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Background: Nucleon knockout reactions have been previously used to extract single particle information from
nuclei. The analysis of nucleon knockout from a stable projectile in the collision with a proton target and the
comparison with the experimental data is a key test for the reaction and structure models used to evaluate the
reaction observables.
Purpose: We analyze p and n knockout from 12C, assuming that only the heavy fragment or core C (taken as
inert), the knockout particle N , and the proton target p participate in the collision process with the aim of (i)
getting insight to the dominant kinematic conditions of the emitted particles; (ii) clarifying the dynamics of the
reaction; (iii) exploring the isospin dependence (here p and n knockout) of the calculated reaction cross sections.
Method: We solve three-body Faddeev/Alt-Grassberger-Sandhas (Faddeev/AGS) equations for transition
operators and calculate kinematically fully exclusive, semi-inclusive, and inclusive cross sections.
Results: We show that (i) the dominant final-state kinematic conditions are consistent with the assumption
of quasifree scattering reaction mechanism; (ii) the distortions due to higher order multiple scattering terms
depend on the final-state kinematics, and the N-C and p-C final state interaction provide significant effects in the
calculated observables; (iii) the twofold energy–polar angle and polar angle–polar angle cross sections exhibit
distinct p- and n-knockout behaviors. Finally we also show that the Faddeev/AGS formalism is able to a certain
extent to reproduce the available experimental data for the p knockout.
Conclusions: Kinematically fully exclusive measurements of p and n knockout are needed to rigorously assess
the role of the distortion, as it cannot be taken into account as an overall reduction factor. This is a prerequisite
for a reliable understanding of the structure of the projectile and the reaction mechanism. In addition, realistic
interactions inferred from ab initio structure models are needed for analyzing experimental data.
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I. INTRODUCTION

One-nucleon knockout reaction in inverse kinematics is a
process of removing a nucleon from an incident projectile
by its interaction with a target. It has been used as a tool
for investigation of the single particle (SP) properties of
the projectile nucleus. The extraction of projectile structure
information from experiments requires a full understanding
of the reaction dynamics. The approach to the latter is often
based on assumptions and approximations for which valida-
tion is required. One- and two-nucleon knockout reactions
have attracted a great deal of attention [1–4].

In this paper, we comprehensively examine the dynamics
of nucleon knockout reactions from a projectile with a pro-
ton target, within the three-body Faddeev/Alt-Grassberger-
Sandhas (Faddeev/AGS) framework [5,6] that has been pre-
viously applied to the study of the breakup of loosely bound
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particles and nucleon knockout from stable and exotic nuclei
[7–10]. This reaction approach can be viewed as a multiple
scattering expansion in terms of the off-energy-shell transition
amplitudes for each interacting pair, thereby including all
higher order rescattering terms. The single scattering term
between the valence particle/knockout nucleon and the target
proton is known as the plane wave impulse approximation
(PWIA). The distorted-wave impulse approximation (DWIA)
[11] includes an incomplete set of higher order terms that
yield significant corrections to the PWIA. Recently, it was
shown also in the Faddeev/AGS formalism that significant
distortions to the PWIA occur, particularly as a result of
higher order rescattering effects between the knockout nu-
cleon and the heavy fragment [9,10,12]. These distortions
arise from subtle cancellations between the single scattering
contribution that result from the collision between the heavy
fragment and the target proton, and higher order multiple
scattering terms. The integrated effect of distortions can be
quantified by the relative difference between the converged
multiple scattering total cross section result (here denoted
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as FADD) and the PWIA, D = 1 − R (where R is the ratio
between the FADD and the PWIA total cross sections). It was
found [9] that this integrated distortion has a nearly logarith-
mic dependence on the separation energy of the knockout nu-
cleon for a given angular momentum of the occupied shell. In
addition, the calculated ratio of the FADD to the PWIA cross
section shows a roughly linear dependence on the neutron-
proton asymmetry parameter. Moreover, the calculated PWIA
fragment momentum distribution, when renormalized by the
ratio R, was found not to fit the details of the FADD result.
This indicates that distortion effects may not be taken into
account as an overall renormalization for kinematically ex-
clusive or semi-inclusive cross sections.

The analysis of knockout reactions in inverse kinematics
at high energies has often been carried out assuming that the
quasifree scattering (QFS) with subsequent distortion is the
dominant reaction mechanism [13,14]. As the name indicates,
the QFS mechanism is governed by the free scattering of
two particles. This relies on the drastic assumption that only
a limited number of particles participate in the scattering
process. For (p, pN ), the QFS mechanism assumes that the
heavy fragment HF (the projectile with a hole state), the
proton target, and the emitted nucleon are the only degrees
of freedom that need to be considered in the scattering pro-
cess. Therefore the light particles (LPs) are expected to emit
predominantly in the same plane with the opening angle close
to the free NN scattering angle of 90◦. Moreover it is also
expected that the PWIA, after renormalization by an overall
distortion factor (that is produced by higher order multiple
scattering contributions), can render a good approximation of
the calculated cross sections. The aforesaid conditions have
never been tested by an exact theory able to predict three-
body kinematically inclusive to fully exclusive cross sections.
Assuming that the overwhelming many-body problem can be
reduced to a three-body one, we present the calculated kine-
matically inclusive to fully exclusive reaction cross sections
for the knockout of a nucleon (proton/neutron) that result
from the collision of a projectile with a proton target.

We aim in this paper to get insight (i) on the dominant
kinematic conditions of the emitted particles, and (ii) on the
few-body dynamics of the reaction: the detailed role of dis-
tortions in kinematically fully exclusive cross sections due to
higher order multiple scattering contributions and the role of
final-state interaction (FSI) in particular; this has never been
addressed from a theoretical point of view. In addition, we
also aim (iii) to study the isospin dependence of the knockout
cross sections by comparing p and n knockout.

Our working example will be the analysis of nucleon
knockout from 12C at high energies of approximately
400 MeV/u for which experimental results have already been
obtained via inverse kinematics [14].

The present study is relevant to the knockout experiments
using a nuclear probe that are currently performed at ra-
dioactive ion beam facilities, as well as to future research
developments envisaging one- and two-nucleon knockout ex-
perimental studies at high and intermediate projectile ener-
gies (as, for example, conducted at FAIR/GSI/Germany and
RIKEN/Japan). Our findings also pertain to knockout studies
using electron beams.

FIG. 1. Diagrammatic representation of the multiple scattering
expansion of the Faddeev/AGS formalism viewed in terms of the
transition amplitude of each interaction pair to third order. The first
term of the expansion represents the PWIA.

II. REACTION FRAMEWORK

The description of the standard Faddeev/AGS equations
can be found in many works, e.g., [8]. For the sake of clarity,
some of the details of the framework are reproduced here.

Let us consider the knockout of a nucleon N , from a
projectile (A = C + N) resulting from its collision with a
proton target. We formulate the three-body scattering problem
in the Hilbert space HC+N+p for C + N + p free relative
motion where the core C can be either in the ground state or
in a low lying excited state. In other words, core dynamical
excitations during the collision process or highly excited states
above evaporation are not taken into account in this truncated
Hilbert space. In addition, in the case of the proton knockout,
we only include the Coulomb interaction between the core and
the target proton. We also neglect relativistic effects.

In this section we further address the reaction mechanisms
for nucleon knockout, in particular, the physical content of the
QFS mechanism.

A. Faddeev/AGS formalism

The three-body Faddeev/AGS reaction approach is an
exact nonrelativistic formalism where the transition ampli-
tudes leading to the observables are evaluated using two-body
transition operators for all three pairs.

These terms are represented in Fig. 1 where the top line
represents the target proton, the middle line represents the
knockout nucleon, and the thick bottom line represents the
heavy fragment or core (assumed here to be in a fixed internal
state).

The term where the target proton scatters from the knock-
out particle is standardly defined as the PWIA. Distortion
effects with respect to PWIA are a result of the combined
contribution from the p-core single scattering and higher order
multiple scattering terms. At high energies subtle cancella-
tions occur between the p-core single scattering and higher or-
der multiple scattering terms [9,10]. Approximate treatments
to the multiple scattering expansion may introduce artificial
effects into these cancellations. The corrections to the PWIA
include contributions that are due to rescattering between the
knockout nucleon and the core.

The multiple scattering contributions where the p-core
and N-core transition amplitudes appear in the last scattering
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(p-core and N-core FSI respectively) are singled out in Fig. 2.
We note that the N-core rescattering and p-core FSI contri-
butions are entangled and cannot be treated separately. The
Faddeev/AGS reaction framework is a very powerful tool to
gain insight into the importance of the above contributions to
the calculated cross sections.

The kinematically fully exclusive knockout/breakup cross
sections are measured in the laboratory (LAB) system. The
spherical coordinate system is chosen to coincide the z axis
with the beam direction. We take the two detected particles to

be the knockout nucleon (N) and a Z particle [which can be
either the target proton (Z = p) or the heavy fragment (Z =
C)] and define Z as the undetected particle. The direction
of any outgoing particle is given by the polar and azimuthal
angles �i = (θi, φi ).

The kinematically fully exclusive cross section can be
calculated for any pair of particles, e.g., the light emitted
fragments (the target proton and the knockout valence nu-
cleon) or the knockout particle and the heavy fragment [8]
as

d5σ

d�N d�Z dS
= (2π )4 mN + mZ

KLAB
mZmN mZ KZ

⎧⎨
⎩|T 0α|2 K2

N

|(mN + mZ )KN − mN (KLAB − KZ ) · K̂N |

[
1 +

(
mZ KN

mN KZ

dKN

dKZ

)2
]−1/2

⎫⎬
⎭,

(1)

where the transition amplitude T 0α can be evaluated from
the multiple scattering expansion represented in Fig. 1,
and the arc length S is related to the LAB energies EN and EZ

of the two detected particles as summarized in the Appendix.
The threefold energy-angle cross section for any of the

particles in the final state (τ = p, N,C), d3σ
d�τ dEτ

can be cal-
culated as described in [8]. In view of recent developments at
the radioactive beam facilities it is now possible to measure
twofold cross section observables such as the polar-polar
angle cross section d2σ

dθN dθp
and the azimuthal-polar angle cross

section d2σ
dφ dθN

( d2σ
dφ dθp

) for the knockout nucleon (target proton)
with φ = φN − φp.

Measurements of the heavy core momentum distribution
have been used to obtain information about single particle
properties of the knockout particle. Theoretically, the kine-
matically semi-inclusive transverse momentum distribution

N−Core FSI

=
+ +

++
A B

C

D

E

p−Core FSI

= ++
A B

C

D

E

p−Core FSI

=

FIG. 2. Diagrammatic representation of the multiple scattering
contributing terms (up to third order) to the p-core FSI and N-core
FSI.

for any measured particle can be readily calculated from the
energy-angle cross sections as described in Ref. [8].

The total cross section for the knockout of a nucleon is ob-
tained from further integration. In Ref. [9] we have introduced
an integrated cross section to quantify the distortion effects as
the relative difference between the calculated PWIA (σPWIA)
and FADD (σFADD) total cross sections, the ratio R, and the
distortion parameter D = 1 − R where

R = σFADD

σPWIA
. (2)

Some relativistic corrections to these parameters can be ex-
pected. The ratio parameter R represents the integrated effect
of higher order multiple scattering (MS) contributions. In the
limit where the the multiple scattering corrections do not
change the PWIA distribution of the calculated observables,
this ratio represents a global renormalization factor to the
PWIA result. In general, higher order multiple scattering
effects might not be taken completely into account through an
overall renormalization factor. The value of the ratio param-
eter depends on how accurately these higher order contribu-
tions are evaluated. In addition, it might depend on the choice
of the particle interactions. We shall return to this discussion
later in the paper. The Faddeev/AGS formalism allows us to
explore to what extent higher order MS contributions to the
PWIA can be replaced by an overall renormalization factor.

The single particle (sp) total cross section, evaluated con-
sidering a core with spin Iπ

C coupled with a nucleon with
quantum numbers n	 j and unit spectroscopic factor, is eval-
uated here within the adopted standard Faddeev/AGS reac-
tion approach and denoted as σsp(Iπ

C , n	 j). The theoretical
cross section for this configuration, σtheo(Iπ

C , n	 j) is obtained
multiplying the SP cross section with a spectroscopic factor.
This is obtained from the ratio between the experimental
to theoretical SP total cross section for the case of proton
knockout from the 12C projectile.

B. Reaction mechanisms

For clarification we discuss here the reaction mechanisms
that can arise when removing a nucleon from a projectile in
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a collision with a target (here a proton). We also review the
different notation used for these reaction mechanisms. The
Faddeev/AGS formalism takes simultaneously into account
all these mechanisms and its possible couplings.

1. Electromagnetic dissociation or Coulomb breakup

This process is due to the Coulomb interaction between
the heavy fragment and the target. Both nuclear and Coulomb
interactions with their interference can be included into the
Faddeev/AGS formalism. This process becomes dominant
in the case of heavy target and therefore is comparatively
negligible in the present case of the proton target.

2. Resonance and nonresonance nuclear breakup

This is an important reaction mechanism at intermediate
energies and is often called nuclear inelastic scattering into
resonant or nonresonant continuum or as elastic breakup. To
include this into the Faddeev/AGS reaction formalism, the
interactions between the ejected nucleon and heavy fragment
have to reproduce the desired resonant features [15]. In some
cases resonant transitions to the continuum were found to
be important or even dominant in the case of Halo nuclei
[15,16]. The ground state of 12C lies 7.3 MeV below the
α threshold. The Hoyle state just above this threshold has
a strong correlated α structure and some evidence suggests
that these correlations are also present in the ground state
as discussed in Ref. [17] and references therein. We do not
attempt to include here the coupling to these states.

3. pN quasifree scattering mechanism

This reaction mechanism is often named in the literature as
inelastic breakup or as absorption or stripping. The detailed
analysis of this reaction mechanism is the main goal of the
present paper.

For nucleon knockout from a nucleus A the assumption
that the QFS mechanism is dominant relies on the premises
that (i) only a limited number of particles participate in the
scattering process, that is, the heavy fragment (the projectile
with a hole state), the proton target, and the emitted nucleon,
and (ii) the scattering cross section is determined by the
free proton-nucleon cross section that must be subsequently
renormalized due to the distortion.

We discuss how the present work can provide theoretical
insight on the assumption that the scattering is determined by
the free proton-nucleon cross section.

We assume in this section direct kinematics A(p, pN ),
although current experiments at RIB facilities are performed
in inverse kinematics. The results discussed here are however
independent of the kinematics that is used.

The QFS mechanism is expected to be dominant for small
momentum transferred to the heavy fragment. Therefore the
momentum of the heavy fragment, i.e., of the projectile core,
in the center of mass of the projectile is equal to the momen-
tum of the struck nucleon within the projectile (with minus
sign). The pN QFS reaction mechanism without distortion is
represented diagrammatically in Fig. 3.

Quantitatively, the undistorted QFS cross section for nu-
cleon knockout can be factorized as the product of two terms,

FIG. 3. QFS diagram for the N-knockout reaction A(p, pN ).

related to the two vertices of Fig. 3, namely (i) the momentum-
space wave function P (KC ) for the relative N-C motion
(vertex 1), and (ii) the cross section dσ

d�pN
(Kp, KN ) for the

reaction p + N → p + N (vertex 2). Thus, the QFS transition
amplitude in Eq. (1) has to be replaced by

∣∣T 0α
QFS

∣∣2 = R|P (KC )|2 1

4π4m2
N

dσ

d�pN
(Kp, KN ). (3)

Here the factor R from Eq. (2) approximately accounts for
the distortion. In other words, it is assumed that multiple
scattering corrections do not change the shape of the differ-
ential cross section, only renormalize it. Deviations from that
shape indicate the limitations of the QFS assumption. Note
that |P (KC )|2 gives the momentum distribution of the core in
the projectile [11].

Clearly from Eq. (3) the dynamics of the reaction is
governed by vertex 2 and therefore the light particles are
expected to be emitted with coplanar kinematics, and with an
opening angle that is close to the free pN scattering angle but
reduced due to the internal motion of the knockout particle.
The factorization approximation in Eq. (3) underpins the
possibility of extracting a spectroscopic factor.

In the exact three-body Faddeev/AGS formalism the scat-
tering cross sections are calculated from Eq. (1) and cannot be
expressed in the simplified factorized form given by Eq. (3).
This factorization can only be achieved in the PWIA limit and
taking the NN transition amplitude at fixed energy and on
shell. In this paper we aim to investigate to what extent the
Faddeev/AGS result retains the dominant kinematic condi-
tions that follow from Eq. (3) and to what extent the calculated
(in particular kinematic fully exclusive) cross sections using
the Faddeev/AGS equations can be approximated by the
PWIA result multiplied by a distortion factor due to higher
order multiple scattering terms, as defined in Eq. (2).

III. STRUCTURE MODEL

In order to study the reaction mechanism for nucleon
knockout from 12C we expand the projectile wave function in
terms of the heavy fragment ground state and some low lying
excited states as

|AX 〉 = Z1/2(3/2−
1 ) |A−1X (3/2−

1 ) ⊗ 1p3/2〉
+Z1/2(3/2−

2 ) |A−1X (3/2−
2 ) ⊗ 1p3/2〉

+Z1/2(1/2−
1 ) |A−1X (1/2−

1 ) ⊗ 1p1/2〉, (4)
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FIG. 4. Shell model scheme for the p− knockout from 12C
leading to the ground state (3/2−

1 ) and the two excited states (1/2−
1 )

and (3/2−
2 ) of 11B.

where X represents the carbon or boron isotope and Z are
spectroscopic factors that can be obtained from the compari-
son with the experimental data.

In this paper we mainly consider the contribution of the nu-
cleon knockout from the valence 1p3/2 shell. For the purpose
of comparison with the (p, 2p) experimental data we shall also
consider the 11B heavy fragment in the low lying excited states
11B(3/2−

2 ) and 11B(1/2−
1 ) represented schematically in Fig. 4

within a simplified picture where the knockout particles are
removed from occupied shells.

It is assumed that this observable is given by the incoherent
sum of all contributions.

IV. INTERACTIONS

Our working example is the analysis of nucleon knockout
from 12C at 400 MeV/u.

Before solving the Faddeev/AGS equations we need to
specify the three pair interactions, that is, the N-p (knock-
out nucleon proton), N-C (knockout nucleon core), and p-C
(target proton core). We take the realistic nucleon-nucleon
CD Bonn potential [18] for the proton-nucleon particle pair.
Note that the p-p interaction acts in isospin triplet partial
waves only while the p-n interaction acts also in isospin
singlet partial waves, e.g., 3S1 − 3D1, 1P1, 3D2, etc., that yield
important contributions. The results presented in this paper

TABLE I. Nucleon-core optical potential models used in the
present work with the parameters evaluated at the given energy.

Model Ref., remarks Energy (MeV)

BAU [19], set II 400
BAUI [19], set I 400
J [20] 200
KD [21] 200

do not change significantly with respect to the choice of a
different realistic p-N interaction.

Obviously, in the partial wave corresponding to the initial
valence-core bound state the valence-core potential must be
real in order to support the desired bound state. We take a
central Woods-Saxon interaction with standard radius R =
1.25A1/3 fm and diffuseness a = 0.65 fm, and adjust the depth
to reproduce the binding energy [10]. This binding energy is
calculated from the sum of the excitation energy of the heavy
fragment (A − 1) with the nucleon separation energy of the
projectile A, that is

|−εN | = Ex(A − 1) + SN (A). (5)

The 12C nucleon separation energies are Sn = 18.722 MeV
and Sp = 15.957 MeV.

We shall consider the p- and n-knockout leading to the
heavy fragment ground state. In addition we also consider
the p knockout leading to two excited states 11B(1/2−; Ex =
2.125 MeV) and 11B(3/2−

2 ; Ex = 5.020 MeV).
The potentials between nucleons and core in all other

waves are far less constrained, and may have both real and
imaginary components. We are not aware of nucleon-11B and
nucleon-11C data at the considered energy that would help
to fix the potentials. However, one may expect proton-12C
data and resulting potentials to provide some guidance. To
investigate the uncertainties of the calculated cross sections
associated with the choice of the optical potential de-
scribing the N-core interaction in other partial waves, and
the target proton-core interaction, we consider several phe-
nomenological sets. We consider the Bauhoff (BAU) optical
potential parametrizations (sets I and II) [19], obtained by

TABLE II. PWIA and Faddeev/AGS SP total cross sections for
p and n knockout from the 12C ground state calculated using BAU-J
and KD-KD parametrizations. Also shown are the results without the
p-core and N-core FSI. All cross sections are given in units of mb.
The renormalization factors R defined in Eq. (2) are given in the last
line.

(p, 2p) (p, pn)

BAU-J KD-KD BAU-J KD-KD

PWIA 21.8 21.8 29.3 29.3
FADD 6.02 8.54 7.75 11.6
p-CnoFSI 42.6 27.7 46.7 30.6
N-CnoFSI 42.6 27.7 48.6 33.1
R 0.276 0.392 0.265 0.396
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FIG. 5. Faddeev/AGS single particle total cross sections for p
knockout using different potential parametrizations for the ground
state (3/2−

1 ) and the two excited states (1/2−
1 ) and (3/2−

2 ) repre-
sented here as a function of the nucleon separation energy. Also
shown the EIK-DWIA results for the same final states.

fitting proton-12C elastic scattering at 400 MeV, and the
Jones (J) parametrization [20], obtained by fitting proton-
12C elastic and inelastic scattering at intermediate energies.
Finally, we consider also the Koning-Delaroche (KD) poten-
tial, where the parameters are taken from the global optical
potential parametrization [21] for n and p scattering from
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FIG. 6. Heavy fragment ground state transverse momentum pc

distributions along the Cartesian X axis for p (top) and n knockout
(bottom). The solid and dot-dashed lines represent the FADD and the
dashed lines represent the renormalized PWIA cross sections. The
ratios R of the FADD to the PWIA total cross section are given in
Table II.
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FIG. 7. Nucleon transverse momentum along the Cartesian X
axis px distributions for p and n knockout. The middle and bottom
graphs show the momentum distributions for the target proton and
the neutron, respectively. The solid and dot-dashed lines represent
the FADD and the dashed line represents the renormalized PWIA
cross sections. The ratios R are given in Table II.

(near-)spherical nuclides in the mass range 24 <= A <= 209
in the energy range from 1 keV to 200 MeV. Thus, this
parametrization is not really designed for nuclei A < 24, and
does not fit in detail the proton elastic scattering from 12C at
400 MeV, but has been used for systematic studies along the
nuclear landscape [9,22]. The comparison should provide a
maximization of the error associated with the uncertainties of
the optical potential parametrizations.

All the parameters of the above potentials are given in the
corresponding Refs. [19–21]; we only have to use A = 11.
Furthermore, the Faddeev/AGS framework generally requires
energy independent potentials. Thus, we have to fix the energy
for each parametrization. Commonly used choices are either
reaction energy, or half of it, that is, 400 or 200 MeV in
the present case. Again, we make several choices to study
the associated uncertainties, and the used models are listed
in Table I. The predictions will be labeled by two models,
the first one corresponding to the p core and the second one
corresponding to the N core pair, e.g., BAU-J means Bauhoff
(Jones) parametrization for p core (N core).

054622-6



THREE-BODY CALCULATIONS FOR (P, PN) … PHYSICAL REVIEW C 99, 054622 (2019)

0

5

10

15
dσ

/d
θ N

  (
m

b/
ra

d) FADD
PWIA × R

0

5

10

dσ
/d

θ p  (
m

b/
ra

d)

0 20 40 60 80
θN  (deg)

0

5

10

dσ
/d

θ n  (
m

b/
ra

d)

p(12C,pn)

p(12C,pn)

p(12C,pp)

FIG. 8. Angular cross sections for p and n knockout. The middle
and the bottom graphs show the cross sections for the target proton
and the neutron, respectively. The solid and dashed lines represent
the FADD and the renormalized PWIA cross sections, respectively,
with R given in Table II. The KD-KD optical potential parametriza-
tion was used.

V. RESULTS

We solve the Faddeev/AGS equations and calculate the
cross sections for a projectile incident beam of 400 MeV/u.

The numerical solution is performed in the momentum
space, after partial wave decomposition and discretization of
all momentum variables. The calculations include N-p partial
waves with orbital angular momentum L � 8, n-C partial
waves with L � 8, and p-C partial waves with L � 16. The
total three-particle angular momentum is J � 50; there are no
additional limitations on the spectator orbital momenta. We
include the nuclear interaction between all three pairs. The
Coulomb interaction between the target proton and the heavy
fragment is included as described in Ref. [23]. Although the
results for the proton knockout suffer from the uncertainty that
is inherent to the incompleteness of the Coulomb interaction,
this should not affect the estimates and qualitative conclusions
that we present.

In the following sections we show some calculated
cross sections that can be measured in current experimental
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FIG. 9. pp (top) and pn (bottom) elastic cross sections at
400 MeV beam energy. The dashed line for pp represents the angular
distribution without the Coulomb interaction.

facilities. In addition, we discuss kinematically fully exclusive
cross sections that will be measured in the future.

A. Kinematically inclusive cross sections

In this section we discuss the kinematically integrated
cross sections. The PWIA theoretical total cross section for
n knockout to the 11C(3/2−) g.s. is σPWIA = 29.3 mb. For p
knockout the calculated single particle total cross section to
the 11B(3/2−) g.s. is σPWIA = 21.8 mb.

In Table II we compare the total single particle cross
sections for p and n knockout leading to the ground state of the
heavy fragment using the BAU-J and the KD-KD interactions
with the cross sections evaluated without the p-core and N-
core FSI represented in Fig. 2. It follows that the FSI effects
provide an important contribution to the total cross section.

In order to have insight on the maximum uncertainty asso-
ciated with the choice of the parametrizations of the optical
potential, the SP total cross sections for p knockout leading
to the ground and excited states of the heavy fragment [taking
the nucleon separation energy of the projectile A from Eq. (5)]
are presented in Fig. 5. The results demonstrate clearly the
need of having a reliable description of the optical potential
parametrizations. Also shown are the theoretical results taken
from [14] using the Eikonal distorted wave impulse approxi-
mation (EIK-DWIA) as described in Ref. [14] and references
therein. The differences between the two reaction approaches
might originate from the interactions.

B. Kinematically semi-inclusive cross sections

In this section we discuss the kinematically semi-inclusive
cross sections. In Fig. 6 we show transverse momentum
distributions for the heavy fragment. The z axis is taken in the
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FIG. 10. Contour plot of the energy-polar angle correlation cross
section d2σ

dEpdθp
for p knockout and d2σ

dEN dθN
for n knockout. The cross

sections are in units of mb/(MeV rad). The KD-KD optical potential
parametrization was used.

beam direction. The solid and dot-dashed lines represent the
FADD results. The dashed line was obtained from the PWIA
renormalized by the ratio R between the FADD and the PWIA
cross section defined in Eq. (2).
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FIG. 11. Calculated d2σ

dEpdθp
(solid line) and d2σ

dEN dθN
(dashed line)

at fixed angles θ of the measured particle, for p and n knockout. The
KD-KD optical potential parametrization was used.

In Fig. 7 we show the transverse momentum distributions
for the light particles (the target proton and the knockout
nucleon). It follows from the figures that the renormalized
PWIA does not reproduce the FADD result in detail. This
indicates that distortion effects may not be accurately taken
into account as an overall renormalization of the kinematically
semi-inclusive and fully exclusive results. We shall refer to
this point later.

In inverse kinematics, if the heavy fragment is bound, it is
possible to measure directly the HF momentum distribution in
the LAB frame, from reconstruction of its velocity and angles
with respect to the incident beam angle, normalized by the
measured integrated cross section. For the initial state, and in
the projectile rest frame, the internal momenta of the knockout
particle and heavy fragment are related as KN = −KC . Under
the dominance of the N p QFS reaction mechanism, there is no
momentum transfer to the heavy fragment, and therefore the
momentum of the heavy fragment in the final state is equal
to the internal momentum of the knockout particle. In the
limit where distortion can be taken into account as an overall
renormalization, and the phase-space factor and the transition
amplitude for the light particles can be taken as constant
within the range of the energy of the core, then the measured
momentum distribution of the heavy fragment can provide
information on the internal properties of the knockout particle
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FIG. 12. Contour plot and 3D graphical representations of the angular correlation cross sections d2σ

dθpdθN
for p (top) and n knockout (bottom).

The cross sections are in units of mb/rad2. The KD-KD optical potential parametrization was used.

such as its internal and angular momentum. Therefore if the
QFS mechanism is dominant the HF momentum distribution
represented in Fig. 6 reflects the internal momentum of the
knockout particle.

In the limit where the reaction happens at/near the N p QFS
kinematic condition one expects a large transfer momentum
to the light particles and as result, a broader momentum
distribution than the HF distribution as can be seen from
Figs. 6 and 7. Therefore, the broader momentum distribution
of the light particles is an indicator of the dominance of
the QFS reaction mechanism. Nevertheless, the renormalized
PWIA does not agree with the FADD result in detail.

In Fig. 8 we show the angular distributions for the semi-
inclusive cross section for the knockout nucleon dσ

dθN
and for

the target proton dσ
dθp

for p and n knockout. The solid line rep-
resents the FADD result and the dashed line the renormalized
PWIA result. The angular distributions for p knockout has a
maximum at LAB polar angles around 45◦. For the case of
n-knockout the cross sections has a characteristic minimum at
around 40◦ and two maxima at around 25◦ and 60◦.

One notes that the range of the polar angle distribution
of the light particles is smaller than the corresponding free
case represented in Fig. 9. We identify this effect as a medium
effect due to the binding of the knockout nucleon. We note that
the free pn angular distribution shows a two-peak structure as
a function of the neutron (proton) polar angle with a maximum
at θn (θp) around 20◦ (70◦). For the case of n knockout, the
folding of the transition amplitude with the relative wave
function and the kinematic factor modifies the polar angle
distribution and the maximum value of the cross section is
seen at a larger value. Also shown at the top part of Fig. 9
is the angular distribution for the free pp scattering without
Coulomb. The curve illustrates that Coulomb interaction ef-
fects in pp scattering are only significant at very small or very
large proton polar angles.

C. Kinematically twofold cross sections

In Fig. 10 we show the contour plot of the FADD energy-
polar angle correlation cross sections for p and n knockout,
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d2σ
dEpdθp

(for measured target proton) and d2σ
dEN dθN

(for measured
knockout particle). For the case of p knockout, the protons
(that are indistinguishable) have a smaller energy at large
polar angles, where the cross section is higher. Their energy
increases uniformly for smaller polar angles, where the cross
section is smaller. Similarly, for the case of n knockout, the
target proton and knockout neutron have a smaller energy at
large polar angles, where the cross section is higher. However,
the energy-angle correlated cross section shows a distinct
behavior from the case of p knockout. The cross section does
not decrease uniformly with the polar angle of the detected
light particle and exhibits a local minimum at around 40◦.
This behavior is clearly evident in Fig. 11 where we show
the energy-angle distribution for given angles of the detected
particle (30◦, 40◦, and 50◦).

In Fig. 12 we show the contour plots and 3D graphical
representations of the FADD angular cross sections d2σ

dθpdθN

for p and n knockout. These polar angle-correlation cross
sections result from integrating over the azimuthal angles
of each particle. The figure shows that the final state light
particles are angle correlated and their opening angle α =
θp − θN is close to the QFS value of 90◦, and further exhibits
a sharp distribution around this value. The broadening of
the distribution is connected to the binding of the knockout
particle to the heavy fragment. The figure shows that the polar
angular correlation cross sections exhibit a distinct isotopic
spin behavior. For p knockout the intensity of the angular
correlation cross section is a slowly varying function of the
angle and attains its zenith when the polar angle pair of the tar-
get proton and knockout proton is (θp, θN ) = (42.6◦, 44.4◦).
For n knockout the intensity of the polar angular correlation
cross section d2σ

dθpdθN
has an anisotropic behavior, with a first

maximum for (θp, θN ) = (55.1◦, 31.1◦). Obviously, this is due
to the differences in pp and pn interactions, the former being
limited to isospin triplet states while the latter acts in both
isospin singlet and triplet states.

We now analyze in detail the polar angle distribution
between the two final state light particles. In Fig. 13 we show
the calculated FADD (solid curve) and renormalized PWIA
(dashed curve) d3σ/(dθpdθN dφ) in the coplanar kinematics
with φ = 180◦ for fixed angles of the target proton, θp =
42.6◦ and θp = 55.1◦. In all cases the calculated cross sections
show an opening angle correlation close to the QFS value of
90◦. This opening angle distribution is essentially independent
of the higher order distortion effects. The calculated FADD
result is slightly narrower than the renormalized PWIA.

Figure 14 shows the contour plot of the PWIA azimuthal-
polar angle correlations for measured nucleon knockout d2σ

dφ dθN

and target proton d2σ
dφ dθp

with φ = φN − φp for p and n knock-
out. The results show that the knockout nucleon and the target
proton are correlated in the QFS coplanar kinematics with
a maximum distribution around φ = φN − φp = 180◦. From
the figure follows that the azimuthal angular correlation cross
section also exhibits a distinct isotopic spin behavior. While
for p knockout the distribution peaks when two final state
light particles are located at around 45◦, for n knockout the
distribution reaches its peak when the knockout neutron is
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FIG. 13. Angular correlation cross sections d3σ/(dθpdθN dφ)
with φ = 180◦ and fixed target proton angles for p (top) and n
knockout (bottom). The solid and dashed lines represent the FADD
and renormalized PWIA result, respectively, with R given in Table II.
The KD-KD optical potential parametrization was used.

located at around 30◦ and the target proton is emitted at around
60◦.

D. Kinematically fully exclusive cross sections

In this section we discuss the kinematically fully exclusive
cross section d5σ

dSd�pd�N
, as defined in Sec. II, as a function

of the S parameter for coplanar geometry, that is φ = φN −
φp = 180◦, and for two different polar angle kinematic con-
figurations of the light fragment’s final state: configuration
1 with (θp, θN ) = (55.1◦, 31.1◦), and configuration 2 with
(θp, θN ) = (42.6◦, 44.4◦). These configurations correspond to
polar angle points where the the angular correlation of the two
light particles has a maximum for n knockout and p knockout
respectively. In addition, we consider two parametrizations of
the optical potentials.

The S parameter is represented in Fig. 15 for p and n
knockout as a function of particle LAB energies. Clearly, the
S parameter is a characteristic of the kinematic configuration
and depends also on the binding energy of the knockout
particle. The S = 0 point is chosen such that it corresponds
to the value where the energy of the knockout nucleon has
minimum.

Figures 16 and 17 show the kinematically fully exclu-
sive cross section for the two kinematic configurations and
parametrizations of the optical potential. To obtain insight
into the role of FSI we also show the calculated cross
sections without p-core and N-core FSI (see Fig. 2). The
ratio of the FADD and PWIA results shown in the figures
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FIG. 14. Contour plot of the PWIA azimuthal angle correlations
d2σ

d�dθp
and d2σ

d�dθN
, with �� = �N − �p for p and n knockout, where

�N (�p) is the azimuthal angle for the knockout nucleon (proton).
The cross sections are in units of mb/sr. The KD-KD optical poten-
tial parametrization was used.

is not a constant for any of the kinematic configurations.
Therefore the Faddeev/AGS kinematically exclusive cross
section is not related to the PWIA result through a common
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FIG. 15. S parameter for different kinematic configurations as
discussed in the text.

integrated renormalization factor. Nevertheless, for p knock-
out the renormalization remains close to the calculated in-
tegrated ratio while stronger deviations occur for neutron
knockout with respect to the integrated value. In addition,
the ratios between the calculated Faddeev/AGS to the no
p-core and no N-core FSI results are essentially constant for
p-knockout, but they vary significantly for n knockout. How-
ever, in some configurations and in some restricted kinematic
region, the deviation from a constant renormalization factor
can be minimized. In any case we note that this renormaliza-
tion factor depends on the configuration, and often deviates
significantly from the integrated ratio.

The relative energies between each interacting pair are
given at the bottom of Figs. 16 and 17. The proton-core and
neutron-core relative energies remain essentially constant as a
function of the S parameter for each configuration. Assuming
a moderate dependence of the parametrizations of the optical
potential we have taken the potentials at a fixed energy of 200
and 400 MeV for the N-C and p-C parametrizations.

The neutron proton relative energy exhibits a more signif-
icant variation around the free NN scattering value of ω =
E/2 = 200 MeV, and therefore it is important to include in
the calculations the energy dependence of the transition am-
plitude for the light interacting pair. Nevertheless, the neutron
proton relative energy remains above 150 MeV in this energy
regime and for these kinematic configurations one expects
the n-p QFS regime to be achieved without small relative
pN energies. Notwithstanding, with the small dependence on
the proton-core and neutron-core relative energy, one obtains
large p-C and n-C FSI effects that can only be approximated
by a renormalization factor in some kinematic configurations
and in some restricted phase space.

E. Data analysis of p(12C, 2p)11B at 400 MeV/u

The calculated cylindrical transverse momentum ptr dis-
tribution for different optical potential parametrizations is
compared with the experimental results of [14] in Fig. 18.
The calculated curves result from summing the contributions
leading to the 11B core in the ground state (3/2−

1 ) and the
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FIG. 16. The top and middle parts of the figure represent the kinematically fully exclusive cross sections as a function of the S parameter,
d5σ

dSd�pd�N
, as defined in the text, for fixed polar angles and coplanar geometry, using two different optical potential parametrizations for p (left)

and n (right) knockout. Also shown is the ratio between the FADD result and the PWIA approximation. The cross sections are in units of
mb/(MeV sr2). The bottom part of the figure shows the relative energies between each interacting pair.

two excited states (1/2−
1 ) and (3/2−

2 ), as represented in
Fig. 4.

The spectroscopic factors, defined in Eq. (4), were ob-
tained in the present paper as the ratio between the exper-
imental values of Ref. [14] to the calculated values. The
spectroscopic factors for each configuration are given in
Table III. The figure shows that the optical potential

parametrizations might change the detail of the momentum
distribution at the maximum value and at the tail of the
distribution. Nevertheless one can say that the Faddeev/AGS
formalism is able to reproduce fairly well the available ex-
perimental data for p knockout with different interaction
parametrizations. However, the deduced spectroscopic factors
can vary significantly.
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FIG. 17. The top and middle parts of the figure represents the kinematically fully exclusive cross sections as a function of the S parameter,
d5σ

dSd�pd�N
, as defined in the text, for fixed polar angles and coplanar geometry, using two different optical potential parametrizations for p (left)

and n (right) knockout. Also shown is the ratio between the FADD result and the PWIA approximation. The cross sections are in units of
mb/(MeV sr2). The bottom part of the figure shows the relative energies between each interacting pair.

VI. CONCLUSIONS AND OUTLOOK

We have studied (p, pN ) reactions in inverse kinematics
assuming a three-body description for the projectile and target
system, and that the heavy fragment remains inert in the
collision process.

We have used the exact Faddeev/AGS reaction framework
that can be viewed as a multiple scattering expansion and have
calculated three-body kinematically inclusive, semi-inclusive,
and fully exclusive cross sections. We have shown that in the
final state light particles are angle correlated with dominant
coplanar kinematics, and the opening angle is close to the QFS
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FIG. 18. Calculated heavy fragment (core) transverse momen-
tum distribution

√
(px )2 + (py )2 for the p(12C, 2p)11B reaction lead-

ing to the ground state (3/2−
1 ) and the two excited states (1/2−

1 ) and
(3/2−

2 ). The experimental data are taken from Ref. [14].

value of 90◦; this indicates the dominance of the QFS reaction
mechanism.

The twofold energy-angle and azimuthal-polar angle cor-
relation cross sections and the angular correlation of the two
light particles exhibit a distinct behavior for p and n knockout.
In particular, while for p knockout the two light fragments
are emitted preferably at 45◦, for n knockout the neutron is
emitted preferentially at 30◦.

Several attenuating effects on the calculated PWIA were
addressed. The kinematically fully exclusive differential cross
sections show that the full and PWIA results are not related
through a common integrated renormalization factor. For the
case of proton knockout the renormalization remains close to
the calculated integrated ratio while stronger deviations occur
for the neutron knockout. Therefore, we can conclude that
the approximate QFS amplitude (3) is valid for p knockout
in some particular final-state kinematic configurations, but is
more limited for the case of n knockout.

We have also found that the ratio of the full to no p-core
FSI and no N-core FSI results is essentially constant for p

TABLE III. Calculated Faddeev/AGS total cross sections for
p knockout and spectroscopic factors for the ground state (3/2−

1 )
and the two excited states (1/2−

1 ) and (3/2−
2 ) using the BAU-J and

KD-KD optical potential parametrizations. The experimental data
are taken from [14].

V Iπ
C nl j σsp(mb) σexp(mb) Z

BAU-J 3/2−
1 1p3/21 6.02 15.18(18) 2.52

1/2−
1 1p1/21 5.90 1.92(2) 0.33

3/2−
2 1p3/21 5.43 1.5(2) 0.28

� = 3.13
KD-KD 3/2−

1 1p3/21 8.54 15.18(18) 1.78
1/2−

1 1p1/21 8.50 1.92(2) 0.23
3/2−

2 1p3/21 7.90 1.5(2) 0.19
� = 2.20

knockout, but varies significantly for n knockout. Some con-
figurations can be found where in some restricted kinematic
phase space the deviation from a constant renormalization
factor can be minimized. In general, this renormalization
factor depends on the configuration, and deviates significantly
from the integrated ratio.

Kinematically fully exclusive measurements of p and n
knockout are needed in the future for the assessment of
the role of distortions and FSI that is needed for a reliable
understanding of projectile structure.

Finally we also show that the Faddeev/AGS formalism is
able to reproduce fairly well the available experimental data
for p knockout.

A similar study will be performed for other nuclei at/away
from the stability line. The effects of introducing interactions
derived from ab initio structure models need to be investigated
as well as the effect of nuclear correlations not included in the
current adopted choice of the Hilbert space for the projectile.
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APPENDIX: FADDEEV/AGS EQUATIONS

The three-body Faddeev/AGS reaction approach is an ex-
act nonrelativistic formalism where the transition amplitudes
leading to the observables are the on-shell matrix elements
of the operators U βα obtained simultaneously for all open
channels from the solution of the integral equations,

U βα = δ̄βαG−1
0 +

∑
γ

δ̄βγ tγ G0U
γα, (A1)

where δ̄βα = 1 − δβα , and

tγ = vγ + vγ G0tγ (A2)

is the transition operator for each interacting pair. For exam-
ple, v1 denotes the interaction between the pair (2,3). The
subscripts α, β, γ denote two-cluster configurations, i.e., the
spectator particle or, equivalently, the pair in the odd-man-out
notation. In Eq. (A2),

G0 = (E + i0 − H0)−1 (A3)

is the free resolvent; E is total energy in the three-particle
center-of-mass system. The β = 0 partition corresponds to
three free particles in the continuum. The α = 1 corresponds
to the proton spectator in the incident channel.

The knockout amplitude, Eq. (A1), can be viewed as a
multiple scattering expansion,

U βα = δ̄βαG−1
0 +

∑
γ

δ̄βγ tγ δ̄γ α

+
∑

γ

δ̄βγ tγ
∑

ξ

G0δ̄γ ξ tξ δ̄ξα + · · · . (A4)
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The successive terms of this series can be grouped as terms
of zero order (which contribute only for rearrangement tran-
sitions), first order (or single scattering term), second order
(double scattering) in the transition operators tγ , and so on.

The kinematic variables in the LAB system satisfy the law
of conservation of momentum

KLAB = KN + Kp + KC, (A5)

and energy

ELAB − ε − K2
N

2mN
− K2

Z

2mZ
− (KLAB − KN − KZ )2

2mZ

= 0,

(A6)

where KLAB is the beam momentum in the LAB frame, ELAB

is the corresponding energy, and ε is the separation energy of
the knockout particle.

The kinematically fully exclusive fivefold differential
breakup cross section is conveniently expressed in terms of
the arc length S related to the LAB energies EN and EZ of the
two detected particles as S = ∫ S

0 dS [8] with

dS =
√

dE2
N + dE2

Z = dEZ

√
1 +

(
mZ KN

mN KZ

dKN

dKZ

)2

(A7)

with

dKN

dKZ
= − (mZ + mZ )KZ − mZ (KLAB − KN ) · K̂Z

(mZ + mN )KN − mN (KLAB − KZ ) · K̂N

mN

mZ
.

(A8)
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