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Forbidden nuclear reactions
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Exothermal nuclear reactions that become forbidden due to Coulomb repulsion in the ε → 0 limit
[limε→0 σ (ε) = 0] are investigated. [σ (ε) is the cross section and ε is the center of mass energy.] It is
found that any perturbation may mix states with small but finite amplitude to the initial state resulting in
finite cross section (and rate) of the originally forbidden nuclear reaction in the ε → 0 limit. The statement
is illustrated by modification of nuclear reactions due to impurities in a gas mix of atomic state. The
change of the wave function of reacting particles in nuclear range due to their Coulomb interaction with
impurity is determined using standard time-independent perturbation calculation of quantum mechanics. As
an example, cross section, rate and power densities of impurity-assisted nuclear pd reaction are numerically
calculated. With the aid of astrophysical factors cross section and power densities of the impurity-assisted
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I. INTRODUCTION

The cross section (σ ) of nuclear reactions between charged
particles j and k of charge numbers z j and zk reads as [1]

σ (ε) = S(ε) exp[−2πη jk (ε)]/ε, (1)

where S(ε) is the astrophysical S factor and ε is the kinetic
energy taken in the center of mass (CM) coordinate system.

η jk = z jzkα f
a jkm0c

h̄|k| = z jzkα f

√
a jk

m0c2

2ε
(2)

is the Sommerfeld parameter, where k is the wave number
vector of particles j and k in their relative motion, h̄ is the
reduced Planck constant, c is the velocity of light in vacuum
and

a jk = AjAk

Aj + Ak
(3)

is the reduced mass number of particles j and k of mass
numbers Aj and Ak and rest masses mj = Ajm0, mk = Akm0.
m0c2 = 931.494 MeV is the atomic energy unit, α f is the
fine structure constant. However, in the latest few decades
anomalies to (1) were reported, which are anomalous screen-
ing effect and the less well documented area of phenomena of
the so-called low-energy nuclear reactions (LENRs).

Extraordinary observations in cross-section measurements
of dd reactions in deuterated metal targets made in low-energy
accelerator physics, which can not be explained by electron
screening are named anomalous screening. (A systematic
survey of anomalous screening effect was made [2] a decade
ago.) However, the full theoretical explanation of the effect is
still missing.

In low-energy nuclear reactions (LENRs), a new and prob-
lematic field that emerged after the notorious cold fusion

publication by Fleischmann and Pons in 1989 [3], results are
reported that are in conflict with (1). Despite the fact that
even the possibility of the phenomenon of nuclear fusion
at low energies is received with due scepticism in main-
stream physics [4] low-energy nuclear reactions (LENRs) are
dealt with in a great number of laboratories and publications
(mostly experimental), conferences and periodicals have been
devoted to various aspects of the problem. (For summary of
the field see, e.g., Refs. [5–8].) The aim of this paper is to
show the possible reason for anomalies of cross sections of
nuclear reactions of particles of like charges at low energy in
general.

II. ROLE OF COULOMB REPULSION

The solution ϕ jk (R, r) of the stationary Schrödinger equa-
tion

Hjkϕ jk (R, r) = Ejkϕ jk (R, r) (4)

of particles of charge numbers z j and zk with

Hjk = − h̄2

2m0(Aj + Ak )
∇2

R − h̄2

2m0a jk
∇2

r + z jzke2

|r| (5)

is

ϕ jk (R, r) = V −1/2eiKRϕCb(r), (6)

where R = (mjr j + mkrk )/(mj + mk ) and r = r jk = r j − rk

are CM and relative coordinate of particles j and k of coor-
dinate r j and rk , respectively. V denotes the volume of nor-
malization and ϕCb(r) is the Coulomb solution [9], which is
the wave function of the relative motion in repulsive Coulomb
potential. ∇2

R and ∇2
r are Laplace operators in the CM and

relative coordinates, K is the wave vector of the CM motion
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and Ejk = ECM + ε with ECM = h̄2K2/[2m0(Aj + Ak )] and
ε = h̄2k2/(2m0a jk ). e is the elementary charge with e2 =
α f h̄c.

The contact probability density in the nuclear volume is
|ϕCb(0)|2 = f 2

jk/V , where

f jk = |e−πη jk/2�(1 + iη jk )| =
√

2πη jk

exp(2πη jk ) − 1
. (7)

The result of a first-order calculation of the cross section
in standard perturbation theory of quantum mechanics is
proportional to f 2

jk/v where v is the relative velocity in the
CM system. Investigating the energy dependence of f 2

jk/v it
is found that f 2

jk/v ∼ exp [−2πη jk (ε)]/ε in the ε → 0 limit.
Accordingly, the magnitude of the factor f jk is crucial from
the point of view of magnitude of the cross section.

If the reaction energy 	 > 0 (the difference between ini-
tial and final rest energies) of reaction between particles
of likewise charge, the spontaneous process could be al-
lowed by energy conservation. However, in the ε → 0 limit
limε→0 f 2

jk (ε) = 0 with limε→0 |ϕCb(0)|2 = 0 and the process
becomes forbidden [limε→0 σ (ε) = 0] due to Coulomb re-
pulsion. (If one of the reacting particles is neutral, which is
the case of neutron capture processes, the cross section has
nonzero value in the ε → 0 limit, see, e.g., thermal neutron
absorption cross sections [10].)

III. STATEMENT AND EXAMPLES

Experience in atomic physics indicates that in case of
forbidden transitions the second-order process may play an
important role. As, e.g., in the case of the hydrogen 2s1/2-1s1/2

transition, which is a forbidden electric dipole transition, the
largest transition rate comes from a two photonic process [11]
in which the sum of the energies of the simultaneously emitted
photons equals the difference between the energies of states
2s1/2 and 1s1/2. The mean life time 1/7 s of the 2s1/2 state due
to the two photonic process is much longer than the lifetime
1.6 × 10−9 s of state 2p1/2 for which electric dipole transition
is allowed. Thus one can conclude that a second-order process
from the point of view of perturbation calculation can result in
small but finite transition rate. In the second-order process the
state is changed in first order and states, which can produce
allowed electric dipole transition rate, are mixed with small
amplitude to the initial 2s1/2 state meanwhile two particles are
emitted.

Similarly an essential change of the initial eigenstate of
(4) of ε = 0 may happen due to any perturbation since it
can mix states of ε �= 0 with small but finite amplitude to the
initial state resulting in much smaller (compared to neutron
absorption) but finite rate of the nuclear reaction originally
forbidden in the ε → 0 limit. Consequently, cross section
and rate of processes to be considered should be calculated
by the rules of standard perturbation calculation of quantum
mechanics. Our statement applies to every nuclear process
for which σ (ε) has the form of (1) and limε→0 σ (ε) = 0
holds, and as such it concerns low-energy nuclear physics with
charged participants in general.

Since the above statement is quite general it is only il-
lustrated by modification of forbidden nuclear reactions due
to Coulomb interaction with impurities (the initial state is
defined in the next section). We demonstrate the mechanism
on the

A1
z1

V + A2
z2

w + A3
z3

X → A1
z1

V ′ + A3+A2
z3+z2

Y + 	 (8)

and
A1
z1

V + A2
z2

w + A3
z3

X → A1
z1

V ′ + A4
z4

Y + A5
z5

W + 	 (9)

processes. Reaction (8) is an impurity (A1
z1

V ) assisted capture
of particle A2

z2
w, e.g. capture of proton (p), deuteron (d ), triton

(t ), 3He, 4He), etc. The impurity (A1
z1

V )-assisted reaction (9)
with two final fragments is possible with conditions A2 +
A3 = A4 + A5 and z2 + z3 = z4 + z5. The reaction energy 	

is the difference between the sum of the initial and final mass
excesses, i.e., 	 = 	A2,z2 + 	A3,z3 − 	A3+A2,z3+z2 in case of
(8) and 	 = 	A2,z2 + 	A3,z3 − 	A4,z4 − 	A5,z5 in case of (9)
where 	Aj ,z j and 	A3+A2,z3+z2 are the corresponding mass
excesses [12]. Since particle 1 merely assists the nuclear
reaction its rest mass does not change.

Usually capture of particle A2
z2

w may happen in the A2
z2

w +
A3
z3

X → A3+A2
z3+z2

Y + γ (with 	 > 0) reaction where γ emission
is required by energy and momentum conservation. Accord-
ingly (8) describes a new type of A2

z2
w capture. In the usual

A2
z2

w-capture reaction particles A3+A2
z3+z2

Y and γ take away the re-
action energy and the reaction is governed by electromagnetic
interaction. In reaction (8) the reaction energy is taken away
by particles A1

z1
V ′ and A3+A2

z3+z2
Y while the reaction is governed by

Coulomb as well as strong interactions.

IV. MECHANISM AND MODEL

It is assumed that initially all components of a three-body
system are in atomic state. Atomic state can effectively be
achieved, e.g., by dissociative chemisorption at metal (e.g.,
Pd, Ni, and Cu) surfaces from two atomic molecules [13]
or simply by heating a molecular gas. So, as initial system
three screened charged heavy particles of rest masses mj

and nuclear charges z je ( j = 1, 2, 3) are taken. The total
Hamiltonian, which describes this three-body system is

Htot = Hkin,1 + H23,sc + VCb,sc(1, 2) + VCb,sc(1, 3), (10)

where H23,sc = Hkin,2 + Hkin,3 + VCb,sc(2, 3) is the Hamilto-
nian of particles 2 and 3 whose nuclear reaction will be
discussed. Hkin,j denotes the kinetic Hamiltonian of particle
j and particle 1 is considered to be free.

VCb,sc( j, k) = z jzke2

2π2

∫
exp(iqr jk )

q2 + q2
sc,jk

dq, (11)

denotes the screened Coulomb interaction between particles j
and k with screening parameter qsc,jk.

It is supposed that stationary solutions |1〉 and |2, 3〉sc of
energy eigenvalues E1 and E23 of the stationary Schrödinger
equations Hkin,1|1〉 = E1|1〉 with E1 the kinetic energy of
particle 1 and H23,sc|2, 3〉sc = E23|2, 3〉sc with E23 = ECM + ε

are known. Here ε and ECM are the energies attached to the
relative and CM motions (of wave numbers k and K) of
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particles 2 and 3. Thus Htot can be written as Htot = H0 + HInt

with H0 = H1 + H23,sc as the unperturbed Hamiltonian and

HInt = VCb,sc(1, 2) + VCb,sc(1, 3) (12)

as the interaction Hamiltonian (time-independent
perturbation). The stationary solution |1, 2, 3〉0,sc of
H0|1, 2, 3〉0,sc = E0|1, 2, 3〉0,sc with E0 = E1 + E23 can
be written as |1, 2, 3〉0,sc = |1〉|2, 3〉sc, which is the direct
product of states |1〉 and |2, 3〉 sc. The states |1, 2, 3〉0,sc
form complete system. The approximate solution of
Htot|1, 2, 3〉sc = E0|1, 2, 3〉sc in the screened case is obtained
with the aid of standard time-independent perturbation
calculation [14] and the first-order approximation is expanded
in terms, which are called intermediate states, of the complete
system |1, 2, 3〉0,sc.

The solutions |2, 3〉sc in the screened case are unknown
[their coordinate representation 〈R, r|2, 3〉sc is denoted by
ϕ23(R, r)sc] but the solution of H23|2, 3〉 = E23|2, 3〉 in the
unscreened case is known and the coordinate representation
〈R, r|2, 3〉 = ϕ23(R, r) of |2, 3〉, as it is said above, has the
form ϕ23(R, r) = V −1/2eiKRϕCb(r), where ϕCb(r) is the un-
screened Coulomb solution [9] (now r = r23).

The two important limits of ϕ23(R, r) sc are the solu-
tion ϕ23(R, r,nucl )sc in the nuclear volume and the solu-
tion ϕ23(R, r,out )sc in the screened regime. In the nuclear
volume screening is negligible thus ϕ23(R, r)sc = ϕ23(R, r).
Furthermore, in this case in ϕ23(R, r) an approximate form
ϕCb,a(r) = eik·r f23(|k|)/√V of the (unscreened) Coulomb so-
lution ϕCb(r) may be used. Here f23(|k|) is the appropriate
factor given by (7) corresponding to particles 2 and 3. Thus
ϕ23(R, r,nucl )sc = f23(|k|)eiKReikr/V is used in the range
of the nucleus and in the calculation of the nuclear matrix
element. In the screened (outer) range, where Coulomb po-
tential is negligible, the solution becomes ϕ23(R, r,out )sc =
eiKReikr/V that is used in the calculation of the Coulomb
matrix element.

In the screened range the initial wave function of zero
energy is ϕi = V −3/2. The intermediate states of particles 2
and 3 are determined by the wave number vectors K and k. In
the case of the assisting particle 1 the intermediate and final
state is a plane wave of wave number vector k1.

The matrix elements VCb,νi of the screened Coulomb poten-
tial between the initial and intermediate states are

VCb(1, s)νi = z1zs

2π2
e2 (2π )9

V 3
δ(k1 + K)

δ(k + a(s)k1)

k2
1 + q2

sc,1s

, (13)

where a(s) = (−A3δs,2 + A2δs,3)/(A2 + A3) and s = 2, 3.

V. CHANGE OF THREE-PARTICLE WAVE FUNCTION
IN NUCLEAR RANGE

According to standard time-independent perturbation the-
ory of quantum mechanics [14] the first-order change of
the wave function in the range r � R0 (R0 is the nuclear
radius of particle 3) due to screened Coulomb perturbation
is determined as

δϕ(r) =
∑
s=2,3

δϕ(s, r) (14)

with

δϕ(s, r) =
∫∫

VCb(1, s)νi

Eν − Ei

V

(2π )6 (15)

×ei(KR+k1r1 )ϕCb,a(k, r)dKdk,

where Ei and Eν are the kinetic energies in the initial and
intermediate states, respectively. The initial momenta and
kinetic energies of particles 1, 2, and 3 are zero (Ei = 0) and
Eν = E23 + h̄2k2

1/(2m0A1). Thus

δϕ(s, r) = z1zsα f
4π h̄c

V 5/2

ei(k1r1−k1R)

k2
1 + q2

sc,1s

× 2m0a1s

h̄2k2
1

[ f23(k)eikr]k=a(s)k1 . (16)

It can be seen that the arguments of f23(|k|) are |k| = A3
A2+A3

k1

and |k| = A2
A2+A3

k1, here k1 = |k1|. Consequently, if particle 1
obtains large kinetic energy, as is the case in nuclear reactions
[e.g., k2

1 = k2
0 = 2m0a14	h̄−2 in the case of reaction (8)],

then the factors f23(|k|) and the rate of the process too
will be considerable. [In this case one can neglect q2

sc,jk in

the denominator of (16)]. Since limε→0 |δϕ(0)|2 �= 0, i.e., it
remains finite in the ε → 0 limit, and the expected reaction
rate too remains finite. Furthermore, δϕ(r), which causes the
effect, is temperature independent. (Temperature dependence
is brought in by mechanisms responsible for producing atomic
states.) Up to this point the calculation and the results are
nuclear reaction and nuclear model independent.

VI. CROSS SECTION

When calculating the cross section of reaction A1
z1

V + p +
d → A1

z1
V ′ + 3

2He + 5.493 MeV the Hamiltonian Vst(2, 3) =
−V0 if |r23| = |r| � b and Vst(2, 3) = 0 if |r23| = |r| > b of
strong interaction, which is responsible for nuclear reaction
between particles 2 and 3, is used. For the final state of the
captured proton the Weisskopf approximation is applied, i.e.,
 f (r) = fW(r) with fW(r) =

√
3/(4πR3

0) if r � R0, and
fW(r) = 0 for r > R0, where R0 is the nuclear radius. We
take V0 = 25 MeV and R0 = b = 2 × 10−13 cm [10] in the
case of pd reaction.

The matrix element of the potential of the strong inter-
action between intermediate (eiKRϕCb,a(k, r)/

√
V ) and final

(eik4·Rf(r)/
√

V ) states and in the Weisskopf approximation
is

V W
st,fν = −V0

√
12πR0

k
f23(k)H (k)

(2π )3

V 3/2
δ(K − k4) (17)

where H (k) = ∫ 1
0 sin(kR0x)xdx. According to standard time-

independent perturbation theory of quantum mechanics [14]
the transition probability per unit time (W (2)

fi ) of the process
can be written as

W (2)
fi = 2π

h̄

∫∫ ∣∣T (2)
fi

∣∣2
δ(E f − 	)

V 2

(2π )6 dk1dk4 (18)
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with

T (2)
fi =

∫∫ ∑
s=2,3

Vst,fνVCb(1, s)νi

Eν − Ei

V 2

(2π )6 dKdk. (19)

Substituting everything obtained above into (19) and (18),
where E f is the sum of kinetic energies of the final particles
(1 and 4), one can calculate W (2)

fi . The cross section σ
(2)
23 of

the process is defined as σ
(2)
23 = N1W

(2)
fi /(v23/V ) where N1 is

the number of particles 1 in the normalization volume V and
v23/V is the flux of particle 2 of relative velocity v23.

v23σ
(2)
23 = n1Spd, (20)

where n1 = N1/V is the number density of particles 1 and

Spd = 24π2
√

2cR0

z2
1α

2
f V

2
0 (h̄c)4

	9/2(m0c2)3/2

× (A2 + A3)2

a7/2
14

[F (2) + F (3)]2 (21)

with

F (s) = zsa1s

A3δs,2 + A2δs,3
f23[a(s)k0]H[a(s)k0], (22)

s = 2, 3 and k0 = h̄−1√2m0a14	.
In the case of reactions with two final fragments [see (9)]

the nuclear matrix element can be derived from S(ε) [see (1)],
i.e., in long wavelength approximation from S(0), which is
the astrophysical S factor at ε = 0, in the following manner.
Calculating the transition probability per unit time W (1)

fi of the
usual (first-order) process in standard manner

W (1)
fi =

∫
2π

h̄
|Vst,fi |2δ(E f − 	)

V

(2π )3
dk f , (23)

where k f is the relative wave number of the two fragments
of rest masses m4 = m0A4, m5 = m0A5 and atomic numbers
A4, A5, and E f = h̄2k2

f /(2m0a45) is the sum of their kinetic
energy. For the magnitude of nuclear matrix element Vst,fi

we take the form |Vst,fi| = f23(ki )|hfi|/V , where f23(ki ) is the
Coulomb factor of the initial particles 2 and 3 with ki the
magnitude of their relative wave number vector ki. [The
Coulomb factor f45(k f ) ≈ 1 of the final particles 4 and 5 with
k f the magnitude of their relative wave number vector k f .] It
is supposed that |hfi| does not depend on ki and k f namely
the long wavelength approximation is used. In this case the
product of the relative velocity v23 of the initial particles 2, 3
and the cross section σ

(1)
23 is

v23σ
(1)
23 = |hfi|2 f 2

23(ki )(m0a45)3/2
√

2	

π h̄4 . (24)

On the other hand, v23σ
(1)
23 is expressed with the aid of (1)

and v23 = √
2ε/(m0a23). From the equality of the two kinds

of v23σ
(1)
23 one gets

|hfi|2 = (h̄c)4S(0)

z2z3α f (m0c2)5/2
√

2	a3/2
45 a23

. (25)

In the case of the impurity-assisted, second-order process
|Vst,fν | = f23(k)|hfi|(2π )3δ(K − K f )/V 2 where K f and k f are

TABLE I. Sreaction and power density of Xe assisted reactions
with two final fragments in long wavelength approximation. S(0) is
the astrophysical S factor at ε = 0 in MeVb [1,16,17]. Sreaction (in
cm6 s−1) is calculated using (27) with (28) taking z1 = 54 (Xe), 	 is
the energy of the reaction in MeV and preaction = n1n2n3Sreaction	 is
the power density in Wcm−3 that is calculated with n1 = n2 = n3 =
2.65 × 1020 cm−3. In the case of 9

4Be(α, n)12
6 C and 10

5 B(p, α)7
4Be

reactions the astrophysical S factor [S(ε)] has strong energy depen-
dence therefore the calculation was carried out with two characteris-
tic values of S(ε).

Reaction S(0) Sreaction 	 preaction

d (d, n)3
2He 0.055 1.01 × 10−48 3.269 9.82

d (d, p)t 0.0571 1.10 × 10−48 4.033 13.2
d (t, n)4

2He 11.7 1.06 × 10−46 17.59 5.57 × 103

3
2He(d, p)4

2He 5.9 1.51 × 10−48 18.25 82.6
6
3Li(p, α)3

2He 2.97 1.99 × 10−49 4.019 2.38
6
3Li(d, α)4

2He 16.9 1.33 × 10−49 22.372 8.84
7
3Li(p, α)4

2He 0.0594 3.85 × 10−51 17.347 0.199
9
4Be(p, α)6

3Li 17 1.79 × 10−49 2.126 1.13
9
4Be(p, d )8

4Be 17 1.66 × 10−49 0.56 0.277
9
4Be(α, n)12

6 C 2.5 × 103 6.22 × 10−51 5.701 0.106
6 × 105 1.49 × 10−48 5.701 25.4

10
5 B(p, α)7

4Be 4 1.04 × 10−50 1.145 0.0356
2 × 103 5.21 × 10−48 1.145 17.8

11
5 B(p, α)8

4Be 187 5.16 × 10−49 8.59 13.2

the final wave number vectors attached to CM and relative
motions of the two final fragments, particles 4 and 5. k f

appears in E f in the energy Dirac δ. Repeating the calculation
of the transition probability per unit time of the impurity
assisted, second-order process applying the above expression
of |Vst,fν | one gets

v23σ
(2)
23 = n1Sreaction, (26)

where σ
(2)
23 is the cross section of the process and

Sreaction = 8α2
f z2

1

a23a3
123

S(0)c

m0c2

(
h̄c

	

)3

I (27)

with

I =
∫ 1

0

( ∑
s=2,3

zsa1s
√

As√
eb23As

1
x − 1

)2 √
1 − x2

x7
dx. (28)

Here b23 = 2πz2z3α f

√
m0c2/(2a123	) with a123 =

A1(A2 + A3)/(A1 + A2 + A3). In the index reaction the
reaction resulting the two fragments will be marked (see
Table I).

It is plausible to extend the investigation to the atomic gas-
solid (e.g., wall) interaction. In this case the role of particle 1
is played by one atom of the solid (metal), which is supposed
to be formed from atoms with nuclei of charge and mass
numbers z1and A1. For initial state a Bloch function of the
form

ϕk1,i (r1) = N−1/2
1

∑
L

eik1,i ·La(r1 − L) (29)
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is taken, that is localized around all of the lattice points [15].
Here r1 is the coordinate, k1,i is wave number vector of the
first Brillouin zone (BZ) of the reciprocal lattice, a(r1 − L)
is the Wannier function, which is independent of k1,i within
the BZ and is well localized around lattice site L. N1 is the
number of lattice points of the lattice of particles 1. Repeating
the cross section calculation applying Bloch function it is ob-
tained that cross-section results remain unchanged and n1 =
N1c/vc, where vc is the volume of elementary cell of the solid
and N1c is the number of particles 1 in the elementary cell.

A. Numerical values of cross sections

The cross section σ
(2)
23 of the process A1

z1
V + p + d →

A1
z1

V ′ + 3
2He + 5.493 MeV is σ

(2)
23 = n1Spd/v23, where Spd =

1.89 × 10−53z2
1 cm6 s−1 with z1 the charge number of the

assisting nucleus. σ
(2)
23 , similarly to thermal neutron capture

cross sections, has 1/v23 dependence. In case of 0.1 eV initial
kinetic energy (T = 1160 K if kT = 0.1 eV) and with z1 = 54
(Xe) σ

(2)
23 = n1 × 2.5 × 10−31 b from which σ

(2)
23 = 0.0066 nb

at n1 = 2.65 × 1019 cm−3 (which equals the number density
of an atomic gas in normal state). This value of σ

(2)
23 is 10–15

orders of magnitude less than the thermal neutron capture
cross sections.

In anomalous electron screening investigations accelerator
of low-energy beams, e.g., in case of [2] an accelerator line
powered by a highly stabilized 60-kV supply is applied.
The targets are deuterium implanted metals. Since our
model is valid if the magnitude of initial kinetic energies of
particles j = 1–3 are negligible compared to the reaction
energy 	, it can be applied. In this case in our model
the role of particle 1 is played by one atom of the solid
(metal). We focus on the d (d, t )p reaction investigated in
Ref. [2] and we compare the cross section of the assisted,
second-order process σ

(2)
23 to the cross section σ

(1)
23 of the

usual reaction. We take Pd as host metal. vc(Pd ) = d3/4
since Pd has f cc crystal structure and N1c = 2 resulting n1 =
N 1c/vc = 1.36 × 1023 cm−3 [d (Pd) = 3.89 × 10−8 cm].
We have calculated Sd (d,t )p(Pd) taking z1 = 46 and
A1 = 106 producing Sd (d,t )p(Pd) = 7.9 × 10−49 cm6 s−1

and n1Sd (d,t )p(Pd) = 1.08 × 10−25 cm3 s−1. Taking v23 =
c
√

2ε/(m0c2), S(0) = 0.0571 MeVb (see Table I) and
2πη23 = 2πα f

√
m0c2/(2ε) = 0.990/

√
ε(in MeV) one

obtains σ
(2)
23 = n1Sd(d,t)p/v23 = 7.77 × 10−11/

√
ε(in MeV) b

and σ
(1)
23 = 0.0571 exp(−0.990/

√
ε(in MeV))/ε(in MeV) b

from (1). If σ
(2)
23 > σ

(1)
23 then the second-order process

dominates, i.e., if 7.35 × 108 exp(−0.990/
√

ε)/
√

ε < 1,
which is the case if ε < 0.001762 MeV. Consequently the
anomalous screening phenomenon may be connected to
the processes discussed here. Moreover the experimental
difficulties, which accompanied anomalous screening
investigations indicate that the phenomenon discussed by
us is difficult to observe and examine, and partially answers
the question why it was not observed up till now.

B. Experimental proposal

The ground of the method, which seems to be capable to
show and to investigate in detail the phenomenon may be the

FIG. 1. The energy (E ) dependence of the differential cross
section dσ

(2)
23 /(dEd�) = F (E ) of d (d, t )p reaction in the case of

deuterized Pd. F is given in 10 pb/keV units. E is the energy of
the assisting particle 1 (in this case Pd) in keV units. The accel-
erator potential U = 1 keV. The possible maximum value of E.is
146.65 keV.

measurement of the assisting particle and one from the two
reaction products of, e.g., metal assisted d (d, t )p reaction in
coincidence.

For this it is useful to determine the differential cross
section

dσ
(2)
23

dEd�
= F (E ) = n1

v23

A1α
2
f z2

1

πa23a4
123

S(0)c

m0c2	

(
h̄c

	

)3

χ [x(E )], (30)

where x(E ) = k1/km = √
A1E/(a123	) with km =√

2m0c2a123	/(h̄c), k1 = |k1|, E and k1 are the energy
and wave vector of particle 1, and

χ (x) =
( ∑

s=2,3

zsa1s
√

As√
eb23As

1
x − 1

)2 √
1 − x2

x8
. (31)

Figure 1 shows the E dependence of the differential cross
section dσ

(2)
23 /(dEd�) = F (E ). If 2 is the incident flux

of particles 2 then dN1/dt = N3F (E )2δEδ� is the rate of
particles 1 of energy in the energy interval E ± δE/2 emitted
in solid angle δ� around the direction determined by k1. N3 is
the total number of particles 3 irradiated by the beam of flux
2. It can be seen from Fig. 1 that particles 1 have kinetic
energy mostly below 7 keV. Thus the wave vectors (k4 and
k5) of the other two final particles 4 and 5 have approximately
opposite direction. Their kinetic energies (E4 and E5) are
peaked around 3	/4 and 	/4.

The accelerating electric potential U seems to be worth
decreasing below 1 keV since dσ

(2)
23 /(dEd�) ∼ 1/v23 ∼

1/
√

U . Furthermore decreasing U admits higher accelerator

054620-5



PÉTER KÁLMÁN AND TAMÁS KESZTHELYI PHYSICAL REVIEW C 99, 054620 (2019)

current compared to the maximum of possible current of low-
energy accelerators used in anomalous screening experiments
[2]. However, decreasing U results decreasing penetration
depth of the beam leading to decreasing interaction volume
so that the optimal value of U needs further study.

VII. RATE AND POWER DENSITIES

The rate in volume V is

dNreaction

dt
= N323σ

(2)
23 , (32)

where 23 = n2v23 is the flux of particles 2 with n2 = N2/V
their number density. N2 and N3 are the numbers of particles
2 and 3 in the normalization volume. The rate and power
densities are defined as

rreaction = 1

V

dNreaction

dt
= n3n2n1Sreaction (33)

and

preaction = rreaction	 = n1n2n3S reaction	, (34)

respectively, where n3 = N3/V is the number density of parti-
cles 3. rreaction and preaction are both temperature independent.

The rate (rpd) and power (ppd) densities of reaction A1
z1

V +
p + d → A1

z1
V ′ + 3

2He are determined taking z1 = 54 (Xe)
and n1n2n3 = 1.86 × 1061 cm−9 (which is the case, e.g.,
at n1 = n2 = n3 = 2.65 × 1020 cm−3, n1, n2, and n3 are the
number densities of Xe, p, and d , i.e., particles 1, 2, and
3) for which considerable values are obtained: rpd = 1.02 ×
1012 cm−3 s−1 and ppd = 0.901 Wcm−3 . If the impurity is
Hg or U then these numbers must be multiplied by 2.2 or
2.9, respectively. The results of Sreaction and power density
calculations of a number of Xe-assisted reactions with two
final fragments in long wavelength approximation and with
n1 = n2 = n3 = 2.65 × 1020 cm−3 can be found in Table I.

To reach the order of magnitude 1061 cm−9 of n1n2n3

is a great challenge. It may be done, e.g., with the aid of
dissociative chemisorption at metal (e.g., Pd, Ni, and Cu)
surfaces from two atomic molecules, e.g., H2, HD, or D2 by
heating molecular gas [13]. In this case n1 > 1022 cm−3 is
the number density of metal atoms in the solid and n1n2n3 =
1061 cm−9 can be reached if kT ∼ 0.5–1 eV producing n2 =
n3 > 5.3 × 1019 cm−3. It can be achieved in a two atomic
gas in the 4–8 atm pressure, 600–1200 K temperature range,
respectively, at the surface. In the case of powdered samples
of small grain size or nanoparticles one may reach interaction
volume large enough to be able to generate heat produced
by power densities of some of nuclear reactions listed in
Table I that is observable with the aid of precise calorimetric
measurements.

Since in (8) and (9) the reaction energy is taken away
by particles A1

z1
V ′, A3+A2

z3+z2
Y and A1

z1
V ′, A4

z4
Y, A5

z5
W , respectively, as

their kinetic energy that they lose in a very short range to
their environment converting the reaction energy efficiently
into heat if the state of matter of atomic state is dense, so their
direct observation is difficult in this case. In the experimental
conditions stated above the creation of new elements due to
nuclear reactions, i.e., the presence of nuclear transmutation
in the system may be a way to confirm our predictions
experimentally.

VIII. CONCLUSION

It is found that any perturbation may lead to nonzero cross
section and rate of nuclear reactions forbidden in the ε → 0
limit. Since this statement applies to every nuclear process
forbidden in the ε → 0 limit it concerns low-energy nuclear
physics with charged participants in general. Thus, it may be
stated that a very great number of reactions, which are de-
termined by different initial states, different perturbations and
different processes of second and higher order and which may
be attached to forbidden reactions, have not been investigated
up till now.
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