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The determination of the color force in a quark-gluon plasma (QGP) is a key objective in the investigation of
strong-interaction matter. Open and hidden heavy-flavor observables in heavy-ion collisions (HICs) are believed
to provide insights into this problem by comparing calculations of heavy-quark (HQ) and quarkonium transport
with pertinent experimental data. In this work, we utilize the 7-matrix formalism to compute charm-quark
transport coefficients for various input potentials previously extracted from simultaneous fits to lattice-QCD
data for HQ free energies, quarkonium correlators, and the QGP equation of state. We investigate the impact of
off-shell effects (spectral functions) in the QGP medium on the HQ transport, and compare to earlier results using
the free or internal HQ energies as potential proxies. We then employ the transport coefficients in relativistic
Langevin simulations for HICs to test the sensitivity of heavy-flavor observables to the HQ interactions in
the QGP. We find that a strongly coupled T-matrix solution generates a HQ elliptic flow comparable to the
results from the internal energy at low momentum, driven by a long-range remnant of the confining force, while
falling off stronger with increasing three-momentum. The weakly coupled 7' -matrix solution, whose underlying

potential is close to the free energy, leads to an elliptic flow well below the experimentally observed range.
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I. INTRODUCTION

The investigation of the in-medium color force between
partons is pivotal for understanding the microscopic mech-
anisms that lead to the remarkable features of the quark-
gluon plasma (QGP) as observed in ultra-relativistic heavy-
ion collisions (URHICs). Lattice-QCD (1QCD) computations
of the free energy of a heavy quark-antiquark (QQ) pair
immersed into the QGP [1,2] indicate that nonperturbative
effects, specifically remnants of the linear part of the potential,
survive up to temperatures of at least twice the pseudocritical
one, T > 160 MeV [3,4]. Potential models [5-9] have been
employed to implement these effects and test them against
1QCD data for Euclidean quarkonium correlators [10-13], but
no definite answer on the modifications of the QCD force
in medium could be achieved. To broaden these investiga-
tions we have been developing a thermodynamic 7 -matrix
approach [9,14-16] where consequences of the in-medium
potential are assessed not only for quarkonia, but also for
individual heavy quarks (such as their transport properties)
and the surrounding medium that they interact with. The
T-matrix framework has been solved self-consistently for
one- and two-parton correlations in a full off-shell scheme
beyond the quasiparticle approximation [15,16], allowing for
the dynamical formation of (broad) bound states, and con-
necting bulk and microscopic properties of the QGP and
its excitations (spectral functions). Despite constraints from
three sets of IQCD data [equation of state (EoS), heavy-quark
(HQ) free energy, and quarkonium correlators], the underlying
in-medium potential could still not be determined unambigu-
ously [16]. However, different potentials predict markedly
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different spectral and transport properties of the QGP. The
objective of the present paper is to further explore this sen-
sitivity by computing the thermal relaxation rates for charm
quarks for different potential solutions (including previously
used internal- and free-energy proxies) and quantifying their
effect on the charm-quark spectra in URHICs using relativis-
tic Langevin simulations. We specifically scrutinize off-shell
effects in the calculation of the transport coefficients, which
can play a significant role given the large spectral widths
of partons found in the “strongly coupled solution” of the
T-matrix approach, together with broad D-meson resonance
states in the charm-light-quark scattering amplitude near or
even below the nominal two-parton threshold.

This paper is organized as follows. In Sec. II we recollect
the main features and differences of weakly and strongly cou-
pled solutions that we previously found within the 7 -matrix
approach. In Sec. III we introduce the off-shell formalism to
calculate HQ transport coefficients, and discuss an improved
partial-wave expansion in the 7 matrix over previous cal-
culations of the HQ relaxation rate. In Sec. IV we analyze
the results of the HQ transport coefficients from the different
types of potentials. In Sec. V, we briefly recall the trans-
port implementation into URHICs using relativistic Langevin
simulations, calculate the charm-quark and D-meson nuclear
modification factors (R44) and elliptic flow (v;), and dis-
cuss the results in light of discriminating different potential
strengths via experimental observables. In Sec. VI we summa-
rize and conclude. In the Appendix, we collect the expressions
used for the transformation of the off-shell T-matrix into the
center-of-mass (CM) frame as used in this work.
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II. IN-MEDIUM POTENTIALS BASED ON LATTICE QCD

In Ref. [16] we deployed the T-matrix approach, together
with the Luttinger-Ward Baym formalism, in a comprehen-
sive fit to IQCD data for the HQ free energy, quarkonium
correlators, and the QGP EoS. Let us briefly recapitulate the
procedure and its main outcomes. Based on a trial input poten-
tial, the T matrix between light partons in all color channels
(including relativistic corrections) and pertinent single-parton
spectral functions are computed self-consistently in a two-
particle irreducible approach (“inner self-consistency loop”).
The 1QCD data for the QGP EoS are then fitted using an
effective parton mass within this “inner” (light-parton) self-
consistency loop. Once converged, the heavy-light 7 matrices
and HQ self-energies (and spectral functions) are computed
and utilized in the computation of the HQ free energy and
quarkonium correlators. The latter are then fitted by varying
the input potential in an outer (HQ) self-consistency loop.
From this procedure, two basic scenarios emerged: (i) When
starting from a “strong” trial potential, the solution converges
to a strongly coupled scenario (SCS) with a potential, Vj,
that features large remnants of long-range confining force. Its
main manifestations are large thermal widths of the partons
which exceed their masses and thus melt their quasiparticle
peaks at low momenta and temperatures near 7j,; at the same
time broad mesonic and diquark bound states emerge whose
contributions dominate the pressure when approaching 7,
from above. (ii)) When starting from a “weak” trial potential
(e.g., the HQ free energy), the solution converges to a weakly
coupled scenario (WCS) with a potential, V,,, which is close to
the HQ free energy, exhibiting a stronger screening then V; at
distances beyond ~0.5 fm (cf. Fig. 1). The resulting thermal
partons widths are relatively small, leading to well-defined
quasiparticles at all temperatures and momenta, while rather
narrow, loosely bound two-body states form near 7, whose
contributions to the EoS remain, however, subleading.

T T 3
RO 2
X

1.5¢ x U

o ] 15 s« U
—~ 10 e 1 ~ 10 e -
3 e = "
o 05F C 17 o 0.5¢ K ¥
w g Nl
g 0.0 —— Strong § 0.0 I Strong
-05F £ . Weak 1 —0-5’: Weak 1
-1.0F [ T=0.194GeV 1 -1.0f | T=0.258GeV 1
0.0 0.2 0.4 06 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
r (fm) r (fm)
15 « U 1 15 U
~ 10 e F —~ 10 e F
> RO00TRO00000000000 >
o 0.5F e o» 0.5F
w w
S 0.0 ——Swong | S 0.0
S Weak | = -05;
-1.0f|  T=0.320GeV ] -1.0 [ T=0.400GeV

0.0 0.2 04 0.6 0.8 1.0 1.2 1.4 0.0 0.2 04 06 0.8 1.0 1.2 14
r(fm) r(fm)

FIG. 1. The potentials of the SCS (solid lines) and WCS (dashed
lines) are compared to the internal energy U (crosses) and free energy
F (dots) [17] as a function of distance between a Q and 0, for four
temperatures as indicated in each panel.

The extracted potentials, V; and V,,, are displayed in Fig. 1,
along with the 1QCD results [17] for the free (F') and internal
energy (U) that both the SCS and WCS reproduce through
the T-matrix formalism (the statistical error bars on the free
energy are comparable to, or smaller than, the symbol size;
in the extraction of the pertinent internal energy, obtained
through a standard 7 derivative from a functional fit to the
data of F, we have not included error propagation, as the
internal energy has not been part of our fit procedure). Both
V, and V,, lie in between U and F', and they tend to be closer
to U as temperature increases while their gap diminishes.
However, at low temperatures V,, essentially coincides with
F while V; reaches much above it at intermediate and es-
pecially large distances. This difference is the key factor in
the resulting QGP spectral properties near T, as discussed
above; the large-distance strength of V implies that the QGP
is strongly coupled only at large distances, i.e., for soft
momenta.

It turns out that the potentials extracted from the WCS are
close to the (real part of) IQCD-based Bayesian extractions
of Ref. [18] while the SCS potential is rather close to the
(real part of) the potential extracted from finite-7 correlation
functions of Wilson lines [17], including the feature that
for T < 190 MeV the potentials are close to their vacuum
form (i.e., essentially unscreened). In addition, imaginary
parts of the potential have been estimated. In the 7 -matrix
approach, imaginary parts are included through the dynamical
(energy-dependent) propagators of the in-medium quark and
antiquark in the integral equation. The on-shell self-energy of
the uncorrelated two-particle propagator corresponds to the
infinite-distance limit of the imaginary part of the potential
discussed in IQCD-based extractions [19]. The ones extracted
in Ref. [18] are indeed comparable to the two-particle width
for the WCS in the T-matrix approach [16], e.g., around 100
MeV at T ~ 200 MeV. On the other the hand, in the SCS,
they reach much larger values of around 400 MeV; in fact,
it is these large imaginary parts which drive V; well above
the free energy when evaluating the latter in the 7 -matrix
approach [19]. At finite distance, the imaginary part of the
potential acquires an r-dependence, as pointed out in calcu-
lations within the perturbative hard-thermal-loop framework
[20-22]. This can be understood as interference effects of
the diagrams for the inelastic dissociation reactions of the
bound state (referred to as Landau damping of the exchanged
gluon, or quasifree dissociation). Thus, the imaginary part
of the potential decreases with decreasing distance (after all,
for r — 0, the width of a color singlet should vanish). In
the T-matrix approach, these diagrams correspond to higher
order (three-body) contributions which are not included in
the baseline two-particle-irreducible setup. They have been
investigated in Ref. [16] and found to be significant for deeply
bound quarkonia, reducing their width (as expected), but with
rather little impact on their Euclidean correlation functions.
Their effects are less significant for loosely bound states (such
as heavy-light or light-light systems which are usually close to
threshold) and are not included in our calculations of transport
properties below.

Taking the derivative of the potentials, —dV (r)/dr, yields
the pertinent forces, cf. Fig. 2. The forces for V; and U at large
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FIG. 2. Force for V; (solid line), V,, (dashed line), U (crosses),
and F (dots) at different temperatures.

distances are much higher than those for V,, and F'. Around
r>~0.5fm and T = 0.194 GeV, the force from U amounts
to ~2.5 GeV/fm which even exceeds the vacuum force by a
factor of ~2.! This enhancement originates from the “entropy
term,” —TdF/dT, as a fast change in degrees of freedom
near Ty, leads to a large temperature derivative. It has been
suggested that this is caused by releasing thermal magnetic
monopoles [24]. The force from V at this distance (at T =
0.194 GeV) is also larger than in vacuum, by about 20%; i.e.,
the major contribution to this force is still considered to be
the remnant of the confining vacuum configuration rather than
thermal monopoles.

The long-range force is closely related to low-momentum
transport properties of the medium; in particular, a long-range
force allows a parton to interact with an increased number of
thermal partons in the heat bath, proportional to the volume of
the spherical shell which grows as 2. Therefore, by multiply-
ing the force with 3%, one forms a dimensionless quantity,

%rde/ dr, that can be regarded as an “effective interaction
strength” in the medium and is plotted for the four “potentials”
in Fig. 3. The factor of 3/4 renders the r — O limit equal
to the strong coupling constant, which is ay; = 0.27 for all
of our four “potentials.” Starting from short range, U has
the largest interactions, up to r ~ 1(0.4) fm at the smallest
(largest) temperature, due to the “entropy-related” potential,
—TdF/dT; as we will see below, this can affect transport
properties even at rather high momentum. Coming from the

'The small modulation in dU/dr at low T around r = 0.4 fm is
somewhat sensitive to our fit ansatz for F in extracting U . Indications
of such a feature are also found in the U’s extracted, e.g., in Ref. [23]
(where error bars are included). The robust feature is an approximate
flatness in the force (constant slope in U). A ca. 10% modulation
is insignificant when calculating quantities involving integrations
over U.
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FIG. 3. The dimensionless quantity %rde/d r (scaled to recover
the strong coupling constant, o, at short distance) is plotted for V
(solid line), V,, (dashed line), U (crosses), and F (dots).

large distance side, V; gives the strongest “effective” coupling,
and its maximum coupling peak at each temperature is located
at the largest distance among all potentials, ranging from
Fmax = 0.85 fm at T = 0.194 GeV down to ryp = 0.5 fm at
T = 0.400 GeV. The large-distance enhancement of the cou-
pling can be related to an infrared enhancement in momentum
space, as illustrated by the dimensionless-scaled momentum
space potentials displayed in Fig. 4: here, the maximum
interaction strength for V; occurs at the lowest momentum
(relative momentum exchange between Q and Q) among the
four potentials, approximately given by pmax = 2/ max-
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FIG. 4. The dimensionless quantity o.g (k) = %kz\/(k) (scaled
to recover the strong coupling constant, «;, at large momentum) is
plotted for V; (solid line), V,, (dashed line), U (crosses), and F' (dots).
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III. OFF-SHELL TRANSPORT COEFFICIENTS

As mentioned above, the strong color force, in particular
in the SCS, leads to large widths in the spectral functions of
thermal partons, dissolving their quasiparticle peaks at low
momenta and temperatures [16]. It is therefore in order to
incorporate the off-shell effects in the Boltzmann/Langevin
description of the HQ transport. Toward this goal, we start
from the Kadanoff-Baym equations and use a minimal set
of approximations to reduce them to a Boltzmann equation,
where quantum effects are encoded in the transition rates.
Subsequently, this Boltzmann equation is expanded into a
Fokker-Planck equation, which can be implemented via a
Langevin process where quantum effects are encoded in the
transport coefficients.

We closely follow the formalism for nonequilibrium quan-
tum field theory described in Ref. [25]. We first illustrate a
formal derivation of the relations for the nonrelativistic case,
but our final expressions for the transport coefficients account
for relativistic effects as discussed in Ref. [16]. In relative
energy-momentum space, with a macroscopic time denoted
as t,” the equation for the nonequilibrium HQ Green function
can be expressed as’

0
E[/dw Gy, p, t):| =/a’w{i25(w, p.1)Gy(w, p, 1)
—iZg(w,p,1))Gs(w,p. 0} (1)

The G5‘>(a), p,t) are the Fourier transforms of the Green
functions,

Go(tr, x1, 1, %2) = i (02, ;)P (tr, x1)), )
Gyt 1.1, x2) = —i(Yo(t, x )Y S 2)).  (3)

with respect to §t and éx for fixed ¢+ and x, where 8t =
H—h,0x=x1—x2,t =1 +1)/2,x = (x1 +x2)/2[25]. In
a uniform medium the G5~ do not depend on x. X5~ is
the self-energy in the real-time formalism, in which it can
be calculated diagrammatically from the underlying scatter-
ing processes between the heavy quark and the partons of
the medium. The Fourier transform of X5~ uses the same
convention as that for GE‘>. The T-matrix approach has
been used to derive the expressions for these self-energies in
Appendix F of Ref. [25]. One has

do'd?p dvd3qdv'diq .
25 (@, p.1) = 27 )*s@
s =71 [ G Gt G

x |T(E,P,p,p)I* Gy (@, p)

x G-(v, )G (v, q) 4)

2We use the same approximation, 7 £+ ¢/2 ~ T, as in Ref. [25], but
uset todenote T = (t; +1,)/2.

3We enforce translational invariance so that all terms with a coor-
dinate gradient vanish, and the Boltzmann equation used to evaluate
the transport coefficients can be obtained as in Ref. [26].

and
do'd?p dvd3qdv'diq
S (w,p,t) = 2 )@
ol@ p.1) ]FZ/ 2y @t @t
x |T(E,P,p,p)I*Gy(@, p))
x G (v, Q)GF (v, ¢). )

Here, 6 is a shorthand notation for energy-momentum
conservation, and Y represents the summation over the in-
ternal degrees of freedom i = ¢, ¢, g and their color, spin,
and flavor, divided by one HQ degeneracy, dp = 6; P and
E are the total momentum and energy, and T(E, P, p,p’)
is the retarded 7 matrix. The G~ are the Green func-
tions for the light partons in medium. The classical Boltz-
mann equation is recovered from Eq. (1) using the on-shell
approximations G~ = Fi(2w)é(w — e(p))f(p,t) and G~ =
—i(2m)8(w — e(P)I1 £ f(p, t)]. These approximations are
derived in Ref. [25];* they neglect off-shell quantum effects,
but not all are necessary to describe HQ diffusion in a local-
equilibrium QGP. We have found that “minimal” approxima-
tions required for obtaining a HQ Boltzmann equation amount
to

Go(p, o, 1) = iQ2m)8(w — eo(P) fo(P, 1),
Gg(w, p) = —i(2m)po(w, p)[1 — no(w)],
G (w, p) = Fi2m)pi(w, p)ni(w),
G/ (o, p) = —iQ2m)pi(w, p)[1 £ ni(w)], (6)

where the quasiparticle approximation is only applied to
Gé(w, p.t), i.e., the incoming heavy quark, while all other
G=~ are taken to be off-shell equilibrium Green functions,
with p; o and n; ¢ denoting the corresponding spectral and
distribution functions, respectively, for light (i) and heavy
(Q) partons in equilibrium. Substituting these expressions into
Egs. (1), (4), and (5), yields the Boltzmann equation

i )= 4k k, k k,t
= /. )-/(Zn)3[w<p+ K f(p k1)

— w(p,K)f(p, 1], (N
where the transition rate is’
Md\)/aﬂq’
@r)* (Q2n)
x pi(v', ¢)po(@', Ip —kDIT(E, P, p.p — K)I’
x ni(MI1 F m(WHIL = ng(w)], ®)

and k = p — p’ is the three-momentum exchange. Note that
we have approximated the distribution function of the out-
going heavy quark in the blocking factor (1 —ng) to be a
thermal one (the blocking factor is close to 1 in any case), and

da' (27)* 8@ pi(v, q)

w(p, k) =

[Tt

*Our convention for “F” (upper/lower sign denotes boson/fermion)
is the opposite of that in Ref. [25].
e 3
*Note that iZ~ (p, e(p), ) f(p. 1) = [ G55 [w(P, K)f (P, 1)]. Also,
when converting the gain term, X5Gg, to Boltzmann form, it is
necessary touse T(E,P,p,p’) =T(E,P,p, p).
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therefore the rate w(p, k) does not depend on the dynamical
nonequilibrium HQ distribution function, f(p, ¢). So far, our
discussion does not include relativistic effects; several modi-
fications are necessary to do that, as detailed in the following
for the calculation of the HQ transport coefficients.

Expanding the full Boltzmann equation in the momentum
transfer, k, results in a Fokker-Planck equation, which can
be converted to a Langevin approach for heavy quarks. The
Fokker-Planck equation is given by

d a d
Ef(l?, 1) = g{Ai(P)f(P, 1)+ E[Bij(l?)f(l% l)]}, ©))

2

where the HQ transport coefficients are defined as weighted
averages over the transition rate,

A; = d’k K)k;
xm-/mw(p, i,

B;( )—/1 T’k (p, K)k;k (10)
PP= | 2y R
In local equilibrium, the drag (A) and transverse/

longitudinal diffusion coefficients (By/B;) are defined

J

1 do'd’p

dvd3q

through

Ai(p) = A(p)pi»  Bij(p) = Bo(p)P;; + Bi(p)P), (1)
with the projectors P;; = 8;; — pip;/p* and lel = pipj/P*.
The scalar transport coefficients, A(p), Bo(p), and B;(p), can
thus be expressed via averages

X(p' —/ @’k K)X (p’ 12
x@) = [ Gosem X e) (12)

as

.0 )2
A<p>=<1—p 2p>, BO(P)=1<P/2— ®-P) >
P 4

p2
1<(P p)

By(p) = 2\ p

—2p-p’+p2>. (13)
Using the expression for w(p, k) in Eq. (8) with the replace-
ment p — k — p’, and switching the integration variable to p/,
we express (X (p’)) in T-matrix form as

dv'diq 5@ Qn)*

x@ =2, 2e0(p) J (2m)2e0(p) (2m) 2ei(q) (2m) 2¢ei(q") do

i

x 3 IMPpg(@, poi(v. )piv'. g1 = no(@)n ()1 £ m(W )X (). (14)

a,l,s

The summation Zi is over all light flavors, i = u, i1, d, d,s,s, g, where the light and strange quarks are assumed to have the same
mass (which is a good approximation in our context [9]). We include the relativistic phase space factor with the single-particle

on-shell energy, denoted by £¢ ;(p). The heavy-light scattering matrix elements, |M;

in the CM frame as

D IM?| = 1680(Pem )i (Pem)EQ (Pl )Ei (Pl)1AL Y d2

a,l,s

where TQ“lfl(Ecm, Pem» Pl 18 calculated in the CM frame in all
possible two-body color channels, a, and partial-wave chan-
nels, /. The CM energy E.p, incoming CM momentum pcp,
outgoing CM momentum p,, and scattering angle cos 6cm
are expressed as functions of E, p, q, p’, ¢/, as discussed in
the Appendix. The two-body color/spin degeneracy factor is
denoted by dg, and the P;(cos 6., ) are Legendre polynomials.
The partial-wave summation is different from that employed
in Eq. (8) of Ref. [27] (and in Ref. [9]), in that our expression
(15) includes the interference effects between different partial
waves and an additional factor of r. We also carry the partial-
wave expansion to higher angular momenta of up to / =8
(compared to [ =1 in Refs. [9,27]), which turns out to be
essential for the convergence of the high-momentum region
of the transport coefficients. More explicitly, one can show
that | 3,21 + DePi(x)* = 32,21 + 1)bPi(x), where each
b; is a function of the {¢;}. The final results for the friction
coefficient using, e.g., the U potential turn out to be within
~20% of the results of Ref. [9] based on the same 1QCD
free-energy data. This is a consequence of benchmarking

|2, in Eq. (14) are related to the T matrix

2
47 (21 + DI (Eem, Pems PP (08 ern)| (15)
1

(

the partial-wave expansion in both versions against the full
perturbative-QCD (pQCD) results.

IV. CHARM QUARK TRANSPORT COEFFICIENTS

In this section, we discuss the resulting charm-quark trans-
port coefficients, focusing on the drag coefficient A(p) which
characterizes the thermal relaxation rate for the different input
potentials. We emphasize that the “true” potentials V; and V,,
are part of a comprehensive many-body setup which encom-
passes the 1QCD EoS and thus fully specifies the properties
of thermal medium, i.e., the spectral functions (masses and
widths) of the thermal partons that the heavy quark scatters
off. This is not the case for the previously used potential
“proxies” F and U, which have been applied within quasi-
particle approximations for the QGP medium. Therefore, in
Sec. IV A, we first conduct baseline calculations for all four
potentials, {U, F, V, V,,}, with thermal quasiparticle partons.
In Sec. IVB, we employ the off-shell formalism outlined
above to compute the transport coefficients for the potentials
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FIG. 5. Light-parton (left) and charm-quark (right) masses for V;
(solid lines), V,, (dashed lines), U (crosses), and F (dots) as used
in the quasiparticle calculations leading to the results displayed in
Fig. 8.

{Vs, Vi } in their accompanying bulk medium. In Sec. IV C we
scrutinize various nonperturbative effects (resummed vs Born
amplitudes, Coulomb vs full calculations with string term, and
on- vs off-shell) to exhibit their quantitative role in the HQ
transport.

A. Drag coefficients for different color forces
in quasiparticle medium

We first restrict ourselves to the quasiparticle approxima-
tion for the QGP medium, i.e., the thermal-parton spectral
functions in the expressions given in Sec. III are taken to be §
functions at their quasiparticle masses. The latter are chosen
to be the same for all four potentials as shown in Fig. 5 left,
obtained from a quasiparticle fit to the IQCD EoS using the
Fock mass ansatz [16] with V;. The charm-quark masses, plot-
ted in Fig. 5 right, are taken to be 1.264 + X(o0; T)/2 where
3.(00; T) denotes the infinite-distance limit of {U, F, V;, V,,}
as shown in Fig. 1. Note that the light parton masses from the
quasiparticle fit are different from the results extracted using
the off-shell many-body calculations [16], while the charm-
quark masses of {V;,V,} are taken from the corresponding
potential. This setup allows for an approximate “apples-to-
apples” comparison of how the different forces (or “effective
couplings”) shown in Figs. 2, 3, and 4 manifest themselves in
the charm-quark transport coefficients.

We start with the case of using the Born approximation to
calculate the friction coefficient, displayed in Fig. 6 for the
four potentials. The results for the WCS potential and the free
energy closely agree across all temperatures and charm-quark
momenta considered here. The friction coefficient is much
larger for the SCS potential and the internal energy, which
are also rather close to each other except that the U potential
is about a factor 2 larger at the lowest temperature and at high
momenta at the highest temperature.

To better understand what the relevant momentum ex-
changes for the transport coefficients are, we divide up the
phase space into shells of momentum transfer, k dk, where
k = |Pem — DPlyyl, and define a “normalized” momentum-
exchange density

K (k; p)dk = A(p)~'dAk) (16)

and a corresponding cumulative density

k
Alk; p) = / KR (K p) (17)
0
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FIG. 6. Friction coefficients for V; (solid line), V,, (dashed line),
U (crosses), and F' (dots) when using the on-shell Born diagrams in
quasiparticle approximation.

of the friction coefficient, A(p), defined such that A(p, k —
oo) = 1. These two quantities are plotted in Fig. 7 using the
SCS potential, Vi (still in quasiparticle and Born approxima-
tion). For low-momentum charm quarks, most of the momen-
tum transfers at low temperatures occur in a 0.5 GeV window
around k = 0.4 GeV, corresponding to a relatively large force
range of ~1 fm (recall the remark at the end of Sec. II). The
peak position shifts to higher momentum transfer as temper-
ature or HQ momentum increase, implying a transition from
the long-range string force to a shorter-range Coulomb force.

‘ T T T ‘ T
—— Charm p=0 GeV
————— Charm p=10GeV

"'m 0194Gev
B 0.258GeV ]
M 0.320GeV ]
W 0.400GeV ]

o
-
N
w
E>
o=

k (GeV)

FIG. 7. Differential CM momentum-transfer “probability” distri-
bution, K(k; p) (upper panel), for the friction coefficient from the
SCS potential in Born approximation, and its cumulative (lower
panel) for charm quarks at zero momentum (p = 0, solid lines)
and p = 10 GeV (dashed lines) for different temperatures (at low p,
temperature increases top-down).
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FIG. 8. Quasiparticle friction coefficients for V; (solid line), V,,
(dashed line), U (crosses), and F' (dots).

This is due to a harder thermal phase space and the enhanced
screening of the potential as temperature increases. For the
U potential, the effective coupling at a momentum exchange
of 0.5 GeV is about 50% larger at the lowest temperature
(recall upper left panel in Fig. 4), leading to an approximately
twice larger low-momentum friction coefficient in Fig. 6. A
similar analysis applies to the other potentials.

In the next step, we compare the friction coefficients from
the resummed 7 -matrix interactions in Fig. 8, still using
a quasiparticle QGP medium. At low temperature and low
momentum, the drag coefficients for U and V; are reduced
by a factor of 2 and 1.5, respectively, compared to the Born
calculation. This is mainly because the resummation converts
the strongly attractive Born term into subthreshold resonance
states whose interaction strength is not accessible in 2 — 2
on-shell scattering, while only a repulsive tail of the T matrix
remains in the on-shell phase space. However, for a less
attractive potential which does not generate a strong bound
state, which is the case for F and V,, the resummation
generally enhances the Born result. On the other hand, at high

momentum and high temperature, a closer agreement between
the Born approximation and 7 -matrix results is found.

B. Transport coefficients with off-shell effects

In the previous section we saw how in a strongly cou-
pled medium the formation of bound states can lead to a
marked decrease in the interaction strength when employing
the quasiparticle approximation in two-body scattering. This
should be considered as an artifact of an incompatible ap-
proximation. In the presence of a large interaction strength,
the single-particle spectral functions are expected to become
broad and/or develop collective modes below their nominal
“quasiparticle” masses. In either case, phase space opens
up below the quasiparticle two-body threshold and allows
for subthreshold resonance scattering. We now compute the
charm-quark transport coefficients deploying the off-shell
formalism described in Sec. III to incorporate the quantum
effects associated with subthreshold many-body interactions.
We focus on the results for the SCS and WCS as their self-
consistent solutions constructed in Ref. [16] specify the spec-
tral functions of the thermal partons, while this information is
not available for U nor F.

The pertinent charm-quark friction coefficients are com-
piled in Fig. 9. The full results displayed in the upper left
panel show that for small momenta and small temperatures
the relaxation rate is about four times larger for the SCS
than for the WCS, while with increasing momentum and
temperature they approach each other. The key reason for the
large enhancement at low momentum and temperature is the
remnant of the long-range confining force, as discussed in the
context of Figs. 1-4. At higher temperatures, the confining
potential is largely screened, and the larger thermal parton
momenta probe the force at shorter distances. Since the short-
range Coulomb force is quite similar for the WCS and SCS,
the difference between A (p) and A, (p) is reduced (in the
fits of Ref. [16] the screening of the Coulomb interaction is
slightly weaker in the WCS than in the SCS, causing A,,(p) to
exceed A;(p) at high momenta and at the highest temperature
where the confining interaction has nearly vanished).

The off-shell effects in the SCS scenario are illustrated
in the middle and right panels of Fig. 9, where we have
switched them off for either both thermal partons and the

Alp) (1/im)

04— —— —— —— T — —— —— — —— —— — — —— —— —— ——
L o " 0.104Gev ] | roT N ‘ 1k ' . ‘
B Solid: Strong 1L Solid: Charm&Light Offshell 1L Solid: Charm&Light Offshell
3 Dash: Weak 0.258GeV | =) Dash: Onshell (Refit Light EoS) \ Dash: Only Light Offshell
035 — 0.320GeV | [Z ]
[ — 0.400GeV 1| |

P IS Y
2 4 6 8 10
p(GeV) p(GeV) p(GeV)

FIG. 9. Charm-quark friction coefficients, A(p), for the full off-shell calculations (left) in the SCS (solid lines) and WCS (dashed lines),
and comparing the full off-shell case for the SCS (solid lines) with one using the on-shell approximation for both thermal partons and the
outgoing charm quark (dashed lines; middle panel) or for the outgoing charm quark only (dashed lines in right panel). (at high p, temperature

increases bottom-up).
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outgoing charm quark (middle panel) or only for the out-
going charm quark (right panel). In the former case, we
have readjusted (i.e., decreased) the thermal parton masses
to ensure compatibility with the 1QCD EoS. We find that the
quantum effects almost double the transport coefficients in the
small-momentum and low-temperature region: the broadening
of the thermal spectral functions allows one to probe off-
shell energies in the 7 matrix where scattering through a
(broad) bound state becomes possible. This confirms, in a
more rigorous treatment, the original findings of Refs. [27,28],
where near threshold resonances were put forward to solve
the heavy-flavor puzzle in Au-Au collisions at the BNL Rel-
ativistic Heavy Ion Collider (RHIC) [29]. A more moderate
but still significant effect arises from the nontrivial spectral
function of the outgoing charm quark. Switching back to
a § function reduces the low-momentum low-temperature
relaxation rate by almost 20%; cf. right panel of Fig. 9. Once
the resonance states are close to threshold (or have melted)
so that the on-shell treatment can already access the main
scattering strength, the off-shell treatment does not provide
a significant enhancement. For the WCS, the results from
the full off-shell case generally agree well with the results
from the quasiparticle case (not shown), since the widths of
spectral functions are small. At high momentum, the HQ drag
coefficients are dominated by the Coulomb term, augmented
by relativistic (magnetic) corrections (Breit enhancement),
while the scalar vertex assumed for the string interaction
suppresses its high-momentum contribution. Therefore, the
off-shell case approaches the quasiparticle case: the spectral
functions become more quasiparticle-like, and the typical CM
energy in the 7' matrix becomes larger.

In Fig. 10 we summarize the temperature dependence
of the zero-momentum relaxation rate, y = A(p — 0), and
the dimensionless spatial diffusion coefficient, D;(2nT) =
(2mT?)/(m.y,), for the WCS and SCS. As a reference, we
also show a perturbative QCD (pQCD) Born result (using
ay = 0.4 in a quasiparticle QGP with Debye and thermal
parton masses of g7', and a constant charm-quark mass of
1.5 GeV) upscaled by a factor of 5 (as recently used as a
benchmark scenario in Ref. [30]). The temperature behavior
of the relaxation rates and spatial diffusion coefficients for the
WCS is similar to the pQCD*5 scenario, wherein y increases
monotonically with temperature and D;(27T') is essentially
constant, similar to what one would expect from a dimen-
sionless theory. For the SCS, on the other hand, y exhibits
a rather flat behavior with temperature where the increasing
density of the thermal scatterers is essentially compensated by
the decreasing interaction strength. Consequently, D;(27 T)
increases with temperature by about a factor 5 over the
considered temperature range of 7 = 0.2-0.4 GeV; the extra
dimensionful quantity is brought in by the nonperturbative
string tension. Also note that the SCS diffusion coefficient
differs from the “bare” pQCD interaction by a factor of almost
15 at low temperature.

C. Scrutinizing nonperturbative effects

In the calculation of the transport coefficients, there are at
least three nonperturbative components: (1) the string inter-
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FIG. 10. Temperature dependence of the zero-momentum relax-
ation rate, y (upper), and the spatial diffusion coefficient, D, =

T /(yM.) [lower, in units of the thermal wavelength D;(27T)]. The
pQCD results uses oy = 0.4 and a factor of 5.

action in the potential, (2) the resummation of the 7 -matrix
possibly leading to the resonance formation, and (3) off-shell
effects from the large widths of the partons. Here, we reassess
these effects relative to the full calculation of the friction
coefficient within the SCS in Fig. 11, using the thermal parton
and charm-quark masses shown in Fig. 5.

When switching off the string interaction in the potential
(and neglecting off-shell effects, which play a negligible role
in this scenario), the pertinent 7 -matrix results for the friction
coefficient (labeled “Coulomb-only” in Fig. 11) are much
reduced compared to the full results at low momentum, close
to a factor of 15 at low temperature, and still by a factor of ~3
at T = 0.4 GeV. At charm-quark momenta of p = 10 GeV,
the reduction is still significant at low 7' (indicating a non-
negligible portion of soft interactions driven by the string
term), but has essentially ceased at T = 0.4 GeV. Therefore,
perturbative (elastic) calculations of A(p) that do not account
for remnants of the confining term are not reliable at low
temperatures even at momenta of p = 10 GeV. The “on-
shell” results with the full interaction, already shown in the
previous section, fall below the full results by almost 50% at
low T and nearly uniform in three-momentum from O to 10
GeV. This implies that even at p = 10 GeV, the soft off-shell
effects (making accessible the subthreshold resonances) are
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FIG. 11. Comparison of the effects of different ingredients on the
HQ transport coefficients in the SCS as a function of charm-quark
momentum, at four different temperatures. Solid lines: full results;
dashed lines: using the on-shell approximation for the thermal par-
tons and outgoing charm-quark; dash-dotted line: on-shell results
using only the Coulomb term in the potential; dotted lines: using
the Born and quasiparticle approximation (including the confining
potential).

significant, although in practice one expects radiative pro-
cesses to become dominant at these momenta. The difference
between full and on-shell calculations is essentially gone
at T = 0.4 GeV (resonance structures have ceased), again
basically across the entire momentum range. Finally, the “on-
shell Born” results are surprisingly close to full results within
a few tens of percent. This is, however, a highly deceptive
result: if we include the second Born term in the 7 matrix, the
friction coefficient is up to 5 times larger at low momentum
and low temperature, signaling an uncontrolled convergence
property of the perturbative series at low momentum, very
similar to the findings in Ref. [31]. This is another reminder
that a proper resummation in the nonperturbative region is
mandatory. Figure 11 furthermore shows that the “on-shell
Born” and “on-shell” curves approach each other at high
momentum. Still, the results for the second Born order at high
momentum and low temperature double the first-order result,
i.e., the convergence of the perturbative series is still not
good (due to the presence of the string term). This situation
improves at higher temperature: at 7 = 0.4 GeV, the second
Born contribution is only by a factor 1.8 (1.6) larger than the
Born contribution at low (high) momentum.

V. CHARM-QUARK LANGEVIN SIMULATIONS
IN HEAVY-ION COLLISIONS

In this section we implement the transport coefficients
following from the self-consistent WCS and SCS, as well as
from the U-potential proxy with quasiparticle QGP medium
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FIG. 12. Extrapolation results for D2z T), M., Ay(p) and
A, (p). (at high p, temperature increases bottom-up).

as used in previous phenomenological analyses [32],° into
Langevin simulations of charm quarks in URHICs as de-
scribed in Ref. [33]. As our current calculations are lim-
ited to temperatures 7 = 0.194-0.4 GeV and momenta p =
0-10 GeV, an extrapolation is required to cover the ranges
needed in the Langevin approach to heavy-ion collisions at the
CERN Large Hadron Collider (LHC). Since the p dependence
of the quasiparticle results is similar to the full results at
high momentum (as discussed in the previous section), we
extrapolate A(p) to higher momenta using the quasiparticle
results augmented by a p-independent K factor to smoothly
connect them at p = 10 GeV. For the extrapolation to lower
and higher temperatures, we first extrapolate D(27T) and
m, as shown in the lower two panels of Fig. 12. Then,
we use A(p=0;T)=T/(Dgm.) and take the momentum
dependence of A(p; T) to be the same as for A(p; T) at T =
0.194(0.4) GeV for low (high) temperature, as shown in the
upper two panels of Fig. 12.
The transport coefficients are utilized within the Langevin
equations
dx = 2 _ar, (18)
ec(p)

dp = —T(p)pdt +

2dtD(p)p, 19)

where the relaxation rate, I'(p), and the momentum diffusion
coefficient, D(p), are taken to be I'(p) = A(p) and D(p) =
Bo(p) = B1(p) =Te.(p)T'(p), and p is a random number
determined from the Gaussian distribution function P(p) =
(2mw)~3/2¢7*/2. Using the Langevin equations, we simulate
Brownian motion of charm quarks in a background medium

The pertinent free energy from Ref. [1] is close to the free energy
[17] used for the WCS and SCS results.
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FIG. 13. The Rs4 (upper panel) and v, (lower panel) of charm
quarks calculated from the 7'-matrix interactions with three different
potentials using relativistic Langevin simulations in a hydrodynamic
fireball evolution for semicentral Pb-Pb collisions at the LHC.

provided by an ideal hydrodynamic evolution of the QGP
fireball in URHICs at RHIC and the LHC. For definiteness, we
choose semicentral Pb-Pb collisions at CM energy ./syny =
5.02 TeV, at a fixed impact parameter representing the 20—
40% centrality class.

Figure 13 summarizes the nuclear modification factor, R44,
and elliptic flow, v,, of charm quarks at the end of the QGP
evolution, taken at T,. = 170 MeV, for the three potentials
under investigation. The R44 shows the standard feature of
softening the initial charm-quark spectra, but only exhibits a
modest sensitivity to the underlying potential. This reiterates
the finding [34] that the main effects determining the charm-
quark Rs4 occur early in the evolution where the difference
between the potentials is small. This is quite different for
the elliptic flow [34], which requires several fm/c to build
up in the expanding fireball. At that point the difference in
the underlying potential scenarios becomes maximal, and,
consequently, the low-p; elliptic flow of charm quarks pro-
vides a direct gauge of the coupling strength in the later
stages of the QGP evolution. More quantitatively, the largest
value of the v, is generated within the SCS reaching near
10%, more than a factor of 3 larger than in the WCS. The
maximum value attained with the U-potential proxy is close to
the SCS, indicating that low-p;, elliptic flow of charm quarks

is rather sensitive to the long-distance behavior of the in-
medium potential, and thus an excellent measure of the spatial
diffusion coefficient. Note that a charm-quark momentum of
p: =2 GeV corresponds to a velocity of about 0.74c, not
much larger than the (surface) flow velocities reached in the
fireball expansion at the end of the QGP phase. At higher p;,
above x4 GeV, the intermediate-distance strength is largest
in the U potential and leads to significantly larger v, values
than obtained for V; and V,,.

To make contact with experiment, we proceed to calcu-
late D-meson observables, i.e., their pr-dependent nuclear
modification factor and elliptic flow. As the fireball medium
approaches the pseudocritical temperature, charm quarks are
hadronized into D mesons through either recombination with
surrounding light quarks from the hydrodynamic medium
(predominantly at low p;) [35] or independent fragmentation
[we also account for a ~20% (pr-dependent) reduction in
the D-meson yields due to shadowing and “chemistry effects”
where charm quarks hadronize into other hadrons like D, and
A, at a higher fraction than in proton-proton collisions]. We
finally carry out the D-meson diffusion in the hadronic phase.
The resulting D-meson R44 and v, are shown in Fig. 14.
Recombination effectively acts as another interaction between
charm quarks and the medium, driving the D-meson spectra
closer to equilibrium [33]. This produces a characteristic flow
“bump” in the Ra4 at a pr reflecting the velocity of low-
momentum D mesons embedded in the flowing hydrodynamic
medium. At high pr, fragmentation takes over, and the D-
meson Ry, tends toward that of the charm quark (modulo fur-
ther suppression due to D-meson interactions in the hadronic
phase). Other than the flow bump, the qualitative features of
the charm-quark spectra relating to the different potentials are
preserved at the D-meson level. However, the discrimination
power is somewhat reduced: while the low-pr v, is still
quite similar for the SCS and the U potential, for the WCS
it is only a factor 2 below the former two. This is because
recombination plus hadronic diffusion together add a roughly
equal amount of v, in the 3 potential scenarios when going
from charm-quark to D-meson spectra. To some extent this is
an artifact of applying the same coalescence model to all three
scenarios. In reality, the coalescence probability should be
smaller in the WCS compared to the SCS, since the D-meson
resonance strength, which is the microscopic mediator of the
recombination process, is weaker in the WCS than in the SCS
and thus should lead to a smaller increment in v, in the former
compared to the latter. While the resonance recombination
model [35] (as employed here) in principle encodes this
mechanism, its implementation in the current calculation does
not account for this difference. These considerations reiterate
the importance of a recombination model that is consistent
with the microscopic interactions driving the diffusion process
in the the vicinity of 7.

Finally, we put our results into context of experimental
data. In Pb-Pb collisions at the LHC [36—41] maximal v,
values of ca. 17 £ 3% have been reported for D mesons in
30-50% central collisions. The SCS calculation is not far
below that, but the WCS and also the free-energy potential
(not shown here) are strongly disfavored as their interaction
strength is too small. This demonstrates the sensitivity of
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FIG. 14. Comparison of our calculated D-meson Rs4 (upper
panel) and v, (lower panel) from different potential scenarios,
obtained from applying a recombination-fragmentation model to
hadronize the charm-quark spectra plotted in Fig. 13 plus hadronic
diffusion. The experimental data are taken from Refs. [36-38] where
the vertical error bars are obtained from summing up statistical and
systematic uncertainties in quadrature.

using heavy-meson spectra as a probe of the color force in
the QGP. We also point out the importance of rooting the
calculations of the transport coefficients in a realistic bulk
medium (as done in both WCS and SCS through fitting the
1QCD EoS). For example, ignoring this requirement one could
use, e.g., a rather weak potential within a medium of massless
parton to generate a substantially larger v, than in the WCS
(simply because the parton density is unrealistically large).
The SCS shows increasing deviations from the data at py 2>
5 GeV (the U potential does not generate enough suppression
either in the D-meson R4 in central Pb-Pb collisions). This
is, however, expected, since radiative processes have not been
systematically included yet (some are encoded through the
in-medium self-energies of the heavy and light quarks in the
T matrices); in fact, the deviations can be taken as evidence
for the importance of gluon radiation processes. The inclusion
of these processes may also help to reduce the milder dis-
crepancies at lower pr, together with irreducible three-body
scattering, or contributions beyond the potential approxima-
tion. However, the more significant reason for the discrepancy
in the low-pr v, presumably resides in the macrophysics

of our model, namely the currently employed ideal-hydro
evolution. For example, it was found [30] that the use of the
T-matrix transport coefficients (based on the U potential)
within a viscous hydro evolution leads to an appreciable
increase in the maximal charm-quark v, to near ~12%, com-
pared to the ~7% in Fig. 13. Other bulk evolution features,
like fluctuating initial conditions in the hydrodynamic evolu-
tion or pre-equilibrium effects (neither included in our ideal
hydro), may also play a role in this [42-45].

VI. CONCLUSIONS AND PERSPECTIVES

In an attempt to establish connections between heavy-
flavor phenomenology in heavy-ion collisions and the mi-
croscopic interactions driving the diffusion of heavy quarks
through the QGP formed in these reactions, we have employed
a range of underlying two-body interaction potentials to com-
pute the heavy-light 7 matrices and pertinent HQ transport
coefficients. Specifically, we have investigated two potentials
recently constructed to satisfy constraints from 1QCD for HQ
free and internal energies, quarkonium correlators and the
QGP EoS, as well as the free and internal energies, which
have been used previously as potential proxies. We have first
analyzed the corresponding forces, in particular their typical
ranges in both coordinate and momentum space. As expected,
the U potential yields the largest force strength, realized at
intermediate distances, while the strongly coupled 7 -matrix
solution develops a smaller force but of longer range; in both
cases the remnants of the confining force in the QGP play
a key role in generating nonperturbative interaction strength,
operative for temperatures of up to about 2.57;,.. The weakly
coupled solution and the free energy have very similar forces,
but are further reduced in strength and of much shorter range
than the internal energy and the strongly coupled solution. We
then derived a transport equation including quantum many-
body (off-shell) effects, to account for the broad spectral
functions of the thermal medium partons characterizing, in
particular, the SCS of the T-matrix solution. These off-shell
effects are instrumental in enabling the diffusing heavy quarks
to probe the interaction strength of the broad subthreshold
two-body resonances in the heavy-light scattering amplitudes.
As a somewhat surprising result, the SCS potential develops
the largest thermal relaxation rate for low-momentum charm
quarks among all four potentials, while the U -potential’s rate
is strongest at intermediate and large momenta. Implementing
these potentials into relativistic Langevin simulations revealed
the SCS potential to develop the largest peak value of the
charm-quark v,, about 20% above the U potential and a
factor of 3 larger than the WCS potential (or free energy).
Computing pertinent D-meson observables and benchmarking
them against experimental data at the LHC rules out the WCS
and free energy as viable potentials for HQ interactions in the
QGP. Even the SCS potential falls slightly short of accounting
for the existing low-momentum v, data at the LHC. These
findings imply that charm quarks acquire collisional widths
of 0.5-1 GeV in the QGP near T, and consequently low-
momentum light partons are likely dissolved in this regime,
i.e., soft excitations in the QGP near 7j,. do not support parton
quasiparticles; at the same time, broad hadronic resonances
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emerge and act as mediators of the nonperturbative interaction
strength.

Among the challenges that remain in the HQ sector are to
account for the missing ~20% in the low-py elliptic flow of
D mesons as observed at the LHC, and to incorporate gluon
radiation in a strongly coupled framework. The latter will be
essential to increase the high-pr suppression and v,, whereas
genuine three-body scattering, retardation effects, improve-
ments in the coalescence mechanism and/or the hadronic
diffusion, as well as features of the bulk evolution not captured
by the ideal-hydro model employed here could augment the v,
at low py. Work on several aspects of the above has already
been done by various groups and/or is in progress, and efforts
to combine them are ongoing [30] and expected to reveal
further insights in due course.
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APPENDIX: CENTER-OF-MASS TRANSFORMATION

In this Appendix, we provide details on the CM transfor-
mation implemented in this work. We first discuss the CM
transformation in a nonrelativistic system, followed by the
relativistic case.

The nonrelativistic 7 matrix can be expressed as

T(E7P9 P1, p/l) :V(pl _p/l)

o0 d3k1 @)
| Gy ¥ ®rknGGE ki P—ky)

x T(E,P, ki, p)). (A1)

where the total three-momentum and energy are P = p; +
p: and E = w; + w, + i€, respectively. In a nonrelativistic
system, the two-body propagator reads

1
(2)

G(O)(E, ki, P—Kk|) = K2 Pk’ (A2)

E — L _ 1

M, 2M,

and the CM transformation can be expressed as
’ (A3)

v m — kil
T M

Pem =P — MiVen, (A4D)

where p (and the corresponding p.m,) is a generic notation
for p1 2, p’l’z, k,, etc., and M,,; = M| + M, is the total mass.
Therefore, the transformations for the momenta are p; =
Pem + M Ve, p/l = pém + M1Vem, k1 = kcm + M v Sub-
stituting these into Eq. (A1) and noting that V(p; — p}) =
V(Pem — P, ), We obtain an equivalent equation that only de-
pends on E and P implicitly through E., = E — P?/(2M ),

T(Ecm, Pcms P/cm) = V(pcm - pém)

o d3ka
T ) Gy em ™ Ken)
—0Q
1 /
X ——47 T (Eem: Kem: P ) (AS)

cm 2

with the reduced mass u = MM, /M. The solution to the
original equation (A1) is calculated using the reverse CM
transformation,

Pen = D M\P  p M —piM,
—p — =
- Mo Mo,
, ,  MP piM, —piM,
Pon =P =3 = —— (A6)
tot tot

In vacuum, solving the equation in the CM frame and trans-
forming back to an arbitrary frame results in the same solution
as obtained from solving the original equation, due to Galilean
invariance. No approximations are necessary in this proce-
dure. In medium, neglecting the blocking factor and using
the two-body self-energy [16] to include medium effects, the
T -matrix equation in the the-body CM frame is given by

T (ECm ’ pCma pz:m)

00 d'ik
= V(pcm - p/cm) + / —

e (27_[)3 - kcm)

V(Pem

1

« T(Ecmka 7p:} )'
Ean — 57— ZOE. P, ko) o

(A7)

Here, the CM approximation assumes that the two-body
self-energy only depends on P and E through E.p, so that
2(2)(Es P, Kem) ~ 2:(2)(Ecm7 0,Kem) = 2:(2)(Ecm7 Kem).  The
CM transformations have the same form in medium and in
vacuum, but it is an approximation for the in-medium case.
Thus, the CM transformation can be understood as expressing
Pcm as a function of {M;, M>, p;, p»} and p,,, as a function
of (M, M, p},p,}. This is the motivation for defining an
analogous transformation for the relativistic in-medium
off-shell case.

In the relativistic case, transformations to an arbitrary
frame are Lorentz transformations (with || and L indicating
parallel and perpendicular to the relative velocity, respec-
tively),

pL=pL
(A8)

e, =v(ep,—vp), Pj=vy(p|—vep),

pi=p-V. pL=p—pV

where ¥ denotes the unit vector in the direction of the velocity.
Relativistic CM transformations, in analogy to Eq. (A6), are
realized using the quantities

+
cm = PP s (A9)
8P| + sz
Spl + 8P2
cm — — > Al10
Y NG (A10)
2
s = (ep, +p,)" = 1 +P2)° (A11)

After obtaining the 7-matrix solution in the CM frame,
it is necessary to express {Ecm,Pem,P.y,} in terms of
{P1, P2, P}, P}, E} to obtain the solution in an arbitrary frame.
The relativistic CM transformation for energy is simply
A/$ = Ecn = ~/E? — P2, For the CM three-momentum, P,
it can be expressed in terms of components parallel and
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perpendicular to v, as

Ep, P1| — €p, P2
NG ’

_ N ~ _ Pip2 — P2y
Peml = PL —p—Pchm - —
[p1 + p2|

and likewise for primed momenta, together with the con-
straint on total momentum conservation, p; + p> = p} + p5.
The CM transformation for pem = [Peml, Piy = IPLyls and
€08(@em) = Pem * P/ (PemPl) i Eq. (15) can be obtained
using Eq. (A12) and its primed counterpart. The Galilean CM
transformations are recovered in the nonrelativistic limit. In

Pem|| = Yem(P| — Vem€p) =

(A12)

the on-shell limit, the relativistic CM transformation used in
Ref. [9] is recovered. However, since the transformation intro-
duced here does not involve the external energies, the analyti-
cal properties of the transformed 7 matrix are preserved more
accurately, while in the prescription of Ref. [9] the Lorentz
invariance of the Mandelstam variables is preserved. Since our
focus here is on the low-momentum properties of the heavy
quarks, in connection with off-shell effects, we choose as our
default is the new prescription of Eq. (A12). In practice, the
imaginary parts of the parton self-energies calculated within
the present prescription tend to be 10% larger at their peak
values compared to the previous prescription used in Ref. [9].
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