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Within the framework of FREYA event-by-event fission simulations, we study the sensitivity of various
neutron observables to the input yield function Y (A, Z, TKE) on which the fission event sampling is based.
We first perform a statistical analysis of the available fission data in order to determine the distribution of
possible yield functions Y (A, Z, TKE) and we then construct a sample of 15 000 such yield functions. For
each of these, FREYA is used to generate one million fission events, leading to a corresponding ensemble of
fission observables, including the neutron multiplicity distribution and its factorial moments, the neutron energy
spectrum, and the neutron-neutron angular correlation. This procedure allows us to study the sensitivity of those
neutron observables to the uncertainty in the experimental data. Particular attention is given to the pronounced
anticorrelation between the mean neutron multiplicity ν and the mean total fragment kinetic energy TKE.
Because the former observable is very well determined experimentally, it is possible to exploit that inherent
anticorrelation to derive a significantly stricter tolerance on TKE. In addition, we study the sensitivity to the
various FREYA parameters and we introduce a method for determining a A-dependent x parameter, x(A), based
on the measured A-dependent neutron multiplicity, ν(A).
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I. INTRODUCTION

Nuclear fission is a rich field of physics. A typical bi-
nary fission event produces two excited fragment nuclei that
promptly deexcite by the emission of neutrons and photons.
The resulting product nuclei and the neutron and photon
ejectiles may be detected individually or in coincidence, thus
presenting a wide range of possible fission observables.

The ensuing need for addressing arbitrary types of cor-
related fission data has led to the development of Monte
Carlo simulation models that generate complete fission events
[1–7]. These models typically require as input the primary
fission fragment yields as a function of their mass and charge
numbers as well as their total kinetic energy, denoted as
Y (A, Z, TKE). The specification of the yield function enables
the code to select, event by event, the identity of the two pri-
mary fragments, their linear and angular momenta, and their
excitation energies; the subsequent deexcitation processes can
then be simulated. The resulting prompt neutron and photon
observables are thus sensitive to the specific yield function
employed.

A number of fission applications, from energy production
to nonproliferation, depend strongly on the average neutron
multiplicity, ν, as well as on the associated energy spectrum.
For the cases most important to those applications, the value
of ν is tightly constrained; in fact, more so than any other
fission-related observable. Indeed, although the corresponding
fission fragment yields have been measured by many groups
and are in relatively good mutual agreement for 252Cf(sf ),

their differences are significant enough to render them less
tightly constrained than ν.

We investigate here the sensitivity of ν and other neutron
observables to the input yield function, focusing on 252Cf(sf ),
one of the best-measured fission cases. By use of a gener-
alized least-squares fit to the available fission yield data, we
construct a distribution of yield functions consistent with the
reported experimental uncertainties and we then study how
the neutron observables are affected by the use of a variery of
yield functions sampled from that distribution.

We particularly seek to quantify the degree to which
the measured yields can constrain ν. This is an especially
interesting time to undertake such an investigation because
the nuclear fission community is in the process of making
a new assessment of the fission fragment yields, making
use of a very similar model to calculate the deexcita-
tion of the fission fragments [8] and avoid inconsistencies
in evaluated nuclear data libraries [9]. It is important to
understand whether the resulting consensus will be of high-
enough fidelity to provide bounds on ν that meet the re-
quired accuracy. However, while the primary focus is thus
on the constraints on ν placed by the measured fission
fragment yields, we will also study how the uncertainty in
the input yield function affects other neutron observables of
interest.

It should be noted that because we consider spontaneous
fission, there will be neither pre-equilibrium neutron emission
nor any other emission prior to scission. Furthermore, at this
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point, FREYA does not consider the possibility of scission
neutrons, so that all neutrons in an event have been evaporated
from the fully accelerated fragments.

While we employ one particular model in our investigation,
namely FREYA [2], we expect our conclusions to have general
validity as to whether experimentally determined yields can
place sufficiently strong constraints on ν. Because the fission
model depends on certain adjustable input parameters, we will
also discuss the sensitivity of our results to those parameters.

We first, in Sec. II, discuss how a χ2 analysis of the com-
bined experimental data on fragment mass, charge, and kinetic
energy, including the associated reported uncertainties, can
provide a probability distribution of possible yield functions,
P[Y (A, Z, TKE)].

In Sec. III we describe how the standard FREYA code has
been modified so it can accept an ensemble of sampled yield
functions as input. In Sec. IV we then study how sensitive the
calculated neutron observables are to the uncertainty in the
input information reflected in the ensemble of yield functions.
We particularly consider the neutron multiplicity distribution
Pn(ν), the energy spectrum χn(E ) of the evaporated neutrons,
and the neutron-neutron angular correlation Cnn(θ12). A pre-
liminary account of this study was reported previously [10].

Section V focuses on the strong correlation between the
mean neutron multiplicity ν and the mean total fragment
kinetic energy TKE [10,11]. Because ν is so well determined
experimentally, this inherent correlation can be exploited to
reduce the uncertainty in TKE. (We obtain a reduction by
nearly a factor of six.) We also discuss the sensitivity of the
calculated neutron observables to the FREYA model parame-
ters (Sec. VI). Particular attention is given to the parameter
x governing the division of the available excitation energy
between the two fragments and we introduce a method for
determining a mass-dependent x parameter, x(A), based on the
measured mass-dependent mean neutron multiplicity, ν(A).

The study is then summarized and concluded (Sec. VII).
Several technical derivations are relegated to the appendices
to facilitate the flow of the main presentation.

II. THE ENSEMBLE OF YIELD FUNCTIONS

We have performed a least-squares statistical analysis of
available experimental data on TKE(A) and Y (A) for pri-
mary fission fragments. The data sets considered are listed
in Table I. Unfortunately, most experimental data sets were
reported with only very limited information on the associated
uncertainties. Furthermore, no covariance information was
ever provided. The present work is focused on the influence
of the uncertainties of the input yields on the results of event-
by-event simulations. For this limited purpose, we may make
somewhat simplified assumptions regarding the correlations
and the uncertainties. A true evaluation would require a more
thorough analysis, but the main conclusions of this study are
unlikely to change with a more careful experimental data
analysis.

The simulation of the deexcitation of the fission fragments
by sequential emission of neutrons and photons requires the
knowledge of the primary fission-fragment yields with re-
spect to mass, charge, and total kinetic energy, Y (A, Z, TKE).

TABLE I. The various experimental data used in this work,
ordered by the publication year for each of the three data types: Y (A),
TKE(A), and σTKE(A). The EXFOR entry can be used to directly
access the numerical data kept at the National Nuclear Data Center
[21].

First author Year EXFOR # Ref.

Y (A)
Budtz-Jørgensen 1988 23175-002 [13]
Hambsch 1997 22780-002 [14]
Kozulin 2008 41581-003 [15]
Romano 2010 14259-008 [16]
Zeynalov 2011 23118-002 [17]
Göök 2014 – [18]

TKE(AH )
Whetstone 1963 14101-003 [19]
Mehta 1973 23213-008 [20]
Budtz-Jørgensen 1988 23175-003 [13]
Hambsch 1997 22780-003 [14]
Kozulin 2008 41581-004 [15]
Göök 2014 – [18]

σTKE(AH )
Budtz-Jørgensen 1988 23175-003 [13]
Hambsch 1997 22780-003 [14]
Göök 2014 – [18]

No experimental data set provides such a complete three-
dimensional yield function. Therefore, we must rely on par-
tial information to construct the full yield function. In the
present case, we first construct the two-dimensional distribu-
tion Y (A, TKE) assuming that TKE has a Gaussian distribu-
tion for each A value,

Y (TKE|A) ∝ exp

[
−TKE − TKE(A)

2σ 2
TKE(A)

]
, (1)

where TKE ranges from zero up the maximum Q value
for the specified mass division; the normalization is∫

Y (TKE|A) dTKE = Y (A). The functions Y (A), TKE(AH ),
and σTKE(AH ) are obtained from a least-squares fit to experi-
mental data, as explained below. The charge distribution for a
given fragment mass number, Y (Z|A) [with

∫
Y (Z|A) dZ =

1], is taken from Wahl’s systematics [12], which includes
odd-even factors. The full yield function is then given by

Y (A, Z, TKE) = Y (TKE|A)Y (Z|A). (2)

A. Fission fragment mass yields

The experimental data on fission fragment mass yields used
in this work are listed in Table I. The documentation available
on those experimental data sets is rather poor, and crude
estimates and corrections were made. As shown in Fig. 1,
the experimental data are relatively consistent, although the
reported experimental uncertainties had to be scaled up some-
what arbitrarily.

The Göök data [18] are the most recent measurement
and possibly the most accurate. We have added a 0.5%
uncorrelated uncertainty for each data point, as well as a
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FIG. 1. Our least-squares fit (open circles with error bars) to the
measured mass distribution of the primary fission fragments, Y (A).
The experimental data shown are from Budtz-Jørgensen et al. [13],
Hambsch et al. [14], Kozulin et al. [15], Romano et al. [16], Zeynalov
et al. [17], and Göök et al. [18].

5% fully correlated uncertainty on the overall normalization.
Because most measurements cover a similar range of fragment
masses, this normalization uncertainty vanishes during the
least-squares fit procedure. The Zeynalov data [17] were
reported in the ND2010 conference proceedings and only
statistical uncertainties of about 1% were discussed. We have
added a 5% uncertainty at each energy point. The reported
uncertainties on the Romano data [16] are only statistical,
we added a 2% uncorrelated uncertainty. Similarly, we added
a 3% uncorrelated uncertainty to the Kozulin data [15], the
Hambsch data [14], and the Budtz-Jørgensen data [13]. While
all of those numbers are somewhat artificial, they are likely

130 140 150 160 170 180
Heavy fission fragment mass number AH

140

150

160

170

180

190

200

A
ve

ra
ge

 T
K

E
 (

M
eV

)

Budtz-Jørgensen
Hambsch
Kozulin
Göök
Whetstone
Mehta

χ2
 fit

252
Cf(sf)

FIG. 2. Our least-squares fit (open circles with error bars) to the
measured average total fragment kinetic energy as a function of the
mass number of the heavy fragment, TKE(AH ). The experimental
data shown are from Budtz-Jørgensen et al. [13], Hambsch et al.
[14], Kozulin et al. [15], Göök et al. [18], Whetstone et al. [19], and
Mehta et al. [20].
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FIG. 3. Our least-squares fit (open circles with error bars) to the
measured width of the TKE distribution as a function of the mass
number of the heavy fragment, σTKE(AH ) [13,14,18].

on the conservative side and are not expected to influence the
main conclusion of this work.

B. Average total fragment kinetic energy

The average total fragment kinetic energy as a function of
the heavy fragment mass number, TKE(AH ), shown in Fig. 2,
is used in conjunction with the corresponding dispersion,
σTKE(AH ), to construct the conditional probability distribution
Y (TKE|A) as shown in Eq. (1). The experimental data sets
used for those two quantities are listed in Table I.

Most of those data come from the same set of experiments
already discussed above for the mass yields. We have added a
1% fully correlated (normalization) uncertainty and a 0.5%
additional statistical uncertainty to all data sets. These are
reasonable estimates based on the rather small spread of
the data reported across the different experiments. (A 1%
uncertainty on TKE corresponds to a 1.5- to 2-MeV absolute
uncertainty.) Near symmetry and for very asymmetric divi-
sions, we included additional uncertainties to account for the
larger spread of the data resulting from the small number of
fragments measured in those regions,

δyi = 0.002 × yi exp[(132 − Ai )/2], Ai < 132, (3)

δyi = 0.001 × yi exp[(Ai − 160)/4], Ai > 160, (4)

where yi denotes TKE(Ai ) here.
Experimental data on the standard deviation of TKE as

a function of the heavy fission fragment mass are shown in
Fig. 3. Significant differences exist between those three data
sets, originating from the same experimental group at different
times. The most recent set by Göök et al. [18] is presumably
the most accurate one, given the reported accuracy in mass
and energy resolutions obtained in that experiment. The oldest
data set [13] did not provide any uncertainties and the plotted
error bars are statistical only.

We have added a 4% normalization uncertainty and an
additional 1% statistical uncertainty for all data sets. The
“floating” normalization allowed the least-squares fit to find
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FIG. 4. Contour plot of the A-TKE projection, Y (A, TKE), of
one particular yield function Y (A, Z, TKE) that was sampled ran-
domly from the distribution of yield functions determined from our
least-squares analysis of the experimental data, as described in the
text.

a reasonable solution. As for TKE(AH ), σTKE(AH ) grows
less reliable as we move toward symmetric or very asym-
metric divisions and we have similarly included additional
uncertainties in those regions,

δyi = 0.002 × yi exp[(140 − Ai )/2], Ai < 140, (5)

δyi = 0.001 × yi exp[(Ai − 165)/4], Ai > 165, (6)

where yi denotes σTKE(Ai ) here.

C. Generalized least-squares fit to the data

The result of the least-squares fit to these experimental
data is a best mean value as well as a covariance matrix that
contains uncertainties and correlations for a range of fission
fragment masses. In order to study the influence of different
input yields on the results of the fission event simulations, we
perform FREYA simulations for ensembles of (1000–15 000)
yield functions sampled from the distribution of yield func-
tions determined as described above. The sampling of the
correlated yield functios was performed by using the method
described in Appendix A.

As an illustration, Fig. 4 shows one particular (randomly
selected) yield function Y (A, Z, TKE) in the form of a contour
plot of its projection onto the A-TKE plane.

III. EVENT SELECTION DETAILS

For the purpose of the present study, the fission event gen-
erator FREYA [2] has been modified so it takes the combined
yield function Y (A, Z, TKE) as input.

The initial nucleus has mass number A0 and charge number
Z0. For each particular yield function, Y (A, Z, TKE), the
selection of the associated fission events is made as follows.

We assume that the joint yield function is normalized,∑
A

∑
Z

∫
dTKEY (A, Z, TKE) = 1. (7)

First, the fragment mass A is selected from the probability
distribution,

PA(A) =
∑

Z

∫
dTKEY (A, Z, TKE), (8)

which is normalized to unity,
∑

A PA(A) = 1. Then the frag-
ment charge Z is selected from the following conditional
probability distribution:

PZ (Z; A) =
∫

dTKEY (A, Z, TKE)/PA(A), (9)

which is normalized to unity as well,
∑

Z PZ (Z; A) = 1. Fi-
nally, the total kinetic energy TKE is selected from the condi-
tional probability distribution,

PTKE(TKE; A, Z ) = Y (A, Z, TKE)/PZ (Z; A), (10)

which is also normalized,
∫

dTKE PTKE(TKE; A, Z )=1.
After the selection of (A, Z, TKE) has been made, the

mass and charge numbers of the complementary fragment are
obtained as A′ = A0 − A and Z ′ = Z0 − Z , respectively, and
the total excitation energy is given by

E∗(A, Z, TKE) = Q(A, Z ) − TKE, (11)

where Q(A, Z ) = M(A0, Z0) − M(A, Z ) − M(A′, Z ′) is the Q
value for this particular division.

The quantity E∗ plays a key role in determining the re-
sulting neutron multiplicity. Because the mean neutron mul-
tiplicity is rather well measured experimentally, ν0 ≡ νexp =
3.756 ± 0.4% [22], and many applications require its calcu-
lated value to be fairly accurate, FREYA performs an adjustable
TKE shift, dTKE, to ensure that the calculated ν is satisfac-
tory. In the present study, we use dTKE = 1.15 MeV which
ensures that the overall mean neutron multiplicity reproduces
the experimental value, ≺ ν �= ν0.

The dinuclear rotational modes can then be populated by
the usual FREYA procedure [23]. Finally, the remaining excita-
tion energy E∗

stat should be divided between the two fragments.
As in the standard FREYA, this is done in two steps: First, a ten-
tative partitioning of E∗

stat is made statistically, yielding E ′
L and

E ′
H . Subsequently, the light fragment is favored to a degree

controlled by the FREYA parameter x, E∗
L = x E ′

L (implying
E∗

H = E∗
stat − E∗

L ). However, the standard FREYA procedure
samples E ′

L and E ′
H . From the canonical (i.e.,thermal) distri-

bution in each fragment separately and then restores energy
conservation by adjusting TKE as needed. But that procedure
is not possible in the present study because the value of TKE
is specified. The combined fragment excitation must be equal
to the total amount available, E∗

stat, so the sampling of E ′
L and

E ′
H is made microcanonically, as described in Appendix B.

IV. NEUTRON OBSERVABLES

We consider an ensemble of N yield functions,
{Y (i)(A, Z, TKE)}, i = 1, . . . , N , sampled on the basis of
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FIG. 5. The neutron multiplicity distribution Pn(ν ) (top) and the
elements of the neutron multiplicity covariance matrix Cnn(ν, ν ′)
shown as functions of ν for the various values of ν ′ (bottom),
calculated for the ensemble of yield functions described in the text.
The curves show the overall ensemble average values, while the
error bars on Pn(ν ) reflect the associated ensemble dispersions [see
Eq. (14)].

the experimental data as described above, and we wish to
extract the ensemble average of various neutron observables
and the associated ensemble dispersions. As we will explain
below, we may generally wish to give an individual weight
to each particular yield function, Wi (with

∑
i Wi = 1), rather

than always using Wi = 1/N .
The use of several thousand sampled yield functions en-

sures that the extracted quantities are well determined. Fur-
thermore, the number of events generated for each yield
function, K (usually K = 106), is sufficiently large to ensure
that the associated statistical fluctuations of the considered
observables are small in comparison with those reflecting the
fact that we consider an entire ensemble of N different yield
functions.

A. Neutron multiplicity

For a given yield function Y (i)(A, Z, TKE), the distribution
function for the neutron multiplicity ν is denoted by P(i)

n (ν),
with

∑
ν P(i)

n (ν) = 1. The ensemble-averaged multiplicity dis-
tribution is then given by

≺ Pn(ν) � =
N∑

i=1

WiP
(i)
n (ν), (12)

and it is also normalized,
∑

ν ≺ Pn(ν) � = 1. This quantity is
shown in Fig. 5 (top) with error bars indicating the associated
ensemble fluctuations σν [see Eq. (14) below].
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FIG. 6. Factorial moments of the neutron multiplicity distribu-
tion [see Eq. (15)], as obtained either from the sample of yield func-
tions {Y (i)(A, Z, TKE)}, with 106 events generated for each one (solid
curve), or from reusing the average yield function Y (A, Z, TKE)
equally many times (dashed curve). Each factorial moment Mm has
been divided by m! to compensate for the rapid growth with the
order m.

The covariance matrix Cnn = {Cnn(ν, ν ′)} for the multiplic-
ity distribution can also be extracted from the ensemble of
multiplicity distributions {P(i)

n (ν)},
Cnn(ν, ν ′) = ≺Pn(ν)Pn(ν ′)� − ≺Pn(ν)�≺Pn(ν ′)�

=
N∑

i=1

WiP
(i)
n (ν) P(i)

n (ν ′)− ≺Pn(ν)�≺Pn(ν ′)� .

(13)

The elements Cnn(ν, ν ′) are plotted in Fig. 5 (bottom) as func-
tions of ν ′ for each value of ν. The pronounced anticorrelation
between high and low multiplicity reflects the elementary fact
that each multiplicity distribution is normalized to unity, so
those that are above average for higher ν values must be below
average for low ν values and vice versa.

The diagonal elements of Cnn(ν, ν ′) are the variances of
Pn(ν) (i.e., the variance of the ν values obtained with the
different yield functions),

σ 2
ν = Cnn(ν, ν) =

N∑
i=1

Wi
[
P(i)

n (ν)
]2 − (≺ Pn(ν) �)2 . (14)

The associated ensemble dispersions σν are shown as the
error bars in Fig. 5 (top). Because of the above-mentioned
anticorrelation, the different curves in Fig. 5 (bottom) all cross
through zero near ν =≺ ν �. As a result, σν=4 is particularly
small.

The factorial moments of the neutron multiplicity distribu-
tion P(i)

n (ν) are given by

M(i)
m ≡

∑
ν

ν(ν − 1) · · · (ν − m + 1) P(i)
n (ν), (15)

so M(i)
0 is unity and M(i)

1 is the mean multiplicity ν̄ (i). These
are shown in Fig. 6 for orders m = 0, 1, 2, 3, 4, with the
ensemble fluctuations indicated by the error bars. To illustrate
the negligible magnitude of the statistical uncertainties arising
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FIG. 7. The dependence of the mean neutron multiplicity ν on
TKE, the total kinetic energy of the fission fragments. Also shown is
the overall distribution of TKE over the ensemble of yield functions
(dashed curve).

from the finite number of events generated for each yield func-
tion, we also show the result of reusing the same (namely the
average) yield function in which case there are no ensemble
fluctuations so all fluctuations are statistical. These are seen
to indeed be negligible in comparison with those arising from
the use of an ensemble of different yield functions.

As already discussed in Sec. III, the neutron multiplicity
is tightly correlated with the available excitation energy E∗
which in turn is reated to the total fragment kinetic energy
TKE by energy conservation. Consequently, the average neu-
tron multiplicity ν is strongly (anti)correlated with TKE, as
illustrated in Fig. 7. This important feature will be further
explored in Sec. V.

B. Neutron spectrum

For each particular (nonvanishing) neutron multiplicity ν,
the associated spectral distribution is denoted by χ (ν)

n (ε); it is
normalized to unity,

∫
χ (ν)

n (ε) dε = 1. The energy distribution
of those neutrons may be written as

(
dν

dε

)(ν)

= ν χ (ν)
n (ε) (16)

and is normalized to ν. The overall neutron energy distribution
dν/dε, which is normalized to the mean multiplicity ν̄, is then
given by

dν

dε
=

∑
ν>0

(
dν

dε

)(ν)

Pn(ν) = ν̄ χn(ε), (17)

where χn(ε) is the overall spectral distribution of the emitted
neutrons.

In the present study, we concentrate on the overall spectral
distribution. For a given yield function Y (i)(A, Z, TKE), the
resulting neutron energy distribution is denoted by χ (i)

n (ε)
and the ensemble-averaged neutron energy distributions is
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FIG. 8. The spectral distribution up to 15 MeV (logarithmic
scale). The magnified (linear) view for ε = 7–8 MeV (insert) also
shows the significantly smaller statistical uncertainties (wider error
bars) arising from the 106 events generated for each yield function.

given by

≺ χn(ε) � =
N∑

i=1

Wi χ
(i)
n (ε), (18)

and it is normalized to unity.
The spectral distribution of the evaporated neutrons, χn(ε),

is approximately of Maxwellian form (with T ≈ 1.42 MeV).
With one million events, χ (E ) can be sampled to a rea-
sonable degree of accuracy out to ≈15 MeV. The effect
of the uncertainty of the input yield function Y (A, Z, TKE)
on the spectral distribution of the evaporated neutrons is
illustrated in Fig. 8. The magnified view for ε = 7–8 MeV
shows the unimportance of the statistical uncertainties arising
from the finite number of events generated for each yield
function.

The energy-energy correlation function can also readily be
extracted,

Cnn(ε, ε′)

=
N∑

i=1

Wi χ
(i)
n (ε) χ (i)

n (ε′) − ≺ χn(ε) �≺ χn(ε′) � . (19)

It is shown in Fig. 9 with the diagonal part subtracted to better
bring out how two different energies are correlated. There is a
significant positive correlation when both energies are below
2 MeV or so. This is the typical energy range of the evaporated
neutrons and if one neutron is emitted with an energy in this
range, there is a good chance that one or more additional
neutrons are also emitted and that these are not very energetic.
By contrast, the correlation is negative when one energy is
low and the other is high, probably because the emission of an
energetic neutron increases the likelihood that any additional
neutron will not be energetic. When both energies are high
there is hardly any correlation at all.
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FIG. 9. The neutron energy-energy correlation function
Cnn(ε, ε′) given in Eq. (19), with the diagonal term subtracted,
shown as a function of ε′ for specified values of ε as indicated (in
MeV) for each curve.

C. Neutron-neutron angular correlations

A given event produces ν neutrons having the
momenta p j = p j p̂ j , j = 1, . . . , ν, where the emission
directions are given by the unit vectors p̂ j =
(sin ϑ j cos ϕ j, sin ϑ j sin ϕ j, cos ϑ j ). The directional distribu-
tion of the neutrons is given by Pn( p̂) which is normalized to
ν, the event multiplicity,∫

d2 p̂ Pn( p̂) =
∫ +1

−1
d cos ϑ

∫ 2π

0
dϕ Pn[ p̂(ϑ, ϕ)] = ν. (20)

while the joint probability for neutron emission into the two
directions p̂ and p̂′ is denoted by Pnn( p̂, p̂′) which is normal-
ized to ν(ν − 1), twice the number of neutron pairs in the
event.

For a sample of K events, each event k has directional
distributions, P(k)

n ( p̂) and P(k)
nn ( p̂, p̂′). The overall angular dis-

tribution is then given by

Pn( p̂) = 1

K

K∑
k=1

P(k)
n ( p̂), (21)

being normalized to the mean neutron multiplicity ν. Further-
more, the overall two-neutron directional distribution is

Pnn( p̂, p̂′) = 1

K

K∑
k=1

P(k)
nn ( p̂, p̂′). (22)

It is normalized to twice the mean number of neutron pairs
in an event, 〈ν(ν − 1)〉. Obviously, only events that produce
at least one neutron can contribute to Pn( p̂) and only events
producing at least two neutrons can contribute to Pnn( p̂, p̂′).

The cosine of the opening angle between the directions of
two emitted neutrons 1 and 2 is determined by

cos θ ( p̂1, p̂2) = p̂1 · p̂2 = sin ϑ1 sin ϑ2 cos(ϕ1 − ϕ2). (23)
Consequently, the distribution of this quantity can be obtained
as

Pnn(cos θ12)

=
∫

d2 p̂
∫

d2 p̂′ Pnn( p̂, p̂′) δ[cos θ ( p̂, p̂′) − cos θ12],

(24)
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FIG. 10. The distribution Pnn(cos θ12), where θ12 is the specified
opening angle between the directions of two neutrons in an event.
The main panel covers the entire angular range, 0◦ � θ12 � 180◦,
while the insert shows the central region, θ12 ≈ 90◦, and also displays
the significantly smaller statistical uncertainties (wider error bars)
obtained from always using the same yield function (see text).

with the normalization
∫

d cos θ Pnn(cos θ ) = 〈ν(ν − 1)〉.
Because the above discussion pertains to a particular given

yield function Y (i)(A, Z, TKE) it may be labeled by the index
i, P̄(i)

nn (cos θ12). If we repeat the procedure for an ensemble
of N yield functions, then the resulting ensemble average
directional distribution function is

≺ Pnn(cos θ12) � =
N∑

i=1

Wi P
(i)
nn(cos θ12). (25)

The associated ensemble variance is

≺ Pnn(cos θ12)2 � − (≺ Pnn(cos θ12) �)2

=
N∑

i=1

Wi
[
P

(i)
nn(cos θ12)

]2 −
[

N∑
i=1

Wi P
(i)
nn(cos θ12)

]2

. (26)

The distribution (25) of cos θ12 is shown in Fig. 10 over both
the entire range of the opening angle cos θ12 and for a limited
region around θ12 = 90◦, with the dispersions from Eq. (26)
shown as error bars.

V. RELATION BETWEEN ν AND TKE

In the preceding section, we have examined how the ex-
perimental uncertainty in the yield function Y (A, Z, TKE)
affects a variety of neutron observables. We start this section
by considering the distribution of the mean neutron multi-
plicities {ν i} resulting from the ensemble of yield functions,
{Y (i)(A, Z, TKE)}. As illustrated in Fig. 11, ν has an ap-
proximately Gaussian distribution with a mean value very
close to the experimentally observed value, ν0 = 3.756, and
a dispersion given by σ0 = 0.093.
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FIG. 11. The distribution of the deviation δν of the resulting
mean neutron multiplicity, ν, from the observed value, ν0 (circles),
together with the corresponding Gaussian function having the same
mean and dispersion.

As noted above (see Fig. 7), there is a pronounced an-
ticorrelation between the neutron multiplicity and the total
fragment kinetic energy. This relationship is brought out
visually in Fig. 12, which displays a scatter plot of the values

of (ν (i), TKE
(i)

) obtained for the ensemble of 15 000 yield
functions sampled from the distribution P[Y (A, Z, TKE)]
constructed from our χ2 analysis of the experimental data (see
Sec. II). Clearly, yield functions that lead to large/small mean
neutron multiplicities also lead to small/large mean fragment
kinetic energies.

Figure 13 shows a similar scatter plot of the correspond-
ing ensemble dispersions in ν and TKE. It is seen that
large/small fluctuations in neutron multiplicity is associated
with large/small dispersions in TKE.

It is possible to quantify the correlation between ν̄ and
TKE by assuming that the joint distribution of these two
observables has a Gaussian form characterized by the 2 × 2
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FIG. 12. A scatter plot of the mean neutron multiplicity, ν, and
the mean total fragment kinetic energy, TKE, obtained for each of
the 15 000 sampled yield functions. The overall average is indicated
by the central dot.
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FIG. 13. A scatter plot of the dispersion of the neutron multiplic-
ity, σν , and the dispersion of the total fragment kinetic energy, σTKE,
obtained for each of the 15 000 sampled yield functions. The overall
average is indicated by the central dot.

covariance tensor σ,

σ =
(

σνν σνK

σνK σKK

)
. (27)

Its elements are given by

σνν = σ 2
ν = ≺ δν2 �, (28)

σνK = ≺ δν δK �, (29)

σKK = σ 2
K = ≺ δK2 �, (30)

where we have introduced the deviations δν ≡ ν − ≺ ν � and
δK ≡ TKE − ≺ TKE � for notational convenience.

The determinant of σ is given by D = σ 2
ν σ 2

K − σ 2
νK and its

inverse tensor m has the following elements,

mνν = m2
ν = σ 2

K/D, (31)

mνK = −σνK/D, (32)

mKK = m2
K = σ 2

ν /D. (33)

We thus assume that the (normalized) joint distribution is
given by

P(ν, TKE) = 1

2π
√

D
e− 1

2 [m2
νδν

2+2mνK δνδK+m2
K δK2]

. (34)

From the joint distribution we can recover the individual
distributions by projection,

Pn(ν) =
∫

P(ν, TKE) dTKE = 1√
2π σν

e−δ2
ν /2σ 2

ν , (35)

P(TKE) =
∫

P(ν, TKE) dν = 1√
2π σK

e−δ2
K /2σ 2

K . (36)

The ν distribution, Pn(ν), was displayed in Fig. 11. The
spread in the calculated ν̄ values, σν = 0.093, is about 2.5% of
the mean multiplicity, ν0 = 3.756. This is more than a factor
of six larger than the approximately 4 per mille uncertainty on
the measured multiplicity, namely σ0 = 0.015 [22]. We there-
fore wish to introduce a bias on each sampled yield function
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so that those yield functions that produce mean multiplicities
close to the observed value are given more credibility than
those leading to significant deviations, even though all the
yield functions have been sampled in accordance with the
experimental uncertainties reported on the measured A, Z , and
TKE.

Thus, for a given yield function Y (i)(A, Z, TKE), we em-
ploy a ν-dependent weight,

Wi ∼ exp
[−(ν (i) − ν0)2/2σ 2

0

]
, (37)

rather than the constant weight Wi = 1/N used above.
With the Gaussian approximation introduced in Eq. (34), it

is straightforward to determine the effect of such a weighting.
The resulting biased distribution is given by

P̃(ν, TKE) = W (δν) P(ν, TKE), (38)

where P(ν, TKE) is the unbiased distribution given in Eq. (34)
and the bias factor is the weight in Eq. (37), W (δν) ∼
exp(−δν2/2σ 2

0 ).
The resulting biased TKE distribution can then be obtained

by integrating P̃(ν, TKE) over ν. This can be accomplished
by elementary means (see Appendix C), yielding P̃(TKE) ∼
exp(−δK2/2σ̃ 2

K ) where the biased variance is given by

σ̃ 2
K = σ 2

K − σ 2
νK

σ 2
ν + σ 2

0

. (39)

The limit of a large bias width, σ0 → ∞, corresponds to not
imposing any bias at all (all weights are the same) and, accord-
ingly, it yields σ̃ 2

K → σ 2
K . In the opposite limit of a very narrow

bias, σ0 → 0, only values of ν very close to ν0 are accepted,
which corresponds to cutting the two-dimensional distribution
(see Fig. 12) along the line δν = 0, yielding σ̃ 2

K → D/σ 2
ν =

1/m2
K . Thus the largest possible value of σ̃K (σ0) is the unbi-

ased width σK , while the smallest achievable value of σ̃K (σ0)
is σ̃K (0) = 1/mK . This behavior is illustrated in Fig. 14 from
which it is apparent that the Gaussian approximation provides
a very accurate representation of the actual numerical results.

In the present investigation, we wish to use a bias width
that is equal to the experimental rms uncertainty on ν which is
about 15.4% of the width obtained for the unbiased ensemble
of yield functions, as shown in Fig. 11. This leads to a
reduction of the width of TKE from about 780 keV to about
135 keV. Thus σTKE is reduced to about 17.2% of its unbiased
value when the multiplicity-dependent bias is applied. The
fact that σν and σTKE are reduced by approximately the same
factor is a reflection of the high degree of correlation between
the two observables (see Fig. 12), as is signalled by the very
small value of the determinant D = |σ |.

VI. SENSITIVITY TO FREYA PARAMETERS

The studies in this section are carried out with the current
standard version of FREYA. The code contains a number of pa-
rameters that have been adjusted to reproduce various aspects
of the experimental data for each particular case of interest,
presently 252Cf(sf ). As a result, the calculated neutron-related
observables tend to be in quite good agreement with the
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FIG. 14. The width of the TKE distribution as a function of the
specified bias width σ0 in the weight W ∼ exp(−δν2/2σ 2

0 ) of the
individual yield functions Y (A, Z, TKE), as extracted for specific
values of σ0 (dots) or as given by the analytical expression (39)
(curve). The maximum value (indicated by “max”) is obtained for
σ0 → ∞ and results when all yield functions are weighted equally,
while the minimum value (indicated by “min”) is obtained for σ0 →
0 and is the width of the distribution resulting from making a cut
at δν = 0, i.e.„ P̃(δK ) ∼ P(δν =0, δK ). The value obtained when
using the experimental uncertainty on ν̄ is indicated (circle). The
calculations sampled 100 000 fission events from each of 15 000
yield functions for 252Cf(sf ).

experimenal data. A notable exception is the mass dependence
of the average neutron multiplicity, ν(A), shown in Fig. 15.

A. Excitation energy partitioning

The function ν(A) is sensitive to the FREYA parameter x
which controls the division of the available excitation energy
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FIG. 15. The mean neutron multiplicity as a function of the mass
number of the primary fragment, ν(A), as obtained with FREYA

when using either the standard constant value x = 1.3 or the mass-
dependent value x(A) shown in Fig. 16. Also shown is the least-
squares fit to five sets of experimental data [17,24–27] used to
determine x(A).
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FIG. 16. The extracted mass-dependent energy sharing parame-
ter x(AL ) obtained by matching the calculated light-to-heavy neutron
multiplicity ratio ν̄L/ν̄H to the data for each mass split. Also shown
is the standard (constant) value x = 1.3 (dashed line).

between the two nacscent fragments. With only a single
parameter, the overall appearance of ν(A) can be reasonably
reproduced, but not its detailed behavior which is sensitive to
specific structure effects in the fragments. In order to elucidate
the importance of this shortcoming, we have introduced a
mass-dependent x parameter, x(A), determined as follows.

First, we make a series of FREYA runs with successively
increasing values of x and tabulate the resulting multiplic-
ity ratios r(AL; x) ≡ ν̄(AL; x)/ν̄(AH ; x). Then, for each light-
fragment mass number AL, we determine (by interpolation)
the x value that would give a multiplicity ratio equaling the
experimental one, thus obtaining x for that fragmentation,
x(AL ). When FREYA is run with this x(AL ) rather than a single
constant x value, the resulting ν̄(A) reproduces the data well.
The relatively small local deviations are due to the fact that
matching the multiplicity ratio ν̄L/ν̄L does not ensure a perfect
match of the two multiplicities ν̄L and ν̄R separately. The
extracted function x(A) is displayed in Fig. 16.

We note that the fission codes CGMF [3] and FIFRELIN
[4] were developed with a mass-dependent energy sharing
prescription, equivalent to the use of x(A) in FREYA. If those
codes were to use a mass-independent energy sharing pre-
scription, then their results for the fragment yields [28,29]
would be quite similar to those obtained with the standard
FREYA.

In order to illustrate the effect of replacing a constant x
by x(A), in Fig. 17 we show the average kinetic energy of
the evaporated neutrons as a function of the primary fragment
mass number, E (A). The deviations of the constant-x results
from the variable-x results for E (A) resemble those for ν(A)
because a fragment that is given more excitation energy tends
to not only evaporate more neutrons but also make them
more energetic. But a constant x leads to too high neutron
energies for the lightest fragments (and, correspondingly, too
low neutron energies for the heaviest fragments) and the
sawtooth drop before the doubly closed shell at A = 132 is
both too abrupt and too small.
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FIG. 17. The mean energy of the evaporated neutrons (in the
frame of the emitting nucleus) as a function of the primary fragment
mass number, ε(A), as obtained with the standard FREYA version that
uses a constant value, x = 1.3, and with the modified version using
the A-dependent value x(A) shown in Fig. 16.

Nevertheless, even though E (A) changes significantly
when going from a constant x to x(A), the corresponding
neutron spectra are almost identical within statistics. That
is because most of the differences in E (A) and ν(A) occur
where the yields are small, either the tails or in the dip at
symmetry, while the average neutron energies are similar near
the average light and heavy fragment masses, AL ≈ 110 and
AH ≈ 140. However, the spectra would also differ if only a
limited A range were considered, for example A < 110.

Furthermore, we consider how the introduction of x(A)
affects the angular correlation between the neutrons. Figure 18
shows the distribution of the relative emission angle for two
different minimum neutron energies: 0.4 MeV and 1.2 MeV.
While the shapes appear quite similar at first glance, there is
a small tilt toward large angular separations when a fixed x
is replaced by x(A), with a corresponding enhancement for
neutrons emitted in similar directions. The difference between
the two can be quantified by the ratio of the values at 180◦
and 0◦. For fixed x, this ratio is 1.46 for E > 0.4 MeV and
1.44 for E > 1.2 MeV, while using x(A) yields 1.37 and 1.31,
respectively. Thus the effect on the angular correlation is more
pronounced for higher-energy neutrons.

The sensitivity of the nucleon-nucleon angular correlation
to other FREYA parameters was discussed in Ref. [23].

B. Other FREYA parameters

There are three other FREYA parameters relevant to the
present study and we discuss them in turn below. For a dis-
cussion of parameter optimization in FREYA for spontaneous
fission, see Ref. [30].

The parameter c adjusts the width of the variance of the
statistical fragment excitation energy, because the idealized
Gaussian form of the energy distribution is often truncated due
to the limited energy available; otherwise, the resulting energy
distribution would become too narrow. The optimized value of
c varies significantly from case to case; for the present case,
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FIG. 18. The effect of x(A) on the angular correlation between
the neutrons. The distribution Pnn(cos θ12 ) [see Eq. (25)] as obtained
with the standard FREYA version that uses a constant value x = 1.3
and with the modified version using the A-dependent value x(A)
shown in Fig. 16, for two different values of the minimum neutron
energy accepted, either 0.4 MeV (top) or 1.2 MeV (bottom).

252Cf(sf ), it is c = 1.19 ± 0.36 [30]. The neutron multiplicity
distribution Pn(ν) is the only neutron observable having a
noticeable sensitivity to c. For example, increasing c from 1
to 1.5 decreases ν by 1.5%. But, if a good reproduction of the
measured multiplicity distribution is to be maintained, other
parameter adjustments would have to also be made, resulting
in a very small net effect on Pn(ν) and its factorial moments
Mm (including in particular ν = M1 whose range is dictated
by experiment to be rather tight).

The FREYA parameter cS controls the typical magnitude of
the fragment angular momenta and it therefore affects the bal-
ance between neutron and photon emission. If cS is increased,
then the fragments will rotate more and, consequently, more
photons will eventually be emitted (for a discussion of how cS

affects the photon observables, see Ref. [31]). At the same
time, the increased rotational energy will leave less energy
for statistical excitation of the primary fragments and thus
there will be fewer neutrons evaporated and they will tend to
be less energetic. For example, as discussed in Ref. [31], if
all other parameters are kept unchanged, the average neutron
multiplicity can decrease by as much as 12% if cS is increased
from 0.2 to 2.0. But such a wide range is unrealistic, as the
range of reasonable cS values is constrained by the measured
photon multiplicity. The optimized parameter value does not
depend much on the specific case and it is cS = 0.875 ± 0.020
for 252Cf(sf ) [30]. If cS is varied within the resulting 1-σ
range, then ν changes by 0.34%.

Finally, the neutron multiplicity can depend on the pa-
rameter e0 which scales the Fermi-gas nuclear level density

parameter, aA = A/e0. For a given fragment excitation en-
ergy, an increase of e0 increases the fragment temperature.
Consequently, the neutron spectrum hardens and the neutron
multiplicity decreases. While the dependence of ν on e0 alone
is effectively linear, e0 is constrained by other parameter
values that are optimized to data, including the prompt fission
neutron spectrum. As a result, while the neutron spectrum
and multiplicity depend on all the parameters, including e0,
the other neutron observables are not sensitive to e0. The
optimized value is e0 = 10.43 ± 1.09/MeV [30]. Within this
relatively large tolerance, the value of e0 can be regarded
as being universal, i.e., it has the same value for all fission
fragments considered. Although changing e0 within its range
of uncertainty can change ν by up to 2.7% and the average
neutron energy by 7%, the constraints placed on the allowed
range of ν through optimization of the other parameters
preclude such large changes.

Thus, while independent variations of a single parameter
can produce somewhat significant changes in the neutron ob-
servables, including ν, such parameter modifications are not
realistic due to the significant couplings between the different
parameters resulting from the optimization procedure.

VII. CONCLUDING REMARKS

In this investigation, we have explored the sensitivity of
important neutron observables produced by the fission sim-
ulation code FREYA for 252Cf(sf ) to various model inputs,
primarily the specified yield function Y (A, Z, TKE) but also
the intrinsic model parameters.

First, we compiled the available experimental data on the
mass-dependent fragment yields, Y (A), the mass-dependent
average total fragment kinetic energy, TKE(AH ), and the as-
sociated TKE dispersion, σTKE(AH ). Assuming that the TKE
distribution has a Gaussian form for each A and invoking
also the Wahl systematics for the charge distributions, we per-
formed a χ2 fit to obtain the most probably three-dimensional
yield function Ȳ (A, Z, TKE). This procedure also yielded the
associated covariance tensor for the probability distribution
of possible yield functions, P[Y (A, Z, TKE)], which in turn
allowed us to generate an entire ensemble of possible yield
functions. The application of FREYA for each such possible
yield function then produces corresponding ensembles of
observables whose variations reflect their sensitivity to the
uncertainty in the experimental data.

We found that the neutron multiplicity distribution, Pn(ν),
the neutron spectral shape, χn(E ), and the neutron-neutron
directional distribution, Pnn(cos θ12), exhibited almost negligi-
ble sensitivity to the uncertainty in the specified yield function
Y (A, Z, TKE).

Furthermore, we particularly studied the pronounced an-
ticorrelation between the average total kinetic energy TKE
and the average neutron multiplicity ν which can be used
to predict or reduce the uncertainty on one observable if
the other one is known with sufficient accuracy. Under ideal
circumstances, when the model is perfect and its parameters
fixed, we have estimated that the evaluated uncertainty of ν

of 0.4% implies a standard deviation of 135 keV for TKE,
a significant reduction compared to the current experimental

054619-11



J. RANDRUP, P. TALOU, AND R. VOGT PHYSICAL REVIEW C 99, 054619 (2019)

uncertainty of nearly 1 MeV. Uncertainties in the model
parameters, although constrained by complementary fission
data, e.g.,photon multiplicity, will increase this estimate
somewhat. Various approximations in the model itself and its
implicit input, e.g., level density, also contribute to a higher
estimate for the uncertainty on TKE. It is difficult to quantify
the final uncertainty precisely without further extending the
present work to encompass all the input parameters entering
in such calculations. However, it is clear that ν imposes the
most severe constraint on TKE and that other variations would
have reltivelhy minor effects.

Finally, we determined the sensitivity of the neutron ob-
servables to variations in the intrinsic FREYA parameters. We
have particularly studied the effect of replacing the default
mass-independent division of the available excitation energy,
governed by the parameter x, by a mass-dependent division
governed by the function x(A) determined from the measured
ν(A), similar to the prescriptions used in other codes [3,4].
While such a refinement has a significant effect on the mass-
dependence of the average neutron multiplicity and the aver-
age neutron energy, the effect on the neutron-neutron angular
correlations is small.

The present study shows the importance of developing a
consistent theoretical model of nuclear fission that can predict
a large variety of observables simultaneously. The intrinsic
correlations that exist among those observables provide a
powerful tool for constraining the fission models and their
input parameters, leading to a more realistic and consistent de-
scription than what can be obtained with observable-specific
models that aim to describe only parts of the fission data, such
as the average neutron spectrum alone. Importantly, this type
of analysis can be extended to other observables as well, such
as those involving the fragment directions or the photons.
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APPENDIX A: SAMPLING OF YIELD FUNCTIONS

Each of the observables Y (A), TKE(A), and σTKE(A) can be
regarded as an N-dimensional vector function q = {qi}, where
i = 1, . . . , N represents the N possible values of the fragment
mass number A. The analysis of the experimental data pro-
vides the mean value of the observable, q = {q̄i} = {〈qi〉}, as
well as the associated covariance matrix, C = {Ci j} = {〈(qi −
q̄i )(q j − q̄ j )〉}. We assume that the distribution P[q] of the
actual function q is given by the corresponding multivariate
N-dimensional Gaussian distribution,

P[q] = (2π )−
N
2 |C|− 1

2 e− 1
2 (q−q)·C−1·(q−q), (A1)

where |C| denotes the determinant of C.

In order to sample q, we first diagonalize the covariance
matrix, U† · C · U = {λiδi j}, where λi are the N eigenvalues of
C. (These are all positive because C is positive definite.) The
corresponding eigenvectors, ui = (u1i, u2i, . . . , uNi ), are the
elements of the rotation matrix U = {ui j}. A sampled function
q can then be obtained as

q = q + U · ε : qi = q̄i +
N∑

j=1

ui jε j, (A2)

where the elements in the vector ε = {εi} have been sampled
from the following probability distributions:

Pi(εi) = 1√
2πλi

e−ε2
i /2λi , (A3)

respectively, so 〈εi〉 = 0 and 〈εiε j〉 = λiδi j .
It is elementary to show that an ensemble of functions

q = {qi} sampled according to the above procedure indeed
has the desired first and second moments, 〈qi〉 = q̄i and 〈(qi −
q̄i )(q j − q̄ j )〉 = Ci j .

APPENDIX B: MICROCANONICAL ENERGY DIVISION

The total statistical excitation energy ε is partitioned be-
tween the two fragments, ε = εL + εH , in accordance with the
appropriate microcanonical distribution. Thus the probability
for the light fragment to acquire the excitation energy εL is
given by

PL(εL ) ∼ ρL(εL ) ρH (ε − εH ), (B1)

where ρ f (ε f ) is the density of states in fragment f = L, H .
The most probable energy division occurs when the derivative
vanishes, dPL(εL )/dεL = 0, leading to the condition βL(εL ) =
βH (ε − εL ), where β f (ε f ) ≡ d ln ρ f (ε f )/dε f = 1/Tf (ε f ) is
the inverse of the temperature of fragment f . Thus the most
probable division occurs when the two fragment temperatures
are equal, TL = TH .

Using the simple macroscopic Fermi-gas level density,
ρ f (ε f ) ∼ exp(2

√
a f ε f ), where a f = A f /e0 is the level-

density parameter for fragment f , we have ln ρ f (ε f ) =
2
√

a f ε f , hence Tf = √
ε f /a f . The most probable excitations,

ε f , are then proportional to the respective level-density param-
eters, ε f = a f T 2, where T = √

ε/(aL + aH ) is the common
temperature.

The variance of P(εL ) is equal to the variance of P(εH )
(because εL + εH remains constant) and it is given (approxi-
mately) by

σ 2
f ≈ −

[
d2 ln P(ε f )

dε2
f

]−1

ε f =ε f

= 2T ε aLaH

(aL + aH )2
= 2T

εLεH

ε
.

(B2)
The canonical variances used previously in FREYA are given
by σ̃ 2

f ≈ 2T ε f , so the effect of the microcanonical constraint
is to replace the actual mean fragment excitation ε f by the
reduced value εLεH/ε. Thus the microcanonical variance is
smaller than either of the individual canonical variances. As
one would expect, the canonical variance is approached, σ 2

L ≈
σ̃ 2

L , when aH � aL.
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In FREYA, the excitation energy εL is sampled from a Gaus-
sian distribution with mean value εL and variance σ 2

g = σ 2
L .

However, because only positive values of εL are acceptable,
the selection is iterated until |εL − εL| < εL. This procedure
ensures that the selected value of εL is smaller than ε and
that its mean equals εL. But the resulting dispersion of εL is
generally somewhat smaller than σL. For that reason, FREYA
contains the parameter c with which one may increase the
value of σg in order to compensate for this effect, σg = c σL.
In the present study, we ignore this refinement and use c = 1.

APPENDIX C: BIASED TKE DISTRIBUTION

The biased distribution (38) can be written as

P̃(δν, δK ) ∼ e− 1
2 [(m2

0+m2
ν )δν2+2mνK δνδK+m2

K δK2]
, (C1)

where m0 ≡ 1/σ0. The corresponding biased distribution of
δK is obtained by integrating over δν which can easily be done

after completing the square in the exponent,(
m2

0 + m2
ν

)
δν2 + 2mνKδν δK + m2

KδK2

= (
m2

0 + m2
ν

)(
δν + mνKδK

m2
0 + m2

ν

)2

−
(

m2
νK

m2
0 + m2

ν

− m2
K

)
δK2.

(C2)

The integral over δν can then be carried out, leaving P̃(δK ) ∼
exp(−δK2/2σ̃ 2

K ) with the biased variance being given as
stated in Eq. (39),

σ̃ 2
K =

(
m2

K − m2
νK

m2
0 + m2

ν

)−1

= σ 2
K − σ 2

νK

σ 2
ν + σ 2

0

, (C3)

where we have used m2
ν = σ 2

K/D, mνK = −σνK/D, and σ 2
K =

σ 2
ν /D, with D = |σ | = σ 2

ν σ 2
K − σ 2

ν .
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