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Background: The “proton radius puzzle” refers to an 8-year-old problem that highlights major inconsistencies
in the extraction of the charge radius of the proton from muonic Lamb-shift experiments as compared against
experiments using elastic electron scattering. For the latter approach, the determination of the charge radius
involves an extrapolation of the experimental form factor to zero momentum transfer.
Purpose: To estimate the proton radius, a novel and powerful nonparametric method based on a constrained
Gaussian process is introduced. The constrained Gaussian process models the electric form factor as a function
of the momentum transfer.
Methods: Within a Bayesian paradigm, we develop a model flexible enough to fit the data without any parametric
assumptions on the form factor. The Bayesian estimation is guided by imposing only two physical constraints
on the form factor: (a) its value at zero momentum transfer (normalization) and (b) its overall shape, assumed to
be a monotonically decreasing function of the momentum transfer. Variants of these assumptions are explored to
assess their impact.
Results: By adopting both constraints and incorporating the whole range of experimental data available we
extracted a charge radius of rp = 0.845 ± 0.001 fm, consistent with the muonic experiment. Nevertheless, we
show that within our model the extracted radius depends on both the assumed constraints and the range of
experimental data used to fit the Gaussian process. For example, if only low-momentum-transfer data are used,
relaxing the normalization constraint provides a value compatible with the larger electronic value.
Conclusions: We have presented a novel technique to estimate the proton radius from electron-scattering data
based on a constrained Gaussian process. We demonstrated that the impact of imposing sensible physical
constraints on the form factor is substantial. Also critical is the range of the experimental data used in the
extrapolation. We are hopeful that as the technique gets refined, together with the anticipated new results from
the PRad experiment, we will get closer to a resolution of the puzzle.
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I. INTRODUCTION

Nuclear physics is an extremely broad field of science
whose mission is to understand all manifestations of nuclear
phenomena [1]. Regardless of whether probing individual
nucleons, atomic nuclei, or neutron stars, a common theme
across this vast landscape is the characterization of these ob-
jects in terms of their mass and radius. Indeed, shortly after the
discovery of the neutron in 1932, Gamow, Weizsäcker, Bethe,
and Bacher formulated the “liquid-drop” model to estimate
the masses of atomic nuclei [2,3]. Since then, remarkable
advances in experimental techniques have been exploited to
determine nucleon and nuclear masses with unprecedented
precision; for example, the rest mass of the proton is known
to a few parts in a billion [4]. Similarly, starting with the
pioneering work of Hofstadter in the late 1950s [5] and contin-
uing to this day [6–8], elastic electron scattering has provided
the most accurate and detailed picture of the distribution of
charge in nuclear systems. Although not as impressive as in
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the case of nuclear masses, the charge radii of atomic nuclei
have nevertheless been determined with extreme precision; for
example, the charge radius of 208Pb is known to about two
parts in 10 000 [8] (or R208

ch =5.5012(13) fm). Given such an
impressive track record, it came as a shocking surprise that
the accepted 2010 Committee on Data for Science and Tech-
nology (CODATA) value for the charge radius of the proton
obtained from electronic hydrogen and electron scattering was
in stark disagreement with a new result obtained from the
Lamb shift in muonic hydrogen [9]. This unforeseen conflict
with the structure of the proton has given rise to the “proton
radius puzzle” [10–12].

The value of the charge radius of the proton, rp =
0.84087(39) fm, determined from muonic hydrogen [9,10]
differs significantly (by ∼4% or nearly 7σ ) from the recom-
mended CODATA value of rp =0.8775(51) fm. Note that the
CODATA value is obtained by combining the results from
both electron scattering and atomic spectroscopy [4,10,12].
The muonic measurement is so remarkably precise because
the muon—with a mass that is more than 200 times larger
than the electron mass and thus a Bohr radius 200 times
smaller—is a much more sensitive probe of the internal struc-
ture of the proton. Of great relevance to the proton puzzle
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is the recent measurement of the 2S-4P transition frequency
in electronic hydrogen that suggests a smaller proton radius
of rp =0.8335(95) fm—in agreement with the result from
muonic hydrogen [13]. Although significant, it remains to
be understood why the present extraction differs from the
large number of spectroscopic measurements carried out in
electronic hydrogen throughout the years.

As in the case of earlier physics puzzles—notably the
“solar neutrino problem”—one attempts to explain the dis-
crepancy by exploring three non-mutually-exclusive options:
(a) the experiment (at least one of them) is in error,
(b) theoretical models used in the extraction of the proton
radius are the culprit (see, for example, Ref. [14] and ref-
erences contained therein), or (c) there is new physics that
affects the muon differently than the electron. Indeed, hints
of possible violations to lepton universality are manifested in
the anomalous magnetic moment (g−2) of the muon [15] and
in certain decays of the B-meson into either a pair of electrons
or a pair of muons [16].

In an effort to resolve the proton radius puzzle a suite of
experiments in both spectroscopy and lepton-proton scattering
are being commissioned. Spectroscopy of both electronic and
muonic atoms, as already initiated by Beyer et al. [13], will
continue with a measurement of a variety of transitions to
improve both the value of the Rydberg constant and the charge
radius of the proton; note that the Rydberg constant and rp are
known to be highly correlated. Lepton-scattering experiments
are planned at both the Thomas Jefferson National Accelerator
Facility (JLab) and at the Paul Scherrer Institute (PSI). The
proton radius experiment (PRad) at JLab has already collected
data in the momentum-transfer range of Q2 = 10−4–10−1

GeV2 [17], a wide enough region to allow for comparisons
against the most recent Mainz data [18], but also to extend
the Mainz data to significantly lower values of Q2. Finally,
the Muon Proton Scattering Experiment (MUSE) will fill
a much-needed gap by determining rp from the scattering
of both positive and negative muons of the proton. These
experiments will be conducted concurrently with electron-
scattering measurements in an effort to minimize systematic
uncertainties [19].

Within this broad context our contribution is rather modest,
as our main goal is to address how best to extract the charge
radius of the proton from existing electron-scattering data.
The view adopted here is that the puzzle lies not in the
experimental data, but rather in the extraction of the proton
radius from the scattering data. The proton charge radius is
related to the slope of the electric form factor of the proton,
GE(Q2), at the origin, i.e., at Q2 =0 (see Sec. II). Despite
heroic efforts at both Mainz [18] and JLab [17] to determine
GE(Q2) at extremely low values of Q2, a subtle extrapolation
to Q2 = 0 is unavoidable. Given the current data available,
the value one can obtain for the proton radius from the ex-
trapolation is quite sensitive to the model used to describe the
form factor. In a first attempt at mitigating such uncontrolled
extrapolations, Higinbotham and collaborators have brought
to bear the power of statistical methods into the solution of the
problem [20] (see also Ref. [21]). They have concluded that
“statistically justified linear extrapolations of the extremely-
low-Q2 data produce a proton charge radius which is consis-

tent with the muonic results and is systematically smaller than
the one extracted using higher-order extrapolation functions.”
However, recent analyses of electron-scattering data that sug-
gest smaller proton radii consistent with the muonic Lamb
shift have been called into question [22]. Moreover, much
controversy has been generated around the optimal (“paramet-
ric”) model that should be used to fit the electric charge form
factor of the proton—ranging from monopole, to dipole, to
polynomial fits, to Pade’ approximants, among many others.
There have been also several efforts in performing extractions
that rely on analytical properties of the form factor (see, for
example, Refs. [23,24]).

In an effort to eliminate the reliance on specific functional
forms, we introduce a method that does not assume a particu-
lar parametric form for the form factor. Such a nonparametric
approach aims to “let data speak for themselves” without in-
troducing any preconceived biases. Although the nonparamet-
ric approach does not assume a particular form for the form
factor, several constraints justified by physical considerations
are imposed. In essence, a nonparametric Bayesian curve
fitting procedure that incorporates various physical constraints
is used to provide robust predictions and uncertainty estimates
for the charge radius of the proton. In our analysis we use the
1422 data points from the Mainz collaboration [25].

The paper is organized as follows. In Sec. II, we introduce
some of the basic concepts necessary to understand the mea-
surement of the electric form factor of the proton. After such
brief introduction, we explain the critical concepts behind our
nonparametric approach, including the selection of the basis
functions and the Gaussian process used for their calibration.
The electron-scattering data analysis is presented Sec. III.
We offer our conclusions and some perspective for future
improvements in Sec. IV. Finally, for pedagogical reasons,
the analysis of synthetic data and several details about the
implementation of the model and on the analysis of the real
data are presented in the Supplemental Material [26].

II. FORMALISM

We start this section with a brief introduction to elastic
electron scattering with particular emphasis on the determi-
nation of the electric form factor of the proton from the
scattering data. Then, we proceed in significantly more detail
to describe the formalism associated with the determination
of the charge radius of the proton by extrapolating the experi-
mental data to zero momentum transfer.

A. Electron scattering

In the one-photon exchange approximation, the most gen-
eral expression for the elastic electron-proton cross section
consistent with Lorentz and parity invariance is encoded in
two Lorentz-scalar functions: the electric GE and magnetic
GM form factors of the proton. That is,

dσ

d�
=

(
dσ

d�

)
Mott

(
G2

E (Q2) + τG2
M (Q2)

1 + τ

+ 2τG2
M (Q2) tan2(θ/2)

)
, (1)
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where the square of the four-momentum transfer is given by

Q2 ≡ −(p′ − p)2 = 4EE ′ sin2(θ/2). (2)

Note that E (E ′) is the initial (final) energy of the electron, θ is
the scattering angle (all in the laboratory frame), τ ≡Q2/4M2,
and M is the mass of the proton. The internal structure of the
proton is imprinted in the two form factors, with the electric
one describing (in a nonrelativistic picture) the distribution of
charge and the magnetic one the distribution of magnetization.
Finally, the Mott cross section introduced in Eq. (1) represents
the scattering of a massless electron from a spinless and
structureless point charge. That is,(

dσ

d�

)
Mott

= 4α2

Q4

E ′3

E
cos2(θ/2)

= α2

4E2 sin4(θ/2)

E ′

E
cos2(θ/2), (3)

where α is the fine structure constant.
At low energy—or long wavelength—electrons are unable

to resolve the internal structure of the proton and are therefore
only sensitive to its entire charge. As the momentum transfer
increases and the wavelength becomes commensurate with the
proton size, finer details may now be resolved. In particular,
the charge radius of the proton is defined as

r2
p ≡ 〈

r2
E

〉 = −6
dGE

dQ2

∣∣∣∣
Q2=0

. (4)

For a recent discussion on the subtleties of the definition of
the proton radius, see Ref. [27].

Once our target, the slope at zero of the electric form factor,
has been defined, we introduce the following constraints that
are the cornerstone of the nonparametric approach:

GE (Q2 = 0) = 1, (5a)

G′
E (Q2) ≡ dGE

dQ2
< 0, (5b)

G′′
E (Q2) ≡ d2GE

d (Q2)2
> 0. (5c)

Equation (5a) is model independent since it is directly
related to the charge of the proton. The other two, Eqs. (5b)
and (5c), which we will call the shape constraints, are not
guaranteed by the definitions above, but rather are deduced
from the analytic properties of the form factor (see, for exam-
ple, Refs. [28,29]). Most of the parametric models that have
been used for the form factor respect these shape constraints
for the parameters estimated (see, for example, Ref. [21]).

B. Approximating GE : Basis construction

Having introduced the electric form factor of the proton we
now proceed to build a flexible nonparametric model that will
allow us to extrapolate GE (Q2) to Q2 = 0. Our main goal is to
incorporate the general constraints given in Eqs. (5) into the
estimation procedure without making parametric assumptions
on the functional form of GE (Q2). The available experimental
data will guide the shape of such a nonparametric curve, ulti-
mately allowing us to estimate rp. In this section we describe

FIG. 1. Functions h0(x) (blue), ψ0(x) (orange), and φ0(x) (green)
for N = 10. The functions ψ0 and φ0 have been rescaled by a factor
of 10 and 50, respectively.

the fully constrained model while in Sec. III we explore the
impact of relaxing the constraints.

To facilitate the implementation of the nonparametric ap-
proach, we select a maximum value of Q2, Q2

max, up to
where the analysis is performed, a selection that has been
shown to impact the estimation of rp. Once the momentum-
transfer range has been selected, 0�Q2�Q2

max, we define the
dimensionless scaled variable x as x = Q2/Q2

max. Following
this definition the range of x is the unit interval x ∈ [0, 1].

We start by defining a working grid formed by a collection
of N+1 equally spaced points x j = j/N in the closed interval
[0, 1], in which j runs from 0 to N . We adopt the notation of
Ref. [30] to define a set of basis functions

h j (x) =
{

1 − N |x − x j |, if |x − x j | � 1/N

0, otherwise,
(6)

and its corresponding integrals as follows:

ψ j (x) =
∫ x

0
h j (t ) dt, (7)

φ j (x) =
∫ x

0
dt

∫ t

0
h j (s) ds. (8)

Figure 1 shows the form of these functions for j = 0. We
characterize our regression model in terms of (N+3) free
parameters ξ j that will be obtained from a suitable fit to the
experimental data. That is,

f (x) ≈ fξ (x) ≡ ξ1 + ξ2 x +
N∑

j=0

ξ j+3 φ j (x), (9)

where f (x) is the form factor in the rescaled variable x. Under
this scheme, the terms ξ1 and ξ2 relate to the value of the
modeled function f (x) and its derivative at zero, respectively,
while the terms ξ j+3 relate to the values of the second deriva-
tive of the modeled function on the grid points, but during the
regression process all of them remain as free coefficients.

We explain in detail in Sec. I of the Supplemental Material
[26] the construction of this approximation for f (x) and the
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relation between the terms ξ j+3 and the values of its second
derivative. Moreover, this approximation has a nice physi-
cal underpinning. If we regard f (t ) as the one-dimensional
trajectory of a particle as a function of time t , then the
approximation

f (t ) ≈ f (0) + t f ′(0) +
N∑

j=0

f ′′(t j ) φ j (t ) (10)

may be explained as follows. At time t = 0 the particle
starts at a position f (0) with an initial velocity f ′(0). As
time evolves, corrections to the straight-line trajectory are
implemented by the different φ j in proportion to f ′′(t j ), which
can be thought as “acceleration spikes” that stir the particle
into the correct trajectory.

C. Incorporating physical constraints

The great virtue of the nonparametric approach adopted
here is that no assumption is made about the functional form
of the electric form factor. However, if the calibration param-
eters ξ j defined in Eq. (9) are left unrestricted, the resulting
model for fξ (x) is likely to violate the physical constraints
imposed in Eqs. (5). In the notation assumed in this section
these constraints are given by (a) fξ (0) = 1, (b) f ′

ξ (x)<0,
and (c) f ′′

ξ (x)>0, where (b) and (c) hold for all x in [0,1].
In this section we discuss the model formulation with all the
constraints. To satisfy these constraints the model parameters
must obey the following linear relations:

ξ1 = 1, (11a)

ξ2 +
N∑

j=0

c j ξ j+3 � 0, (11b)

ξ j+3 � 0, for j = 0, 1, . . . , N, (11c)

where c j = ψ j (1) is the area under the triangle formed by the
function h j (x), except for the first one, c0 , and last one, cN ,
which are equal to half the area of the triangle. The proof of
this statement is shown in the Appendix.

To incorporate the constraints in Eq. (11) let us call Cξ

the set of all the ξ j that satisfies relationships (11). In formal
notation that would be

Cξ ≡
{
ξ ∈ RN+3 : ξ1 = 1, ξ2 +

N∑
j=0

c j ξ j+3 � 0, ξ j+3 � 0,

j = 0, . . . , N

}
. (12)

The proton radius introduced in Eq. (4) is expressed di-
rectly in terms of ξ2 as

rp =
√−6ξ2

Qmax
, (13)

where Qmax enters to account for the rescaling of Q2 into the
dimensionless variable x = Q2/Q2

max.
Note that the value of ξ1 is fixed at 1 and rp only depends on

the value of ξ2 in the constraint set Cξ . We provided a detailed
discussion on a partially constrained model with the condition

ξ1 = 1 removed in Sec. II of the Supplemental Material [26].
The rest of the discussion in the following sections obeys a
fully constrained model.

D. Probabilistic model for fully constrained function estimation

The observed experimental data consist of n pairs of the
form (xi, gi ), where xi = Q2

i /Q2
max and gi is equal to the form

factor GE (Q2
i ) up to some experimental noise. Specifically,

one assumes that the n experimental measurements gi have
normally distributed experimental errors εi. That is, gi =
GE (Q2

i )+εi, where we assume that each εi is a normally
distributed variable with zero mean and standard deviation σ ,
an unknown hyperparameter that we learn from the data.

Let Y = (y1, . . . , yn)T with yi : = gi − ξ1 = gi − 1 (the
subtraction of the independent term ξ1 is made in order
to build a homogeneous matrix equation), and set ε =
(ε1, . . . , εn)T. Also, define a basis matrix � (an n × (N +
2) matrix) with ith row (xi, φ0(xi ), . . . , φN (xi )). With these
ingredients, we express our model in vectorized notation as

Y = �ξ + ε, ε ∼ Nn(0, σ 2In), ξ ∈ Cξ , (14)

where Cξ is defined in Eq. (12) and In denotes the unity matrix
of size n. The notation v ∼ Nn(μ,) means that the random
variable v follows a multivariate Gaussian distribution with
mean μ and covariance matrix .

We operate in a Bayesian framework [31] and express
preexperimental uncertainty in ξ through a prior distribution
P(ξ ). The prior for ξ is combined with the data likelihood
P(Y |ξ ) to obtain the posterior distribution for ξ given the
observed values Y :

P(ξ |Y ) = P(Y |ξ )P(ξ )

P(Y )
. (15)

This posterior distribution of the parameters P(ξ |Y ) can then
be used to make inference on rp including point estimates and
uncertainty quantification through credible intervals. Since we
assume Gaussian distributed noise εi for the observational
points yi, our likelihood term P(Y |ξ ) will be of the form
Y ∼ Nn(�ξ, σ 2In), which represents an exponential decay in
the square of the difference between our observed data and
our model prediction, usually denoted by χ2 and defined as
χ2 = ∑n

1(Yi − fξ (xi ))2. The choice of a suitable prior P(ξ ) is
critical for a valid inference on rp. A flexible representation
for f can be reproduced through the coefficients ξ which is
in turn relatable to f through its derivatives (see Sec. I of
the Supplemental Material [26]). In the unconstrained setting,
a natural choice of prior for ξ can be induced through a
Gaussian process prior on f . However, the prior for ξ should
be supported on the restricted space Cξ so that any prior draw
obeys the constraints for ξ . We combine these two features
to propose a flexible constrained Gaussian prior for ξ and
describe this procedure in the following section.

E. Prior specification: Constrained Gaussian process

A Gaussian process (GP) [32] is a distribution of functions
on the function space such that the collection of random vari-
ables obtained by evaluating the random function at a finite set
of points is multivariate Gaussian (see Ref. [32]). We use the
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notation f ∼GP(μ, τ 2K ) to denote that the function f follows
a Gaussian process with mean function μ and covariance
function τ 2K , where τ is a hyperparameter controlling the
overall scale of K . This means that any finite collection of
points f1(x1), . . . , fN (xN ) at locations x1, . . . , xN has a joint
normal Gaussian distribution given by

( f1(x1), . . . , fN (xN )) ∼ N (μ,), (16)

where μ = (μ(x1), . . . , μ(xN )) and i j = τ 2K (xi, x j ). The
mean function μ(x) controls around where the points are
distributed, and the covariance function K (x, x′) controls how
the points are distributed, τ being an expected size for the
deviations. The covariance function K (x, x′) would allow us
to introduce a notion of correlation between different four-
momenta Q2 in the form factor, allowing our estimation for the

radius (related to the slope at Q2 = 0) to borrow information
for the entire Q2 range.

The model parameters ξ j are related to first and sec-
ond derivatives of the form factor GE , or equivalently to
its rescaled version f at the various grid points x j . Since
Gaussian processes are closed under linear operations, such
as taking derivatives [32], they represent an optimal choice in
estimating the form factor. If f ∼GP(0, τ 2K ),1 then any finite
number of observations f (x1), . . . , f (xN ) follow the distribu-
tion specified by Eq. (16). Therefore, a collection of random
variables that involves derivatives f ′(0), f ′′(x0), . . . , f ′′(xN )
also follows a Gaussian distribution with a covariance matrix
� that involves up to four mixed partial derivatives of the
covariance function K (x, x′); see Theorem 2.2.2 in Ref. [33].
That is,

� =

⎡⎢⎢⎢⎢⎢⎢⎣

∂2K
∂x∂x′ (0, 0) ∂3K

∂x∂x′2 (0, x0) · · · ∂3K
∂x∂x′2 (0, xN )

∂3K
∂x2∂x′ (x0, 0) ∂4K

∂x2∂x′2 (x0, x0) · · · ∂4K
∂x2∂x′2 (x0, xN )

...
...

. . .
...

∂3K
∂x2∂x′ (xN , 0) ∂4K

∂x2∂x′2 (xN , x0) · · · ∂4K
∂x2∂x′2 (xN , xN )

⎤⎥⎥⎥⎥⎥⎥⎦
(N+2)×(N+2)

. (17)

For illustration purposes consider the first row of the matrix
�. It specifies how the derivative of the function at zero, ξ2,
correlates with all the other ξ j . The correlation between ξ2

and the other ξ j for j >2 is controlled by the mixed partial
third derivative of K at x j .

If the model parameters ξ j are left unconstrained, then
a natural prior, induced from a GP prior on the unknown
function f , would be a finite-dimensional Gaussian prior ξ ∼
NN+2(0, τ 2 �) with � as in Eq. (17). However, since the vari-
ous shape constraints on the function impose a corresponding
set of constraints on the model parameters, we adopted a
truncated Gaussian prior on ξ :

p(ξ ) = 1

Mξ

(2π )−(N+2)/2 |�|−1/2 (τ 2)−(N+2)/2 e− ξT �−1ξ

2τ2 1Cξ
(ξ ),

(18)

where the “indicator function” 1Cξ
(ξ ) filters the ξ j such that

only the allowed combinations are those that satisfy the con-
straints listed in Eq. (11): 1Cξ

(ξ ) = 1 if ξ ∈ Cξ , and 1Cξ
(ξ ) =

0 otherwise. In the above expression Mξ is a constant of
proportionality required to make p(ξ ) a density distribution;
i.e., p(ξ ) must integrate to one. As is commonly done [34] we
have placed an (improper) objective prior on τ 2. We denote
p(ξ ) by NN+2(0, τ 2 �)1Cξ

(ξ ) and refer to it as the constrained
Gaussian process (cGP) prior for ξ .

To fully specify the cGP prior we still need to define the
covariance function K (x, x′) that determines the matrix �.
Following common practice, we chose K to be a stationary
Matérn kernel [32] with smoothness parameter ν = 5/2 and

1The selection μ(x) = 0 is done to avoid centering the GP around
any parametric form.

length scale �>0. Such a kernel only depends on the relative
distance between the coordinates r ≡|x − x′| and can be writ-
ten in closed form as follows:

K (x, x′)≡kν=5/2,�(r)=
(

1 +
√

5 r

�
+ 5r2

3�2

)
exp

(
−

√
5 r

�

)
.

(19)

In our analysis we also explored the values ν = 3 and ν =
7/2. The more general definition for the Matérn kernel is
shown in Sec. III of the Supplemental Material [26]. The
optimal value for the correlation length � is chosen by a
cross-validation scheme outlined in Secs. IV and V of the
Supplemental Material [26].

F. Posterior sampling and inference

Our objective is now to obtain a reasonable sized distri-
bution of values for the coefficients ξ j that will allow us to
report a distribution for the inferred proton radius rp. Given
the complex nature of the model space associated with the
allowed values of ξ , an analytic expression of Mξ is not
available. However, we show in the Appendix that Mξ does
not depend on the unknown parameter τ . Hence, provided � is
fixed, one can exploit this fact and use a Markov chain Monte
Carlo (MCMC) algorithm to sample the posterior distribution.
The model along with priors on various components are
represented in a hierarchical fashion as follows:

Y | ξ, σ 2, τ 2 ∼ Nn(�ξ, σ 2In),

ξ ∼ NN+2(ξ ; 0, τ 2 �) 1Cξ
(ξ ), p(τ 2) ∝ 1

τ 2
, p(σ 2) ∝ 1

σ 2
,

(20)
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in which we have made the common non-informative prior
choice for the observational noise standard deviation σ 2. For
the hierarchical model above, the joint posterior distribution
of the model parameters is given by

P(ξ, τ 2, σ 2 | Y ) ∝ {
(σ 2)−n/2 e− ‖Y −�ξ‖2

2σ2
}

×{(τ 2)−(N+2)/2e−ξT�−1ξ/(2τ 2 ) 1Cξ
(ξ )}

× (τ 2)−1 (σ 2)−1. (21)

The final normalizing constant of the posterior distribution
is intractable and hence we resort to MCMC [31] to sample
from the posterior distribution of the model parameters. More
specifically, we use Gibbs sampling to iteratively sample
from the full conditional distribution of (i) ξ | τ 2, σ 2,Y ,2

(ii) τ 2 | ξ, σ 2,Y , and (iii) σ 2 | ξ, τ 2,Y . The conditional pos-
terior of ξ in (i) is a truncated multivariate normal distribution
which is sampled using the method proposed in Ref. [35].
The conditional posteriors of σ 2 and τ 2 in (ii) and (iii) are
inverse-gamma (IG) distributions and hence easy to sample
from. The details of the algorithm are provided in Sec. III of
the Supplemental Material [26].

After discarding initial burn-in samples, let ξ
(1)
j , . . . , ξ

(T )
j

be T successive iterate values of ξ j from the Gibbs sampling
algorithm, for j = 2, . . . , N + 3. Our point estimate for rp

based on the posterior samples is

r̂p = T −1
T∑

t=1

√
−6ξ

(t )
2

Qmax
. (22)

The 68% confidence interval (1σ ) for rp is also computable
from our sampling algorithm.

III. ELECTRON-SCATTERING DATA ANALYSIS

Prior to dealing with the real data set we analyzed pseu-
dodata generated by a known dipole function to test the
performance of our method and to observe the impact that the
different hyperparameters and data range had on the extracted
radius (see Sec. IV of the Supplemental Material [26]). In this
section, we present our analysis of the real electron-proton-
scattering data obtained from Mainz [36–38].

We tried four different variants of our model by imposing
or relaxing the different constraints on ξ in Eq. (11):

(1) cGP denotes the proposed constrained GP model as
described in Eq. (14). The curve is restricted to be
convex and the value at Q2 = 0 is fixed at 1 (ξ1 = 1).

(2) c0GP denotes the model in Eq. (14) with the only
constraint being Eq. (5a), the value at zero (ξ1 = 1).
The parameters ξ2, . . . , ξN+3 are left unconstrained in
this model and therefore the curve is not necessarily
monotonic and convex.

(3) c1GP denotes the model with only shape constraints
(5b) and (5c), which implies that the function is non-

2Recall that in Bayesian notation ξ | τ 2, σ 2,Y means the condi-
tional posterior distribution of ξ given τ 2, σ 2, and Y .

increasing and convex, but the value at zero is not fixed
(ξ1 is left unconstrained).

(4) uGP denotes the completely unconstrained GP; all the
parameters ξ1, ξ2, . . . , ξN+3 are free.

We note that although the condition GE (0) = 1 [Eq. (5a)]
is ultimately related to the charge of the proton, systematic
errors can have an appreciable impact on the fulfillment of
this constraint in the experimental data. It has become a cus-
tomary practice (see, for example, Ref. [21]) to represent the
observed values as f (Q2) = n0GE (Q2), where n0 is a floating
normalization parameter, f (Q2) are the observed values, and
GE (Q2) is the true proton form factor. We can identify in our
framework the choice n0 = 1 with the requirement that our
model estimate for the form factor has the fixed value of 1 at
Q2 = 0 (cGP and c0GP). Instead, leaving n0 as an adjustable
parameter corresponds to the relaxation of the constraint at
zero (c1GP and uGP).

We conducted the real analysis in two regimes: low
Q2 < 1.36 fm−2 (the first 500 data points) and high Q2 <

25.12 fm−2 (the full data set). The low regime was chosen
based on the results in the pseudodata analysis in which we
observed that in this range the models gave a more accurate
estimate of the slope of the assumed dipole function. How-
ever, even though in the high-Q2 regime we observed some
biasing toward lower estimates of the slope, we considered
also the full data analysis. It is well known that, due to the
difficulty of measuring the form factor for smaller values of
the momentum, the experimental data might be significantly
biased for Q2 ≈ 0 and also the noise structure could not satisfy
the assumptions we made on the pseudodata analysis: it could
not be independent and identically distributed and all the
points might not share the same variance. Thus, incorporating
the whole range of values could help the analysis to overcome
that experimental bias. Finally, having the two extrema (low
and high regimes) is beneficial for comparison.

The analysis started with conducting pilot experiments
with subsets of the data of size n = 250 randomly selected
from the range of the potential values (Q2) for the high regime,
and with the full 500 points in the low regime. The pilot ex-
periments provided us with a better idea of the roles of the dif-
ferent hyperparameters of our model in the real data set, N , �,
and ν, before eventually analyzing it. Recall that the Q2 values
are rescaled to [0,1] before the analysis. Overall we used 500
MCMC iterations after discarding a burning of 100 samples
to form the posterior summary estimates of the radius.

We conducted a cross-validation procedure to select the
optimal scale-length parameter � for each regime, the details
of which are shown in Sec. V of the Supplemental Material
[26]. Our analysis guided us to choose �opt = 0.5 for the full
data set and �opt = 10 on the low-Q2 set.

Having chosen the correlation length we performed the
MCMC iterations for the four models, selecting the number
of grid points N = n/4 and N = n in order to compare results.
Table I shows the posterior medians of rp of the four models
and the 1σ value in the high and low regimes, respectively,
for ν = 2.5 while Fig. 2 shows the density plots (posterior
distribution P(rp)) in the high regime [Fig. 2(a)] and low
regime [Fig. 2(b)].
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TABLE I. High- and low-regime posterior estimates of the radius and one standard deviation (�rp) for cGP, c0GP, c1GP, and uGP with
N = {n/4, n} and ν = 2.5.

Model N High regime (n = 1422) Low regime (n = 500)

rp (fm) �rp (fm) rp (fm) �rp (fm)

cGP n/4 0.844 0.002 0.853 0.002
n 0.845 0.001 0.855 0.002

c0GP n/4 0.836 0.005 0.841 0.008
n 0.845 0.004 0.840 0.006

c1GP n/4 0.842 0.004 0.873 0.006
n 0.831 0.003 0.872 0.005

uGP n/4 0.847 0.011 0.857 0.017
n 0.858 0.008 0.862 0.01

We observed that, as a general trend, as the constraints are
removed the model becomes more sensitive to the data range
used and the choice of the number of grid points, N , and ν

(the analysis and results for ν = 3 and ν = 3.5 are given in the
Supplemental Material. Sec. V [26]). For example, in the high
regime for all values of N and ν cGP estimations of the radius
are in all cases around 0.843 fm, while on the other extremum
the unconstrained model uGP estimations range between 0.76
(for ν = 3) and 0.86 fm. Incorporating the constraints also
strongly affects the 1σ deviation of each model: cGP 1σ

intervals were between 0.001 and 0.005 fm wide, while uGP
1σ intervals were as wide as 0.014 fm.

For the choice ν = 2.5 we can see in Fig. 2 that as N
increases, the estimate of c1GP moves to a lower value of
rp while the estimates of all the other models increase to
a higher value of rp. This effect is less prominent in the
low regime and overall cGP is the most robust with respect
to changing the number of grid points. In all the cases, as
N increases, the variability in the estimation reduces (the
estimated σ is slightly smaller than those for N = n/4), giving
more precise results. As we observed in Table I, in going from
high regime to low regime all the models, with the exception
of c0GP, gave a larger estimate of the radius, c1GP being the
one that showed the biggest change. uGP is the only model
that includes both 0.84 and 0.88 fm in its support in both
regimes.

We show in Sec. V of the Supplemental Material [26] more
in detail each individual posterior histogram of the MCMC
samples from GP models for the radius and the MCMC
samples of n0GE (0) from c1GP and uGP. Recall that n0 is
defined as a floating normalization factor, while GE (0) = 1
is a guaranteed property by the definition of GE . We observed
that the sample centers of n0GE (0) deviate from 1 by a very
small amount (|n0GE (0) − 1| � 0.0014) for both models in
both regimes. It is remarkable how such a small deviation
in the case of c1GP can make such drastic changes when rp

results are compared with the fully constrained model cGP.
For example, in the low regime for N = n/4 cGP estimates
rp = 0.853 fm while c1GP, having a value of 1.0014 at zero,
estimates rp = 0.873, a result that highlights the impact that a
floating normalization can have on the extraction of the radius.

Figures 3 and 4 show the function fits for the high and low
regime, respectively, with ν = 2.5, 3, and 3.5 for N = n. The
overall fit is good for all the methods in both regimes; the
real differences appear as Q2 → 0. For this reason we show
the full fit in each regime only for ν = 2.5 in the inset of the
respective top plot, the full fits for the other values of ν being
visually indistinguishable.

Overall we found relatively small variability in the function
fits across different values of ν in both regimes, not enough
to change the estimation of the radius by more than 0.01 fm
within any of the models. Owing to the constraint at the origin,

FIG. 2. Estimated density plots of MCMC samples of radius rp for cGP, c0GP, c1GP, and uGP with N = n/4 (dotted line), n (solid line),
and ν = 2.5 for (a) the high-Q2 regime and (b) the low-Q2 regime. The vertical dashed lines stand for the muonic result of 0.84 fm (red) and
the recommended CODATA value of 0.88 fm (purple).
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FIG. 3. Function fit with (a) ν = 2.5, (b) ν = 3, and (c) ν = 3.5 and N = n in the high regime. The inset plot in (a) shows the overall fit of
the models for ν = 2.5 to the entire data range. The solid curves denote the model predictions while the shaded intervals bounded by dotted
lines represent the 95% confidence intervals for the predictions. The red dots denote the experimental data obtained from Mainz with their
respective error bars. The red and blue points near the origin at Q2 = 0.008 fm−2 represent the lower value the new PRad experiment will be
able to measure, with two different estimates for the projected uncertainty [17] and arbitrary GE (Q2) value.

both posterior medians of cGP and c0GP agree as Q2 → 0
with very narrow credible intervals, while c1GP and uGP
are either below or above and start going close to the other
GP model estimates as Q2 grows. As expected, the shape
constraints help reduce the variability of the models, which
is evidenced by the smaller credible intervals of c1GP in
comparison with uGP, especially in the low regime. In the low
regime, it seems that without the normalization constraint the
extrapolations are likely to attain values at Q2 = 0 larger than
1, which in turn pushes the estimate of the radius to larger
values, as can be also seen in Fig. 2. In the low regime, as a
general trend, we observed wider credible intervals for all the
models.

The blue and red points near Q2 = 0.008 fm−2 displayed
in Figs. 3 and 4 for an arbitrary GE (Q2) value represent the
lowest momentum that will be measured by the new PRad
experiment [17]. The blue and red error bars are two different
estimates of the projected uncertainty the measurement will
have. In the case of our proposed model, it seems that the
blue uncertainty could allow us to discard either c1GP or uGP,
while the red uncertainty would allow us to discard up to three
of the model selected, clearly imposing a stringent constraint
in the final estimation of the radius.

In summary, the main result of the present work is the ex-
traction of a proton charge radius of rp = 0.845 ± 0.001 fm,

consistent with the muonic Lamb-shift experiment. This result
was obtained by enforcing both the normalization and shape
constraints [see Eq. (6)]. However, we caution the reader
that the extrapolation to zero momentum transfer is subtle
and sensitive to these constraints as well as to the Q2 range
adopted in the analysis. A more exhaustive analysis on the role
played by the underlying assumptions in an effort to provide
more robust predictions is left for a future work.

IV. CONCLUSIONS

The charge radius of the proton is a fundamental param-
eter that has attracted enormous attention during the last
decade because of a discrepancy between two experimental
methods. The value of the charge radius of the proton, rp =
0.84087(39) fm, determined from muonic hydrogen [9,10]
differs significantly (by ∼4% or nearly 7σ ) from the rec-
ommended CODATA value of rp = 0.8775(51) fm obtained
from decades of experiments in electron scattering and atomic
spectroscopy. Many possible solutions to the “proton puzzle”
have been proposed, ranging from errors in the experimental
data or in its interpretation all the way to new physics asso-
ciated to a violation in lepton universality. Within this wide
context our contribution is rather modest. In our view, the
proton puzzle lies not in the experimental data, but rather in
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FIG. 4. Function fit with (a) ν = 2.5, (b) ν = 3, and (c) ν = 3.5 and N = n in the low regime. The inset plot of (a) shows the overall fit of
the models for ν = 2.5 to the entire data range. The solid curves denote the model predictions while the shaded intervals bounded by dotted
lines represent the 95% confidence intervals for the predictions. The red dots denote the experimental data obtained from Mainz with their
respective error bars. The red and blue points near the origin at Q2 = 0.008 fm−2 represent the lower value the new PRad experiment will be
able to measure, with two different estimates for the projected uncertainty [17] and arbitrary GE (Q2) value.

the extraction of the proton radius from the scattering data. To
extract the charge radius from the electron-scattering data set,
one must extrapolate from the measured values of the electric
form factor at a finite momentum transfer Q2 all the way to
Q2 = 0. How to properly extrapolate to Q2 = 0 has been the
source of much controversy and innumerable debates. Many
of these debates center around the optimal functional form
(e.g., monopole, dipole, polynomial, Padé, etc.) that should
be adopted to carry out the extrapolation and on how best to
determine the parameters associated to such functions. In this
paper we also sought for an optimal extraction of the proton
radius from the scattering data. However, in contrast to most
of these approaches and in an effort to eliminate any reliance
on specific functional forms, we have introduced a nonpara-
metric method that does not assume any particular functional
form for the form factor. Rather, we adopted a method that
is flexible enough to “let the data speak for themselves”
and that solely relies on two physical constraints inherent
to the form factor: (a) GE (Q2 = 0) = 1 and (b) GE (Q2) is a
monotonically decreasing function of the momentum transfer.
Note that this last constraint implies that G′

E (Q2)<0 and
G′′

E (Q2)>0 for all values of Q2. These constraints are adopted
in our study and their individual effects on the estimation of rp

are explored. The modeled form factor was expanded in terms
of a suitable set of basis functions with coefficients restricted

exclusively by the shape constraints. To determine the optimal
coefficients, the experimental data were divided into two Q2

regions: (i) low Q2�1.36 fm−2 and (ii) high Q2�25.12 fm−2.
For each of these regions, the optimal hyperparameters—the
correlation length �, the smoothness parameter ν, and the
number of grid points, N—were obtained by monitoring the
performance of the algorithm against 20% of the data that was
left out from the calibration, an analysis we present in Sec. V
of the Supplemental Material [26]. The actual implementation
of the algorithm was carried out via MCMC sampling of the
posterior distribution using Bayesian inference.

To test the robustness and reliability of the approach we
started by confronting our results against (known) synthet-
ically generated data with random Gaussian errors in the
low, medium, and high regimed (the complete analysis is
presented in Sec. IV of the Supplemental Material [26]). For
the case in which both shape constraints were incorporated
(labeled in the main text as cGP) we obtained an accurate and
precise determination of the proton radius in both the low- and
medium-Q2 regions. In the high-Q2 region where the entire
synthetic data set was used, we observed a systematic shift to-
wards lower values of the (known) radius. We believe that this
issue may be associated to the method chosen to determine
the hyperparameters. We plan to devote more attention to this
matter in a future work.
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In the case of the real experimental data from Mainz, we
also found that the extraction of the proton radius is sensitive
to the range of Q2 values considered in the analysis. In the case
of the high-Q2 region where the entire experimental data set
is incorporated, the CODATA value of rp = 0.878 fm is disfa-
vored regardless of the adopted constraints. If both constraints
are incorporated (cGP) we extract a charge radius of rp =
0.845 ± 0.001 fm, which is one of the central results of this
work. The value is even lower if we assume a floating normal-
ization (c1GP): rp = 0.831 ± 0.003 fm. We note that we also
considered a scenario of largely academic interest in which no
constraints were incorporated. As expected, the unconstrained
model (uGP) returned posterior distributions that were wide
enough to be consistent with both the muonic hydrogen and
CODATA values. We conclude that if the entire Mainz data
set is included, our analysis favors the smaller value of the
proton radius, as suggested by the muonic Lamb shift.

However, if the low-Q2 region is used to inform the poste-
rior distribution, we obtained mixed results. First, when both
shape constraints are included, we obtain a proton radius of
rp = 0.855 ± 0.002 fm—that falls almost in the middle of
the two experimental values. If now one of the constraints
is removed the behavior is radically different. Removing the
normalization constraint in favor of a floating normalization
(c1GP) shifts the posterior distribution to a large enough value
of rp to make it consistent with the CODATA estimate. Note
that the value at zero of c1GP is 1.0014, not far away from 1,
and yet that is enough to produce a radius 0.02 fm bigger than
the fully constrained model cGP. In contrast, leaving the nor-
malization fixed at GE (Q2 = 0) = 1 but relaxing the demand
for GE (Q2) to be a monotonically decreasing function of Q2

results in a value for rp consistent with the muonic result. In
this regard, we anticipate that the PRad analysis will play a
critical role in helping resolve this ambiguity. However, based
solely on the present analysis focused on the low-Q2 region
(where the behavior of the form factor is nearly linear) our
results are inconclusive as far as resolving the proton puzzle.

In the future, we propose to improve our model in order
to overcome a possible bias in the analysis of the high-Q2

region, an objective that could be accomplished by developing
a better procedure for estimating the hyperparameters. As this
technique is still in development, we would like to test it on
more synthetic data sets, similar in spirit to the framework
developed by Yan et al. [21]. We trust that lessons learned
from their project will help us improve the robustness of our
nonparametric model.

Yet, even if the resolution of the proton puzzle is found
elsewhere, the advances along this direction would have not
been in vain. The proton puzzle as well as many other devel-
opments have allowed us to realize the importance of enhanc-
ing the interaction between nuclear experiment and theory
through information and statistics [39]. We are entering into a
new era in which statistical insights will become essential and
uncertainty quantification will be demanded.
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APPENDIX: THEORETICAL GUARANTEES
FOR THE CONSTRAINTS ON fξ AND
ON THE INDEPENDENCE OF Cξ ON τ

In this section we show the equivalence between the shape
constraints on our model fξ and the inequalities on the coef-
ficients ξ . Denote by C f the function subspace of all the fξ
defined in Eq. (9) that obey the required constraints: fξ (0) =
1, f ′

ξ (x) < 0, and f ′′
ξ (x) > 0.

We show below that the constraints that define C f can be
equivalently represented as linear restrictions on ξ . We state
Proposition 1, which provides an explicit characterization of
the stated linear constraints.

Proposition 1. fξ ∈ C f if and only if ξ ∈ Cξ .
Recall Cξ is defined as

Cξ ≡
{
ξ ∈ RN+3 : ξ1 = 1, ξ2 +

N∑
j=0

c j ξ j+3 � 0, ξ j+3 � 0,

j = 0, . . . , N

}
. (A1)

Proof. We first check the convexity constraint; by taking
the second-order derivative we have f ′′

ξ (x) = ∑N
j=0 ξ j+3h j (x),

by the non-negativity of h j for all x ∈ [0, 1] and any j =
0, . . . , N , the set { f ′′

ξ (x) � 0,∀x ∈ [0, 1]} is equivalent to
{ξ j+3 � 0, j = 0, . . . , N}. To impose the non-increasing con-
straint, we need to check the following:

f ′
ξ (x) = ξ2 +

N∑
j=0

ξ j+3ψ j (x) � 0, ∀x ∈ [0, 1].

Observe that this is equivalent to

ξ2 � − max
x∈[0,1]

⎛⎝ N∑
j=0

ξ j+3ψ j (x)

⎞⎠ = −
N∑

j=0

c jξ j+3. (A2)

Equation (A2) follows since ψ j defined in Eq. (7) is a
non-decreasing function of x and maxx∈[0,1] ψ j (x) = ψ j (1) =:
c j for j = 0, . . . , N . This concludes the proof of the
proposition. �

Now we proceed to show why the normalizing constant Mξ

of the truncated prior distribution of ξ is independent of τ .
Proposition 2. The normalizing constant Mξ associated

with the truncated prior distribution of ξ is a constant in [0,1]
that does not depend on τ 2.
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Proof. By definition

Mξ =
∫

Cξ

(τ 2)−(N+2)/2(|�|)(−1/2)e− 1
2τ2 ξT �−1ξ dξ .

By change of variable ξ ′ = ξ/τ ; observe that the truncated
region Cξ ′ is the same as Cξ as long as τ > 0. Hence, Mξ ∈
[0, 1] does not depend on τ . �
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