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Description of the mass-asymmetric fission of the Pt isotopes, obtained in the reaction
36Ar + 142Nd within the two-stage fusion-fission model
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The two-stage dynamical stochastic model developed earlier for the description of fusion-fission reactions
is applied to the calculation of mass and energy distributions of fission fragments of platinum isotopes in the
reaction 36Ar + 142Nd → 178−xPt + xn. The first stage of this model is the calculation of the approaching of
the projectile nucleus to the target nucleus. In the second stage, the evolution of the system formed after the
touching of the projectile and target nuclei is considered. The evolution of the system in both stages is described
by three-dimensional Langevin equations for the shape parameters of the system. The mutual orientation of the
colliding ions and tunneling through the Coulomb barrier in the entrance channel are also taken into account.
The potential energy of the system is calculated within the macroscopic-microscopic approach. The calculated
mass-energy distributions of fission fragments are compared with the available experimental data. The impact of
shell effects, rotation of the system, and neutron evaporation on the calculated results is discussed.
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I. INTRODUCTION

The first theoretical description of nuclear fission discov-
ered in 1939 [1,2] was given in the framework of the liquid
drop model [3] in which it is assumed that the properties of
the atomic nucleus are similar to those of a charged viscous
incompressible liquid drop. It turned out that the liquid drop
model predicts splitting of the fissioning nucleus into two
fragments with the same masses, which was confirmed by
experiments of highly excited nuclei. However, in the case
of low excitation energies, such as the fission of 235U by
thermal neutrons, the masses of the fission fragments are
not equal. The explanation of mass-asymmetric fission was
given later by the influence of shell effects. The presence of
a mass-asymmetric fission valley for transuranium elements
was demonstrated by Pashkevich in Ref. [4]. In this paper,
the dependence of the potential energy of nuclei on their de-
formation was constructed using the shell correction method
of Strutinsky [5] and Brack et al. [6], and it was shown that
the fission process is strongly affected by the deformation
dependence of the potential energy of the system. Further
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progress in the description of the process of nuclear fission
is associated with the use of statistical [7,8] and dynamical
[9,10] models as well as their combinations [11]. These
models describe the fission of a nucleus initially located
in a potential well near the ground state (g.s.) (compound
nucleus). Such an excited compound nucleus can be formed
by the irradiating of atomic nuclei by light particles. A
fully microscopic stochastic description of the fission pro-
cess was developed in Ref. [12]. The first application of
this approach to a realistic physical phenomenon (sponta-
neous fission of 258Fm) is presented in recent publications
[13,14].

The description of the fission process becomes much more
complicated if the excited nucleus is formed in the result of a
fusion reaction of two massive ions. In this case, one can not
talk merely about the fission of the compound nucleus. From
the moment of touching of the initial nuclei to the moment of
formation of the compound nucleus passes quite a long time
during which the system may undergo fission or may reduce
its excitation energy by emitting a light particle or γ quanta
and form the compound nucleus in the g.s. As a result, for the
description of the mass distribution of fission fragments it is
necessary to consider the whole evolution of the fusion-fission
process starting from the approach of the initial nuclei to each
other and ending with the formation of a compound nucleus
or fission.
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FIG. 1. The potential-energy V I
pot (5) of colliding ions 36Ar

and 142Nd in the entrance channel (solid curve) and the liquid
drop deformation energy of 178Pt for mass-symmetric (α3 = α4 = 0,
dashed curve) and mass-asymmetric (α3 = 0.3, α4 = 0.1, dot-
dashed curve) shapes as a function of the distance r between
centers of mass. The horizontal line is the Q value of reaction
36Ar + 142Nd−→ 178Pt.

For this purpose, in Refs. [15–17], the so-called two-stage
dynamic stochastic model for the description of a fusion-
fission reaction with heavy ions was developed. In this model,
in the first stage of calculations, the approaching of the
projectile nucleus to the target nucleus up to their touching
point is considered. In the second stage, the evolution of the
compact system, formed after merging of colliding nuclei, is
studied.

In the present paper, we apply the two-stage model [15–17]
for the description of the kinetic energy (KE) and mass
distributions of the fission fragments obtained in a recent pub-
lication [18] for the reaction 36Ar + 142Nd → 178−xPt + xn
at beam energies Elab = 153.9, 168.8 and 178.8 MeV. This
paper contains experimental data on the energy and mass
distributions of fission fragments, average energy taken away
by the prefission neutrons, the average induced angular mo-
mentum, and the rotational energy. Comparison of such data
with calculated results would be a good test for the theoretical
models.

II. THE TWO-STAGE APPROACH

As was mentioned above, in the first stage of the calcula-
tions, we consider the approaching of the projectile nucleus
to the target nucleus up to their touching point. In the second
stage, we study the evolution of the compact system, formed
after the merging of colliding nuclei. The schematic compar-
ison of the potential energy in fusion and fission channels
is shown in Fig. 1. The final point of the second stage
calculations could be the splitting of the system back into two
fragments or the formation of the evaporation residue 178−xPt,
where x is a number of neutrons, evaporated by the compound
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FIG. 2. An example of the touching configuration of 36Ar and
142Nd (r = 12.1 fm, αt = αp = 0.05, solid curve) and the fit by
three-dimensional (α, α1, α4) Cassini ovaloids (dashed curve).

system in order to reduce its excitation energy. Of course, the
outcome depends on the reaction energy.

The evolution of both separated ions and compact system is
described by Langevin equations for the collective parameters
that fix the shape of the system. For the approaching process,
the collective parameters are the parameters αp and αt of
quadrupole deformation for both ions and the distance r be-
tween their centers of mass. In the approaching stage, we also
take into account the orientation of the target nucleus—the
angle θt between the symmetry axis of the deformed ions in
the g.s. target nucleus and the line connecting the centers of
mass of colliding nuclei.

The shape of the compact system is described by the
parameters α, α1, and α4 of Cassini parametrization [4] that
specify the total elongation, the mass asymmetry, and the neck
radius of the system.

At the end of the first stage calculations (at the touching
point), we fix the center-of-mass (c.m.) distance and the
potential and internal (dissipated) energies of the system.
At the initial point of the second stage calculations, we use
these data to define the shape of the system, formed after
the collision of the initial nuclei. To do it, we use three
conditions. First, we fix α4 and define α and α1 from the
requirement that the c.m. distance r and the mass asymmetry
of separated ions and the compact system are the same. Then,
we vary α4, and among all possible shapes, which satisfy that
requirement, choose the one, that corresponds to the lowest
potential-energy Edef (α, α1, α4) of the compact shape. An
example of the relation between the shapes of separated ions
and the compact system is shown in Fig. 2.

At both stages of the calculation, the time evolution of the
collective degrees of freedom q ≡ {α, αn} and corresponding
momenta p/m ≡ {α̇, α̇n} is described in terms of the Langevin
equations [19,20], namely,

q̇β = μβν pν,

ṗβ = −1

2
pν pη

∂μνη

∂qβ

+ Kβ − γβνμνη pη + θβνξν. (1)
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Here, qβ’s are the deformation parameters, and a convention
of summation over repeated indices ν, η is used. The quantity
γβν is the tensor of friction coefficients, and μβν is the tensor
inverse to the mass tensor mβν, Kβ is a component of the
conservative force �K = −∇F , where F = Vpot − aT 2 is the
free energy of the system, Vpot is the potential (deformation)
energy, a is the level-density parameter [8], and the temper-
ature T of the system is related to the internal (dissipated)
energy by the Fermi-gas formula T = √

Edis/a.
The friction force leads to the dissipation of collective

motion energy into internal energy. The fluctuations in the
system are described by the random force θβνξν . Here, ξν is
a random number with the following properties:

〈ξν〉 = 0,

〈ξβ (t1)ξν (t2)〉 = 2 δβνδ(t1 − t2). (2)

The magnitude of the random force θβν is expressed in
terms of diffusion tensor Dβν = θβηθην , which is related to the
friction tensor γβν via the modified Einstein relation Dβν =
T ∗γβν , where T ∗ is the effective temperature [21].

The internal energy of the system could be calculated from
the energy conservation condition,

Ec.m. = Vpot + Ekin + Edis, (3)

here Ec.m. = ElabANd/(ANd + AAr ) is the reaction energy, cal-
culated in the c.m. system, and Ekin is the kinetic energy of the
collective motion.

Some terms of Eq. (1) should be determined twice, one
for the first, and one for the second stage of the calculations.
Such terms we will denote by the upper indices (I) and (II),
respectively.

The deformation energies E (t )
def and E (p)

def of colliding ions
and Edef of the combined system are calculated within the
macroscopic-microscopic shell-correction approach proposed
by Pashkevich [4], Strutinsky et al. [5], and Brack et al. [6].
The interaction potential between the colliding ions consists
of Coulomb part VCoul [22] and nuclear Gross-Kalinowski po-
tential VGK [23], modified in order to describe the interaction
of deformed ions [20]. The rotation of the system is taken into
account in both stages of the calculations,

EI
rot = h̄2L(L + 1)

2(Mr2 + Jt + Jp)
, EII

rot = h̄2L(L + 1)

2J
, (4)

where M = Mt Mp/(Mt + Mp) is the reduced mass of the
target and the projectiles Jt , Jp, and J are the rigid body
moments of inertia of the target, projectile nucleus, and of the
combined system, respectively, and L is an angular momen-
tum of the whole system.

Finally, the potential energy of the system is as follows:

V I
pot = VCoul + VGK + E (t )

def + E (p)
def + EI

rot, (5)

V II
pot = Edef + EII

rot. (6)

Besides the deformation energy, the dynamical properties of
each nucleus are characterized by the friction γβν and inertia
mβν tensors, that were calculated within the linear-response
approach and local harmonic approximation [24,25]. In this
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FIG. 3. The potential energy of the system as a function of
distance r between target and projectile. The orientation of target
θt = 0, deformation parameters αt and αp correspond to the ground-
state shapes of the target and projectile ions.

approach, many quantum effects, such as shell and pairing
effects, the dependence of the collisional width of single-
particle states on the excitation energy, are taken into account.
The precise expressions for the components of the friction γβν

and inertia mβν tensors can be found in Ref. [26]. Tensors γβν

and mβν [26] characterize completely the inertia and friction
properties of the combined system and were used in our
previous calculations within the three-dimensional Langevin
approach with Cassini shape parametrization and the two-
center shell-model shape parametrization [27].

For the first stage of the calculation, besides the internal
processes in ions, one should account also for their relative
motion. The inertial tensor mI

βν in this case has only diagonal
components: mI

rr = M (reduced mass), mI
αtαt

= mt
αα, mI

αpαp
=

mp
αα , and mI

θtθt
= Jt . The friction tensor for the first stage of

the process was defined as the sum of the friction tensor for
the relative motion, obtained in the surface-friction model
[28], such as was performed in Ref. [29], and the diagonal
friction tensor for colliding ions, which has only two nonzero
components (γ I

αtαt
= γ t

αα; γ I
αpαp

= γ
p
αα).

III. THE RESULTS OF FIRST STAGE CALCULATIONS

In the present paper, the first stage calculations were
stopped as soon as the system overcame the potential barrier.
The position of the barrier depends on deformations and
orientation of the colliding ions. It depends also slightly on
the angular momentum of the system (see Fig. 3).

As one can see, some experimental data in Ref. [18] are
obtained for the subbarrier energies. In order to describe
such reactions, we took into account the quantum tunneling
through the potential barrier. The penetrability of the barrier
was defined in the Wentzel-Kramers-Brillouin approximation
[30] as

TL(E ) =
[

1 + exp

(
2

h̄

∫ r1

r2

√
2m(V fus − E )dr

)]−1

, (7)
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FIG. 4. The dependence of the probability (top) and the partial
cross section (middle) of the penetration through the potential barrier,
calculated with an account of the tunneling effect, on the angular
momentum of the system. Bottom: the dependence of the cross
section of the penetration through the potential barrier on the reaction
energy.

where the integration is carried out between the turning points
r1 and r2 in the subbarrier region and E is the incident energy,
equal to the potential energy of the system at the turning
points. As one can see from Fig. 4 (bottom), the account of
quantum tunneling increases substantially the probability of
penetration through the barrier in the subbarrier region.

The angular momentum is a free parameter of our model.
So, the first stage calculations are carried out for a set of
L. One can see from Fig. 3 that the height of the potential
barrier increases with the angular momentum of the system.
The probability to overcome the barrier will decrease in this
case, see Fig. 4. Knowing the probability of an event, we can
calculate its partial, Fig. 4 (middle) and total, Fig. 4 (bottom),
cross sections, respectively,

σ L
barrier (L, Ec.m.) = πλ2(2L + 1)Pbarrier (L, Ec.m.), (8)

σbarrier (Ec.m.) =
∑

L

σ L
barrier (L, Ec.m.). (9)

The main goal of the first stage calculations is to obtain the
potential-energy V I

pot of the system and its internal (dissipated)
energy Edis at the touching point.

Having at our disposal the distributions given in Fig. 4
(middle) and Figs. 5(b)–5(d), we can specify (by the hit-and-
miss method) the initial values of angular momentum, internal
and potential energies of the system for the beginning of the
second stage of the calculations. The way to choose the initial
shape parameters of the combined system was discussed in
the previous section, see Fig. 2 and the text around it. So, the
initial values for the second stage calculations are defined by
the final data from the first stage,

EII
kin,in(L) = EI

kin(L),

EII
dis,in(L) = EI

dis(L) + V I
pot − V II

pot. (10)
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FIG. 5. The distributions of (a) c.m. distance, (b) potential,
(c) dissipated, and (d) rotational energies of the system as functions
of angular momentum L at the touching point for E∗ = 50.5 MeV.

In order to bring V II
pot and V I

pot to the same scale, the so-called
Q value of the reaction should be added to V II

pot,

V II
pot,in −→ V II

pot,in + Q, (11)

where Q < 0 is defined in terms of g.s. energies of the target,
projectile, and combined system Q ≡ E (t+p)

g.s. − E (t )
g.s. − E (p)

g.s..
One can define also the excitation energy E∗ of reaction by
the relation,

E∗ = Ec.m. + Q. (12)

The distribution in Fig. 5(d) is the distribution of rotational
energy at the touching point. The width of this distribution
is very small. The contribution to this width comes from
the uncertainty of c.m. distance r [which is also small, see
Fig. 5(a)] that appears in the moment of inertia in Eq. (4).

Each point in Fig. 5(d) is the contribution of trajectory
“i” that reached the touching point. By summing over all
trajectories, one can define the average angular momentum
〈L〉 and the average rotational energy 〈Erot〉 of the system at
the touching point,

〈L〉 =
∑

i

Li

/ ∑
i

1, 〈Erot〉 =
∑

i

E i
rot

/ ∑
i

1. (13)

The summation over trajectories based on distribution of
Fig. 5(d) leads to the values of 〈L〉 ≈ 20.5h̄ and 〈Erot〉 ≈
1.89 MeV. In the same way, we can calculate the average
value of dissipated energy 〈Edis〉 ≈ 4.40 MeV. As we can see,
the sum of rotational and dissipated energies at the touching
point is not so large compared with the excitation energy
E∗ = 50.5 MeV.

IV. THE EVOLUTION OF THE COMPACT SYSTEM

The potential-energy surface (PES) of 178Pt in coordinates
r-mass asymmetry (AL − AR)/(AL + AR) is shown in Fig. 6.
The star in this figure marks the position of the initial point
corresponding to the shape shown in Fig. 2.
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Starting from the touching point, the system would move in
the direction of the g.s. under the action of the random force,
form the compound nucleus, and then undergo fission. The
evolution of the compound nucleus could last long enough to
evaporate γ ’s or light particles, so we should take into account
this deexcitation process. The evaporation of particles and
γ quanta by the excited compact system is described in our
approach within the statistical model [8]. On each integration
step, the partial width of the corresponding decay channel
[8] is calculated, then by the hit-and-miss method, we decide
whether some particle was emitted and which kind of particle
was emitted. If some particle was emitted, the binding energy
of this particle was subtracted from the excitation energy of
the system. Also, the particle can carry away some energy
(its KE).

The main evaporation channel is the evaporation of neu-
trons. The probability of the neutron evaporation and its KE
depends on the dissipated energy of the system as shown in
Fig. 7. One can see that the system with dissipated energy
Edis = 40 MeV, for example, should live, on average, 400 zs
before the first neutron is evaporated. After evaporation, it
loses about 10 MeV as a neutron kinetic and binding energy,
so, to evaporate the second neutron, it needs about 1500 zs,
and so on. Of course, during this evolution time there is
a competition between neutron evaporation and fission. The
fission of the nucleus can occur before it evaporates any neu-
tron (dashed curve), or it could evaporate one (short dashed
curve), two (dotted curve), or more neutrons before fission
(see Fig. 8). The maximal number of the evaporated neutrons
depends on the initial excitation energy of the system E∗, see
Eq. (12).

After evaporation of several neutrons, the system’s internal
energy decreases, and the role of the nuclear shell structure
becomes more and more significant. In Fig. 9, one can see
the evolution of fragment mass distribution due to the deex-
citation process (for the initial excitation energies E∗ = 39.6
and E∗ = 50.5 MeV). The mass distribution is symmetric if
the system undergoes fission before it evaporates any neutron.
Then, after the first neutron evaporation, the system slightly
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FIG. 7. The neutron evaporation probability (per zeptosecond) as
a function of the neutron KE (top) and nuclear internal energy Edis

(bottom).

cools down, and the influence of the shell effects will be
noticeable. And, finally, after the second neutron evaporation,
the distribution becomes strongly mass asymmetric.

The total mass distribution obtained by superimposing of
distributions shown in Fig. 9 is compared in Fig. 10 with the
experimental data [18]. One can see that the calculated mass
distributions for all three values of excitation energy E∗ are
very close to the experimental data.

V. THE TOTAL KINETIC ENERGY

The mass-energy distribution of fission events is shown in
the left part of Fig. 11. In these calculations, for each trajec-
tory that reached the scission point {qi}, we define the total
kinetic-energy TKEi as the sum of the Coulomb interaction
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 0 n
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FIG. 8. The partial cross sections of the fission process in the
case of zero (dashed curve), one (dashed-dotted curve), and two
(dotted curve) neutrons emitted by the compound nucleus before
fission as a function of angular momentum of the system. The solid
curve is the partial cross sections of all fission events.
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of spherical fragments at the scission point and prescission
kinetic-energy KE(pre),

TKEi = E (int)
Coul(qi ) + KE (pre)

i . (14)

Here,

E (int)
Coul(qi ) ≡ ZLZH e2/r(qi ), (15)

where eZL and eZH are the charges of light and heavy frag-
ments. The prescission kinetic-energy KE(pre)

i is the kinetic
energy in the fission direction obtained from the solutions of
Langevin equations at the scission point. It turned out in these
calculations that the average value of KE(pre) is very small, on
the order of 1 to 2 MeV, and the main contribution to TKE
comes from the Coulomb repulsion energy.

The TKE distribution of fission fragments is shown in the
right part of Fig. 11. The shape of the distribution is very
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FIG. 10. The calculated fission fragment mass distributions in
comparison with the experimental data [18].
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FIG. 11. Left: The mass-energy distribution of fission events for
E∗ = 50.5 MeV. Right: The normalized to 100% yield of fission
fragments as function of the total kinetic energy.

close to a single Gaussian. We did not find the contributions
to TKE distribution from the two fission modes as was argued
in Ref. [18]. We see the two fission valleys on the potential-
energy surface at large elongation, beyond the saddle point,
see Fig. 12. Between saddle and scission, the mass-symmetric
valley is even deeper compared with the mass-asymmetric
valley. However, it follows from the calculations that the
dynamical trajectories do not follow the bottom of the fission
valley. The mass and energy distributions are formed mainly
at the saddle. The trajectories spend a lot of time inside the
saddle. Some of them reach the saddle and move very quickly
towards the scission. The descent from saddle to scission in
178At (and other light fissioning nuclei) is very short, see
Fig. 12, and steep. The trajectories do not have much time
to adjust themselves to the potential-energy landscape during
saddle-to-scission motion. Note also that the mass asymmetry
of the asymmetric valley beyond the saddle is much larger as
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FIG. 12. The “backside” of the PES: the saddle-to-scission part
of the deformation energy of 278Pt minimized with respect to α4 at
T = 0.
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(coinciding with experimental) the mass asymmetry of PES at
the saddle.

The average value of the TKE is equal to 130.4 MeV,
which is rather close to the position of the main peak
TKEhigh = 133.4 MeV in experimental results [18]. The
width of TKE-distribution σTKE = 11 MeV is, however,
much smaller than experimental value, see Fig. 2(a) of
Ref. [18].

We tried hard to increase σTKE and did not succeed. For the
following reason: The contribution to the total kinetic energy
comes from the fragments’ prescission KE and the fragments’
Coulomb repulsion energy immediately after scission, see
Eqs. (14) and (15). Since the prescission KE is very small
in the considered case, only a few MeV, the main part of
the TKE is the Coulomb repulsion energy E (int)

Coul. In Eq. (15),
r(qi ) is an only variable quantity. In order to get the value of
TKE = 70 MeV (that is the smallest experimental value of the
TKE for symmetric splitting at E∗ = 50.5 MeV), r should be
close to 30 fm. Taking into account that the distance between
centers of mass for the touching configuration of 36Ar and
142Nd is only r ≈ 10.4 fm, it is not difficult to come to the
conclusion that there is no way to produce a compact shape
of 178Pt with extremely large elongation r ≈ 30 fm. Such a
compact shape should break apart much earlier at smaller
values of r. So, we do not see many chances to get the fission
events with TKE = 70 MeV.

The difference between calculated and experimental val-
ues of σTKE might be attributed to the uncertainty of the
scission point configuration formed in the reaction, the finite
(in)accuracy of TKE measurements, and some limitations
of the theoretical approach. In particular, the generaliza-
tion of the three-dimensional Langevin approach to a four-
dimensional approach would increase the variety of shapes at
the scission point and, thus, could increase the width of TKE
distribution.

VI. CONCLUSIONS

Within the developed earlier two-stage approach for
the fusion-fission reactions, we have studied the reaction
36Ar + 142Nd → 178−xPt + xn. The obtained results are com-
pared with the available experimental data [18]. The calcu-
lated mass distributions of fission fragments for three energies
Ec.m. = 122.78, 134.68, and 142.58 MeV are in good agree-
ment with the experimental results. The most probable mass
division for the asymmetric component of fission fragments
mass distribution (Fig. 10) is found to be about AL/AH =
79/98, which is rather close to the experimental data [18].
From our calculations, it follows that the competition between
symmetric and asymmetric fission channels is caused by the
enhancement of shell effects in the compound nucleus due to
the process of its deexcitation by neutron emission.

The average value of the TKE is equal to 130.4 MeV, which
is rather close to the position of the main peak TKEhigh =
133.4 MeV in experimental results. The calculated shape of
distribution is very close to a single Gaussian. We did not find
the contributions to TKE distribution from two fission modes
as was argued in Ref. [18].

From the results of the calculations, it follows that the
dynamical trajectories do not follow the bottom of the fission
valley and the mass distribution of fission fragments of 178Pt
is formed mainly at the saddle.
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