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Heavy quarkonium dissociation in the finite space of heavy-ion collisions
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The dissociation of heavy quarkonia in the constrained space is calculated at leading order compared with that
in an infinitely large medium. To deal with the summation of the discrete spectrum, a modified Euler-Maclaurin
formula is developed as our numerical algorithm. We find that with the constraint in space, the dissociation of
quarkonia at early time after the collision becomes negligible if the QGP and quarkonia are formed.
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I. INTRODUCTION

The quark-gluon plasma (QGP) is believed to be the state
of quark matter at extremely high temperature and/or ex-
tremely high density. Such conditions can be found in the lab-
oratory only by relativistic heavy-ion collisions. The volume
in which the QGP is produced is at the same scale as that of
a nucleus, and the QGP cannot be detected directly. Heavy
quarkonia are important probes of the QGP produced in
heavy-ion collisions, since they suffer suppression in the QGP
and almost survive the hadron gas. Fruitful results are ob-
tained in experiments [1–6] including the nuclear modification
factors of quarkonia at different energies, rapidities, and trans-
verse momenta. On the other hand, different models have been
suggested to calculate the suppression. The earliest idea is that
different excited states of quarkonia melt in the QGP sequen-
tially due to the color screening [7,8]. A different point of view
[9] attributes all the observed heavy quarkonia to the thermal
balance between the open and hidden heavy flavors. Mean-
while, the calculation based on scattering cross section was
presented [10–13], and the regeneration of quarkonia from
heavy quarks in the QGP is considered [12,14,15]. The prop-
erties of heavy quarkonia have also been studied in the frame-
work of effective field theory [16] and lattice QCD [17]. The
theories are still under development in recent years [18–37].

All these theories focus on the properties of quarkonia in
an infinitely large medium, while the volume of the QGP
is finite in experiments, especially at early time after the
collision. One direct consequence is that the spectrum of
gluons becomes different in finite space compared with that in
infinite space at the same temperature, and therefore the dis-
sociation rate of heavy quarkonia differs. In this paper we will
discuss the corresponding effect. Note that the longitudinal
size of the medium is much smaller than that in the transverse
directions, we will assume that the medium is infinitely large
in the transverse directions. For simplicity, we only consider
the initially produced quarkonia at middle rapidity and take
the leading-order cross section of the gluons dissociation
process.
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In Sec. II, we introduce the model to describe the sup-
pression of quarkonia, where a summation in the spectrum of
gluons in finite space is introduced to replace the integral in
infinite space. To deal with the summation, a modified Euler-
Maclaurin formula is developed in Sec. III as our numerical
algorithm. Results of the gluon spectrum and the dissociation
rate of quarkonia in finite space compared with that in infinite
space are shown in Sec. IV. The effective initial time is
also discussed in that section. A short conclusion is given in
Sec. V. We take the natural units h̄ = c = kB = 1. A pair of
square brackets [ ] in an equation within this paper is always
used as a floor function.

II. DISSOCIATION OF QUARKONIA

In high energy nuclear collisions, the distribution function
fH (p, x, t ) of heavy quarkonia H at (p, x) in the phase space
at time t is controlled by the equation [38]

∂ fH/∂t = −αH fH (1)

at middle rapidity in the laboratory frame, where αH (p, x, t )
is the dissociation rate of H in the hot medium. We have
neglected both the leakage effect [38] and the mean field effect
[39] on heavy quarkonia.

Before discussing the loss term αH in finite space, we first
write it in infinite space. For simplicity, we only consider
the gluon dissociation process g + H → Q + Q̄ in the QGP
phase, and the loss term αH is

αH (p, x, t ) = 1

2EH

∫
d3k

(2π )32Eg
W QQ̄

gH (s) fg(k, x, t ), (2)

where EH and Eg are the energies of the heavy quarkonium
H and the gluon, respectively, in the laboratory frame. The

transition probability W QQ̄
gH (s) = 4σgH

√
(pμkμ)2 − m2

H m2
g is a

function of s = (pμ + kμ)2 with pμ and kμ being the four-
momenta of H and the gluon, respectively. The gluon mass
mg is taken as zero. The dissociation cross section [40,41] is

σgH (ω) = A0
(ω/εH − 1)3/2

(ω/εH )5
, (3)

2469-9985/2019/99(5)/054901(5) 054901-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.99.054901&domain=pdf&date_stamp=2019-05-01
https://doi.org/10.1103/PhysRevC.99.054901


GUO, DAI, XIE, AND LIU PHYSICAL REVIEW C 99, 054901 (2019)

with A0 = 211π/(27
√

m3
QεH ), where ω = (s − m2

H )/2mH is

the gluon energy in the rest frame of H . The binding energy
is replaced by the threshold energy εH = (4m2

Q − m2
H )/(2mH )

in our calculation in order to include the recoiling effect [42],
where mQ is the mass of a heavy quark. The distribution
function of gluons is assumed to be thermal

fg(k, x, t ) = Ng

euμkμ/T − 1
, (4)

where T (x, t ) and uμ(x, t ) are the local temperature and
four-velocity, respectively, and Ng = 16 is the degeneracy of
gluons. The dissociation in the hadron phase is neglected.

For simplicity, we describe the fireball by Bjorken’s hydro-
dynamics, which neglects the transverse flow of the medium,
and the entropy density is inversely proportional to time.
For the spatial distribution, the entropy is assumed to be
proportional to the number density of participants npart. We
take the equation of state as that of an ideal parton gas. Then
we have

T (x, t ) = T ∗
(

t∗

t

npart (x)

npart (x = 0)

) 1
3

, (5)

where T ∗ is the temperature at x = 0 and t = t∗. The number
density of binary collision npart is calculated by the Glauber
model [43] with the Woods-Saxon density profile ρ(r) =

ρ0

1+e(r−r0 )/a . The specific parameters of 197Au (r0 = 6.38 fm,

a = 0.535 fm, and ρ0 = 0.169 fm−3) used in the numerical
calculations are from Ref. [44]. Note that Eq. (5) is valid only
after the thermalization.

Now we consider the loss term αH in the finite space.
In relativistic heavy-ion collisions, the QGP only exists in
a small region in space, especially at early time after the
collision when the longitudinal size is small. For simplicity,
we assume that the fireball is infinitely large in the transverse
directions and the longitudinal size of the fireball is L = 2t at
time t after the collision, because the wave function of gluons
exactly vanishes outside this range. The eigen energy of a

gluon in the laboratory frame is Eg =
√

k2
T + ( nπ

L )2, where kT

is the transverse momentum of the gluon and n = 1, 2, . . . is
the quantum number of kz. The loss term in Eq. (2) is replaced
by

αH = 1

2EH L

∑
n

∫
d2kT

(2π )22Eg
W QQ̄

gH (s) fg(kT , n, x, t ), (6)

where fg(kT , n, x, t ) takes the same form as in Eq. (4) with
kz = nπ/L. Note that Eq. (4) is invariant under a transverse
boost. Equation (6) can be rewritten in the quarkonium frame
as

αH = 1

4EH

∫
dω

ω
fωW QQ̄

gH (s). (7)

The number density fω of gluons per unit energy in the
quarkonium frame is

fω = dN

dωdV
= 1

L

∑
n

∫
d2k′

T

(2π )2dω
fg(k′

T , n, x, t ), (8)

with the gluon thermal distribution function

fg(k′
T , n, x, t ) = Ng

euμ
H k′

μ/T − 1
, (9)

where uμ
H and k′

μ are, respectively, the local four-velocity
of the medium and the four-momentum of the gluon in the
quarkonium frame.

III. MODIFIED EULER-MACLAURIN FORMULA

To work out the summation in Eq. (8), we develop a mod-
ified Euler-Maclaurin formula. The original Euler-Maclaurin
formula [45] is

b∑
i=a

f (i) =
∫ b

a
f (x)dx + f (b) + f (a)

2

+
[ n

2 ]∑
r=1

B2r

(2r)!
( f (2r−1)(b) − f (2r−1)(a)) + Rn,

(10)

where B2r is the (2r)th Bernoulli number [46]. The remainder
term is

Rn = (−1)n+1

n!

∫ b

a
f (n)(x)Pn(x)dx, (11)

where Pn(x) is the periodic Bernoulli polynomial [47].
Sometimes the first few terms are important (e.g., low

energy states in calculating the partition function of bosons
at low temperature). Thus we take the summation of the first
m terms explicitly. The Bernoulli number B2r grows fast with
r, and the remainder term Rn often diverges as n → ∞. The
Fourier series of Pn is [48]

Pn(x) = −n!
∑

k∈Z−{0}

e2π ikx

(2π ik)n
. (12)

We take 2p terms with |k| � p in Eq. (12) and leave the others
to the new remainder term Rmnp. Then the modified Euler-
Maclaurin formula is

b∑
i=a

f (i) =
a′−1∑
i=a

f (i) + f (b) + f (a′)
2

+
∫ b

a′
f (x)

sin(2p + 1)πx

sinπx
dx

+
[ n

2 ]∑
r=1

2(−1)r−1

(2π )2r
S2r,pM2r−1(b, a′) + Rmnp, (13)

with S2r,p = ζ (2r) − ∑p
k=1

1
k2r , M2r−1(b, a′) = f (2r−1)(b) −

f (2r−1)(a′), and a′ = a + m. Here the ζ in S2r,p is the
Riemann zeta function. Dropping the new remainder
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FIG. 1. Gluon number density fω in unit energy in the finite
space (L = 1 fm) and the infinite space (L = ∞) at T = 0.35 GeV
with v = 0 and v = 0.7c.

term

Rmnp = 2
∞∑

k=p+1

∫ b

a′
f (x) cos(2πkx)dx

+
[ n

2 ]∑
r=1

2(−1)r

(2π )2r
S2r,pM2r−1(b, a′), (14)

an m-n-p cut of the modified Euler-Maclaurin formula is
obtained, which can be used as a numerical algorithm of
the original summation. Any accuracy can be achieved by
choosing n and p. In practice, the integral in Eq. (13) can also
be calculated by∫ b

a′
f (x)

sin(2p + 1)πx

sin πx
dx

= 2
p∑

k=1

∫ b

a′
f (x) cos(2πkx)dx +

∫ b

a′
f (x)dx. (15)

The loss term in Eq. (7) is calculated by a 2-2-1 cut of the
modified Euler-Maclaurin formula as

αH =
2∑

i=1

H (i) +
∫ ∞

3
H (y)

sin 3πy

sin πy
dy + 1

2
H (3)

− 2

(2π )2
(ζ (2) − 1)H (1)(3) (16)

in the next section with

H (y) = 1

4EH L

∫
d2k′

T

(2π )2ω
W QQ̄

gH (s) fg(k′
T , y, x, t ). (17)

IV. NUMERICAL RESULTS

Now we discuss the number density fω per unit energy in
Eq. (8) of gluons which is called density in the following for
short. Figure 1 shows the density as a function of ω in a static
(v = 0) or moving frame (v = 0.7c) in a finite fireball (L = 1
fm) compared with that in an infinite fireball (L = ∞) at T =
0.35 GeV. The density in a finite fireball is never larger than
that in an infinite fireball and the gluons whose energy is less
than the ground state energy ω0 = π/L vanish. To understand

FIG. 2. Loss term αJ/ψ as a function of longitudinal size L at
transverse momentum pT = 0 and 3 GeV at T = 0.35 GeV.

the properties of fω, we consider two limits: in the static frame
and in the fast moving one. (i) In the static frame (v = 0),
Eq. (8) can be simplified as

f L
ω = Ng

2πL

[
ω

ω0

]
ω

eω/T − 1
, (18)

while the density in the infinite space is

f ∞
ω = Ng

2π2

ω2

eω/T − 1
. (19)

The ratio fr = f L
ω / f ∞

ω satisfies (1 − ω0
ω

) � fr � 1 at ω � ω0

and the equality holds only at ω = nω0 (n = 1, 2, 3, . . . ) as
shown in Fig. 1. (ii) In the fast moving frame, Eq. (8) can be
simplified in the condition of both |uT

H | = √
(ux

H )2 + (uy
H )2 �

2T ω/ω2
0 and |uT

H | � T/ω as

f L
ω = Ng

L

√
ω

(2π )3B
e−Aω+Bω

√
1−( ω0

ω
)2
, (20)

with A = u0
H/T and B = |uT

H |/T . In the infinite space, the
density is

f ∞
ω = Ngω

(2π )2B
e(−A+B)ω. (21)

The ratio in the fast-moving frame is

fr = 1

L

√
2πB

ω
eBω(

√
1−( ω0

ω
)2−1) 	 1, (22)

which shows strong suppression of the density in the finite
space.

The change of the density leads to the change of the loss
term αH defined in Eq. (7). As a result of the discussion in
the previous paragraph, in the static frame, the loss term αL

in the finite space lies between 1
2α∞ and α∞ at ω0 < εH ,

and it is far smaller than α∞ at ω0 � εH with ω0 � T . In
the following we discuss the dissociation rate of J/ψ in two
cases. (i) We fix the temperature T = 0.35 GeV as a constant.
Figure 2 shows the loss term αJ/ψ as a function of L at the
transverse momentum pT = 0 and 3 GeV of J/ψ . The finite
system approaches the infinite system when L is large, and
the finite volume effect is remarkable at a small L (� π

εJ/ψ
).

The kinks of the line in Fig. 2 come from the jumps of fω in
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FIG. 3. Loss term αJ/ψ as a function of time t in the finite space
and the infinite space with the transverse momentum pT = 0 and
3 GeV of J/ψ with Bjorken’s hydrodynamics.

Fig. 1. (ii) We evolve temperature T according to Bjorken’s
hydrodynamics. In Fig. 3, we show the αJ/ψ as a function
of time t with transverse momentum pT = 0 and 3 GeV with
T ∗ = 0.35 GeV at t∗ = 0.6 fm/c. In the infinite space, the loss
term is divergent at t = 0 if Eq. (5) holds. This divergence
is usually avoided by constraining the suppression after the
formation of the QGP and J/ψ . However, our calculation
indicates that even if the formation times of the QGP and J/ψ
are early enough, the loss term αJ/ψ is still negligible at small
t . The formation time 〈τ 〉 of J/ψ was estimated to be 0.44
fm, with a width of 0.31 fm [49]. Other estimations are at
the similar order of magnitude. Thus the J/ψ are produced
roughly between t = 0.1 and t = 0.8 fm. For those produced
before t = 0.5 fm, the finite volume effect is not negligible.
The results of ϒ(1s) are similar.

We introduce an effective initial time t0 to characterize the
finite volume effect itself. It is defined so that the nuclear
modification factor RAA of quarkonia in the finite space from
t = 0 is equal to the RAA in the infinite space from t = t0, with
the assumption that the formation time of QGP and that of
quarkonium are small enough. The calculated effective initial
time t0 of H (J/ψ,ϒ(1s)) as a function of pT with temperature
T ∗ = 0.35 and 0.51 GeV at t∗ = 0.6 fm/c is shown in Fig. 4.
The threshold energy εH is important to the effective initial
time. As discussed in the previous paragraph, in the static
frame, we have αL ∼ α∞ at ω0 	 εH , and αL 	 α∞ at ω0 �
εH with ω0 � T . Therefore, ω0 = εH gives a rough estimate of
t0, which leads to the relation t0J/ψ /t0ϒ(1s) ≈ εϒ(1s)/εJ/ψ . In our

FIG. 4. Effective initial time t0 of J/ψ and ϒ(1s) as a function
of pT with Bjorken’s hydrodynamics with T ∗ = 0.35 and 0.51 GeV,
respectively, at t∗ = 0.6 fm/c.

calculation, the ratio of εϒ(1s)/εJ/ψ and t0J/ψ /t0ϒ(1s) are 1.67 and
1.65, respectively. At high-pT , the suppression of fω is strong
according to Eq. (22). Therefore t0 increases monotonically
with pT . No strong dependence of t0 on the initial local
temperature T ∗ is observed in our calculation. Note that only
the leading-order (gluon dissociation) process is considered in
this paper, the velocity dependence could be different at higher
orders (e.g., quasifree scattering).

V. CONCLUSION

Based on the rate equation of heavy quarkonia and
Bjorken’s hydrodynamics, we calculated the gluon number
density fω per unit energy and the loss term αJ/ψ in finite
space compared with that in infinite space at the same tem-
perature. It is found that the suppression of heavy quarkonia
in the constrained space is weak, and therefore the suppression
of heavy quarkonia at early time after the collision can be
neglected, even if the QGP and quarkonia are formed early
enough and the temperature of the medium is high. The
resulting concept effective initial time t0 can be estimated at
pT = 0 by the threshold energy, and it increases with pT . A
modified Euler-Maclaurin formula is developed to deal with
the summation powerfully.
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