. Again, such integrals
were calculated numerically using Simpson’s rule.

5. Background parametrization

Background contributions may arise from either attractive
or repulsive interactions. In the KSU model, the background
matrix B is constructed as the product of a small number of
symmetric, unitary matrices: B = B1B1 · · · Bm. Each matrix
Bi may be used to construct a contribution to the background
S-matrix by writing

Si = (Bi)
2 = I + 2iTi, (A24)

where Ti is the ith background T -matrix. Elements of Ti are
parametrized as

(Ti) jk =
1
2

√
� j�k

±M ± W − i�/2
= x jxk sin αeiα, (A25)

where

x2
j = � j

�
, x2

k = �k

�
, (A26)

and here α is defined such that

tan α = ± �/2

M + W
. (A27)

The “partial widths” � j and �k are parametrized with the same
energy dependence as the resonant partial widths discussed
in the preceding section and � = ∑

j � j is the corresponding
energy-dependent total width. The positive (negative) sign in
Eq. (A27) ensures attractive (repulsive) background, where
attractive (repulsive) background is characterized by counter-
clockwise (clockwise) motion of Ti on an Argand diagram.
Values of the background “mass” terms, M in Eq. (A27), were
typically kept large (M > 104 MeV), which corresponds to
a “distant poles” approximation for the background. If we
define XX as the matrix having elements XX jk = x jxk , then
we can write

Ti = XX sin αeiα, (A28)

so that the corresponding background S-matrix is

Si = I + 2iXX sin αeiα = I + XX(e2iα − 1) = e2iαXX.

(A29)

The unitarity of Si is ensured by the properties of the basis
matrix XX. Note that (XX)2 = XX. It follows that the original
background matrix contribution Bi can be written as

Bi = eiαXX = I + XX(eiα − 1). (A30)

APPENDIX B: RESONANCE PARAMETERS
AND ARGAND DIAGRAMS

Tables VII–IX list the partial widths (�i), branching
fractions (Bi), and resonant amplitudes (

√
xxi) for the

isospin-1/2 and isospin-3/2 amplitudes. Figures 1–27 show
Argand diagrams of the dimensionless energy-dependent
amplitudes (solid black curves) fitted to the final
single-energy results (data points). Small solid black
circles mark the c.m. energies in which resonances were
found. The diagrams show the real and imaginary parts
of the amplitudes as well as a polar plot of the ampli-
tude from threshold up to 2100 or 2300 MeV. The
bottom right corner shows the reaction, the name of the
amplitude, and for the photoproduction amplitudes whether
it is an electric (E ) or magnetic (M) multiple. Note that
for I = 1/2 amplitudes, S11(E ) = E0+, P11(M ) = M1−,
P13(E ) = E1+, P13(M ) = M1+, D13(E ) = E2−, D13(M ) =
M2−, D15(E ) = E2+, D15(M ) = M2+, F15(E ) = E3−,
F15(M ) = M3−, G17(E ) = E3+, G17(M ) = M3+, and similarly
for I = 3/2 amplitudes. For small amplitudes, the amplitude
is shown after scaling. The scaling factor is shown after the
amplitude name. Dummy channels for reactions without
data or single-energy fits were included to satisfy S-matrix
unitarity. Numerical data for the dimensionless single-energy
γ p → ηp, γ n → ηn, and γ p → K+� amplitudes, and for
the updated π− p → ηn and π− p → K0� amplitudes, are
available in the Supplemental Material [29].
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TABLE VII. Below each resonance name are listed coupling partial widths (�i), branching fractions (Bi), and resonant amplitudes (
√

xxi)
for the channels listed in columns 1 and 5. For a given resonance, the partial widths and quantities directly derived from them (e.g., branching
fractions and resonant amplitudes) were all calculated from energy-dependent partial widths evaluated at the Breit-Wigner mass of the
resonance. Star rating is that found in the RPP [22]. Table contains couplings to S11, P11, and P13 resonances included in the fits.

Channel �i (MeV) Bi
√

xxi Channel �i (MeV) Bi
√

xxi

S11(1535)**** S11(1650)****

πN 62(3) 42(2) +0.42(2) πN 86(6) 64(4) +0.64(4)
ηN 63(5) 43(3) +0.43(1) ηN 1.0(8) 0.8(6) +0.07(3)
K� K� 5(3) 3.5(2) −0.15(4)
(π�)D <1.7 <1.1 −0.043(35) (π�)D <0.3 <0.2 −0.01(8)
(ρ3N )D <0.5 <0.3 +0.025(15) (ρ3N )D 20(5) 15(3) +0.31(3)
ρ1N 20(3) 14(2) −0.24(2) ρ1N <5 1.8(1.7) +0.11(5)
εN <1.5 <1 −0.04(4) εN 16(5) 12(4) +0.28(4)
πN∗ <0.01 <0.01 +0.003(2) πN∗ 3(2) 2(1) +0.12(3)

S11(1895)**** P11(1440)****

πN 39(18) 8(4) +0.08(4) πN 153(10) 59(2) +0.59(2)
ηN 174(52) 37(9) −0.18(5) ηN

K� 31(21) 7(4) +0.07(2) K�

(π�)D <49 <10 +0.05(5) (π�)P 56(9) 22(4) +0.36(3)
(ρ3N )D 105(45) 23(9) +0.14(4) ρ1N <0.003 0.00(0) −0.00(2)
ρ1N <85 <18 +0.08(5) εN 41(9) 16(3) +0.31(3)
εN <59 <13 −0.08(4)
πN∗ 34(24) 7(5) −0.08(4)

P11(1710)**** P11(1880)***

πN 23(13) 12(6) +0.12(6) πN 125(42) 25(6) +0.25(6)
ηN 33(19) 17(8) −0.14(4) ηN 11(6) 2(1) −0.07(2)
K� 3.5(3) 1.8(1.5) +0.05(2) K� 11(5) 2(1) −0.075(20)
(π�)D 55(21) 28(9) +0.19(4) (π�)D 57(31) 11(6) −0.17(5)
ρ1N 34(17) 17(9) −0.14(5) ρ1N 160(62) 32(13) +0.29(4)
εN <33 <16 −0.10(5) εN <45 <9 −0.09(7)

P11(2100)*** P13(1720)****

πN 117(58) 21(11) +0.21(11) πN 41(4) 18(2) +0.178(16)
ηN <25 <4.7 −0.06(5) ηN 8.7(1.6) 3.8(5) +0.082(7)
K� <5.4 <1.0 +0.024(3) K� 37(7) 16(3) −0.17(1)
(π�)D <40 <7.5 −0.06(11)
ρ1N 284(140) 52(19) −0.33(8)
εN <190 <35 −0.17(12)

P13(1900)**** P13(2040)*

πN 5.7(2.9) 1.9(1) +0.019(10) πN 89(25) 16.7(1) +0.17(4)
ηN 3.8(1.4) 1.3(5) −0.016(3) ηN 73(27) 14 −0.15(4)
K� 40(8) 13.7(3) −0.052(16) K� <0.7 <0.04 +0.004(29)
ρ1N 94(20) 32(7) +0.079(19) ρ1N 52(40) 10(1) +0.127(4)
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TABLE VIII. Below each resonance name are listed partial widths (�i), branching fractions (Bi), and resonant amplitudes (
√

xxi) for the
channels listed in columns 1 and 5. For a given resonance, the partial widths and quantities directly derived from them (e.g., branching fractions
and resonant amplitudes) were all calculated from energy-dependent partial widths evaluated at the Breit-Wigner mass of the resonance. Star
rating is that found in the RPP [21]. Table contains couplings to D13, D15, F15, F17, G17, and G19 resonances included in the fits.

Channel �i (MeV) Bi
√

xxi Channel �i (MeV) Bi
√

xxi

D13(1520)**** D13(1700)***

πN 71(2) 58.3(1.5) +0.58(2) πN 3.0(1) 3.7(1) +0.037(10)
ηN 0.041(8) 0.03(1) +0.014(2) ηN 0.9(5) 1.1(6) +0.020(6)
K� K� 1.1(5) 1.3(7) −0.022(6)
(π�)S 25(3) 21(2) −0.35(2) (π�)S 9(6) 11(8) +0.06(2)
(π�)D 7.2(1.2) 6(1) −0.19(1) (π�)D 10.4(6.5) 13(5) +0.07(2)
(ρ3N )S 17.1(1.9) 14.1(1.5) −0.29(2) (ρ3N )S 6(3) 7.5(3.6) −0.05(2)
εN <0.9 <0.7 −0.04(3) εN 50(10) 62(9) +0.15(2)

D13(1875)*** D13(2120)***

πN 24(5) 7.5(1) +0.075(14) πN 97(14) 19(2) +0.19(2)
ηN 10.6(2.6) 3.3(8) +0.050(8) ηN 16(12) 3.1(2.4) −0.08(3)
K� 3.6(1.4) 1.1(4) +0.029(5) K� 43(14) 8.5(2.5) −0.13(2)
(π�)S <6 <2 +0.017(34) (π�)S 125(59) 25(11) −0.22(4)
(π�)D 54(21) 17(6) −0.11(2) (π�)D 171(62) 34(11) +0.26(5)
(ρ3N )S 147(36) 46(10) +0.19(2) (ρ3N )S <16 <3 +0.044(48)
εN 78(27) 24.3(8.6) −0.135(30) εN 46(26) 9(5) −0.13(4)

D15(1675)**** D15(2060)***

πN 53(3) 33(1) +0.33(1) πN 26(6) 5.3(1.4) +0.05(1)
ηN 3.3(5) 2.0(3) −0.082(7) ηN 151(40) 30(8) −0.13(2)
K� <0.06 <0.04 −0.007(5) K� 76(29) 15(5) +0.09(1)
(π�)D 94(6) 58.3(2) +0.437(5) (π�)D 74(30) 15(6) +0.09(2)
ρ1N <0.3 <0.2 −0.017(11) ρ1N 21(31) <10 +0.047(36)
(ρ3N )D 0.6(4) 0.4(3) −0.036(13) (ρ3N )D 70(43) 14(9) −0.09(3)

F15(1680)**** F15(1860)**

πN 84(2) 68.0(1) +0.680(9) πN 30(5) 8.0(1) +0.08(1)
ηN 0.11(3) 0.09(2) +0.025(3) ηN 0.4(3) 0.11(9) +0.009(4)
K� 0.00(0) 0.00(0) −0.0008(12) K� < 0.03 0.00(1) −0.0015(15)
(π�)P 16(2) 13(1) −0.300(15) (π�)P 39(24) 10(6) +0.09(3)
(π�)F <0.4 <0.3 −0.03(2) (π�)F 102(50) 27(11) +0.15(3)
(ρ3N )P 9.1(1.5) 7(1) −0.22(2) (ρ3N )P <32 <8.5 +0.05(4)
(ρ3N )F 3.0(5) 2.4(4) −0.128(10) (ρ3N )F <0.4 <0.1 +0.00(3)
εN 11(2) 8.7(1.5) +0.24(2) εN 192(41) 51(10) +0.20(2)

F17(1990)** F17(2200) new

πN 9.4(3) 1.9(4) +0.019(4) πN 45(6) 8.6(8) +0.086(7)
ηN 8.3(4.5) 1.7(9) −0.018(5) ηN 22(11) 4.2(2.3) +0.06(2)
K� 29(8) 6.0(1) −0.034(5) K� 36(9) 7.0(1) −0.078(6)

G17(2190)**** G19(2250)****

πN 101(10) 22.9(6) +0.229(6) πN 29(4) 8.5(4) +0.085(4)
ηN 12(9) 2.7(2.2) +0.08(3) ηN <17 0.07(5.0) −0.01(27)
K� 2.5(5) 0.6(1) −0.036(4) K� 7(2) 2.0(6) +0.042(6)
(ρ3N )D <49 <11 −0.11(6)
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TABLE IX. Below each resonance name are listed partial widths (�i), branching fractions (Bi), and resonant amplitudes (
√

xxi) for the
channels listed in columns 1 and 5. For a given resonance, the partial widths and quantities directly derived from them (e.g., branching fractions
and resonant amplitudes) were all calculated from energy-dependent partial widths evaluated at the Breit-Wigner mass of the resonance. Star
rating is that found in the RPP [21]. Table contains couplings to S31, P31, P33, D33, D35, F35, and F37 resonances included in the fits.

Channel �i (MeV) Bi
√

xxi Channel �i (MeV) Bi
√

xxi

S31(1620)**** S31(1900)***

πN 26(2) 24(2) +0.24(2) πN 17(4) 3.7(8) +0.037(8)
(π�)D 52(6) 48(4) −0.344(16) (π�)D 192(41) 42(8) +0.12(2)
(ρ3N )D <0.05 <0.04 −0.003(16) (ρ3N )D 83(38) 18(7) −0.08(2)
ρ1N 29(4) 27(4) +0.26(2) ρ1N 104(54) 23(12) +0.09(2)
πN∗ <0.02 <0.02 +0.016(8) πN∗ 56(41) 12(9) +0.067(25)

P31(1910)**** P31(2250) new

πN 34(14) 13(3) +0.13(3) πN 45(15) 14(4) +0.14(4)
πN∗ 87(36) 33(12) −0.21(5) πN∗ 150(58) 47(13) −0.26(6)

P33(1232)**** P33(1600)****

πN 110.2(8) 99.39(1) +0.994(1) πN 34(8) 10.7(1.9) +0.107(19)
(π�)P 0.0(0) 0.0(0) +0.00(1) (π�)P 206(28) 64(6) +0.26(2)
πN∗ 0.0(0) 0.0(0) +0.00(1) πN∗ 70(18) 22(5) +0.15(2)

P33(1920)*** D33(1700)****

πN 53(25) 10.5(3.0) +0.10(3) πN 34(4) 15(2) +0.15(2)
(π�)P <8 <1.6 −0.017(39) (π�)S 112(13) 49(5) +0.27(2)
πN∗ 392(94) 77(9) +0.28(4) (π�)D 17(7) 7.6(3) −0.11(2)

(ρ3N )S 62(14) 27(5) +0.20(2)

D33(1940)** D35(1930)***

πN 62(14) 16(4) +0.16(4) πN 47(13) 9.5(1) +0.095(10)
(π�)S <3.6 <0.9 +0.018(32)
(π�)D <25 <6.3 −0.068(38)
(ρ3N )S 321(47) 80(5) +0.35(4)

F35(1905)**** F37(1950)****

πN 50(5) 17(1) +0.17(1) πN 92(6) 38(2) +0.383(15)
(π�)P 24(15) 8.4(5) +0.12(4)
(π�)F 140(27) 49(9) +0.29(3)
(ρ3N )P 74(27) 26(9) +0.21(4)
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FIG. 1. Argand diagrams for the I = 1/2 amplitudes.
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FIG. 2. Argand diagrams for the I = 1/2 amplitudes.
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FIG. 3. Argand diagrams for the I = 1/2 amplitudes.
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FIG. 4. Argand diagrams for the I = 1/2 amplitudes.
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FIG. 5. Argand diagrams for the I = 1/2 amplitudes.
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FIG. 6. Argand diagrams for the I = 1/2 amplitudes.
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FIG. 7. Argand diagrams for the I = 1/2 amplitudes.
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FIG. 8. Argand diagrams for the I = 1/2 amplitudes.
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FIG. 9. Argand diagrams for the I = 1/2 amplitudes.
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FIG. 10. Argand diagrams for the I = 1/2 amplitudes.
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FIG. 11. Argand diagrams for the I = 1/2 amplitudes.
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FIG. 12. Argand diagrams for the I = 1/2 amplitudes.
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FIG. 13. Argand diagrams for the I = 1/2 amplitudes.
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FIG. 14. Argand diagrams for the I = 1/2 amplitudes.
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FIG. 15. Argand diagrams for the I = 1/2 amplitudes.
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FIG. 16. Argand diagrams for the I = 1/2 amplitudes.
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FIG. 17. Argand diagrams for the I = 1/2 amplitudes.
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FIG. 18. Argand diagrams for the I = 1/2 amplitudes.
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FIG. 19. Argand diagrams for the I = 1/2 amplitudes.
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FIG. 20. Argand diagrams for the I = 1/2 amplitudes.
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FIG. 21. Argand diagrams for the I = 1/2 amplitudes.
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FIG. 22. Argand diagrams for the I = 3/2 amplitudes.
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FIG. 23. Argand diagrams for the I = 3/2 amplitudes.
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FIG. 24. Argand diagrams for the I = 3/2 amplitudes.
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FIG. 25. Argand diagrams for the I = 3/2 amplitudes.
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FIG. 26. Argand diagrams for the I = 3/2 amplitudes.
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FIG. 27. Argand diagrams for the I = 3/2 amplitudes.
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