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within the algebraic version of the resonating group model
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The mirror seven-nucleon 4He + 3H and 4He + 3He systems are studied microscopically using the algebraic
version of the resonating group model. Astrophysical S factors and branching ratios for the 3H(α, γ )7Li and
3He(α, γ )7Be radiative captures are calculated in a wide energy range from ultralow energies to intermediate
ones covering the 7Li and 7Be lowest resonance states. All allowed E1, E2, and M1 captures from s, p, d , and
f waves are taken into account in the calculations. Nuclear phase shifts for the 3H(α, α)3H and 3He(α, α)3He
s-, p-, d-, and f -wave elastic scattering are computed. Properties of the bound and low-lying resonance states of
the 7Li and 7Be nuclei are considered. The obtained results are compared with data from experiments.
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I. INTRODUCTION

At the present time, description of nuclear dynamics and
structure from the microscopic viewpoint is a rather signifi-
cant challenge in modern nuclear theory [1,2]. Microscopic
approaches and calculations together with related experimen-
tal data serve as an important source of knowledge on nu-
clear processes. The microscopic calculations, including first
principles ones, usually involve some model assumptions and
approximations, and questions concerning their accuracy are
not clear enough. For this reason, the experimental data are
required as essential benchmarks. However, the data are in
a number of cases unable to provide the necessary accuracy
despite the significant progress in experimental technique. For
example, measurements of cross sections of astrophysically
relevant nuclear reactions induced by light charged particles at
low sub-Coulomb energies meet some difficulties. That is why
the relative data are not complete, and their precision turns
out to be insufficiently high [3,4]. Thus, the development of
the microscopic approaches in fact holds permanent interest
to this scientific field [2].

The algebraic version of the resonating group model
(AVRGM) [5–7] is a microscopic implementation of the clus-
ter conception in physics of light nuclei and their reactions.
A comprehensive description of the AVRGM formalism,
namely, the so-called AVRGM basis functions, sets of equa-
tions, boundary conditions, and methods for matrix elements
calculations, can be found in our work [8] and references
cited therein. Within the AVRGM, the total wave function
of a system of two clusters is written in the form of a fully
antisymmetrized product of the intrinsic wave functions of the
clusters and the wave function of their relative motion. The
cluster wave functions are usually chosen in the form of the
translationally invariant oscillator shell model wave functions
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for the lowest states compatible with the Pauli exclusion
principle. In fact, the conventional RGM [9] and the AVRGM
start from this common point. Nevertheless, their further
strategies and relative mathematical apparatus significantly
differ from each other. The basic idea of the AVRGM is to
expand the relative motion wave function over the basis of
the oscillator functions. Thus, an expansion of the total wave
function over the AVRGM basis functions arises (see Ref. [8]
and Appendix A). Values of the oscillator radius for the cluster
wave functions and for the oscillator basis are supposed to
be the same. An appropriate choice of the oscillator radius
playing a role of the scale parameter allows one to improve
the approximate description of the internal cluster states. The
main idea of the multiscale AVRGM (MS-AVRGM) is to use
different values of the oscillator radius involved in expansions
of the total wave functions of bound states and continuum. It
is quite natural for the wave functions of the different types.
The mutual cluster influence can be to some extent taken into
account this way. The MS-AVRGM reduces to the simplified
case of the single-scale AVRGM (SS-AVRGM) by the unified
choice of the oscillator radius in expansions of the total wave
functions over the AVRGM basis for all considered states.

In our earlier works [10–17], a microscopic approach based
on the SS-AVRGM for radiative capture was developed. Re-
cently, we proposed the more refined MS-AVRGM approach
[8,18]. The approaches were implemented to study the mirror
radiative capture reactions 3H(α, γ )7Li and 3He(α, γ )7Be in
a low-energy region. These reactions are of significant interest
to nuclear astrophysics [3,4,19], and the treatment of them
is a striking example of the study, which has a long story
and still attracts attention of researchers. A comprehensive
list of references to previous experimental and theoretical
investigations of these reactions together with a brief discus-
sion can be found in our paper [8]. In recent years, there
also appeared a number of other works. First of all, these
are experimental measurements of the cross section at low
energies for 3H(α, γ )7Li in Ref. [20] and for 3He(α, γ )7Be
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in Ref. [21] as well as at intermediate energies for the latter
reaction in Ref. [22]. A critical review of the 3He(α, γ )7Be
experimental status has been presented in Ref. [23]. As to the
theoretical side, a recent ab initio study has been performed
in paper [24], where the no-core shell model with continuum
(NCSMC) was applied to radiative capture for the first time.
Also, the discussed reactions have been considered within
potential-model approaches [25,26] and within halo effective
field theory [27].

Though many works were devoted to the 3H(α, γ )7Li
and 3He(α, γ )7Be reactions, there is only a small number
of studies [22,24,25,28–33], which cover the intermediate
energy range including the 7Li and 7Be lowest resonance
states. In Refs. [22,33], experimental measurements were
carried out for the 3He(α, γ )7Be reaction. Experimental data
for the mirror one are quite absent at the intermediate energies.
Theoretical investigations for the reactions were presented
in Refs. [24,25,28–32]. Microscopic calculations were per-
formed solely in Refs. [24,29]. It is obvious here that the
microscopic treatment of the considered reactions in the wide
energy range is a minor part of the researches in this area.
Moreover, this treatment is not free from some difficulties.
That is why the further microscopic considerations are still
worthwhile.

Thus, the goal of the present work is to study microscopi-
cally (i) the 3H(α, γ )7Li and 3He(α, γ )7Be radiative capture
processes in the wide energy range with taking into account
all allowed E1, E2, and M1 captures of the colliding nuclei
from s, p, d , and f waves of the entrance channel; (ii) the
3H(α, α)3H and 3He(α, α)3He elastic scattering in the s, p,
d , and f states; as well as (iii) properties of the bound and
low-lying resonance states of the 7Li and 7Be nuclei. The
AVRGM serves as the basic tool for this investigation, which
significantly extends the scope of our previous work [8].
The performed study allows us to demonstrate descriptive
capabilities of our SS- and MS-AVRGM approaches in full.

It should be noted that the mathematical apparatus of
expansions over the oscillator basis and the main ingredi-
ents of the AVRGM are widely used in modern nuclear
physics and give very encouraging results (see, for example,
Refs. [1,2,34–38] and references cited therein). This fact
produces an additional interest in development of the AVRGM
and approaches based on it.

II. ELECTROMAGNETIC MULTIPOLE OPERATORS
AND MOMENTS. REDUCED ELECTROMAGNETIC

TRANSITION PROBABILITY AND RADIATIVE-
CAPTURE PARTIAL CROSS SECTION

The electric multipole operator reads [39,40]

ME
Iμ = e

A∑
j=1

gl ( j)| r j − rc.m.|IYIμ
(
nr j−rc.m.

)
, (1)

gl ( j) = 1

2
− t3, j . (2)

Here I is the order of the multipole; r j and t3, j are the radius
vector and the isospin projection operator of jth nucleon,
respectively; A is the mass number of a system; YIμ is the

spherical harmonic [41]; e is the elementary charge (e > 0);
rc.m. is the center-of-mass radius vector:

rc.m. = 1

A

A∑
j=1

r j . (3)

The magnetic multipole operator is defined by [39,40]

MM
Iμ = μN

A∑
j=1

{
gs( j) s j + 2gl ( j)

I + 1

[
(r j − rc.m.)

×
(

p j − pc.m.

A

)]}(∇rIYIμ(nr )
)∣∣r=r j−rc.m.

, (4)

gs( j) = 1

2
(gn + gp) + t3, j (gn − gp),

(5)
gn = −3.826, gp = 5.586,

where μN = eh̄/2mc is the nuclear magneton, h̄ is the Planck
constant, c is the light velocity, m is the nucleon mass; s j and
p j = −i∇ j are respectively the spin and momentum operators
of jth nucleon; pc.m. is the center-of-mass momentum opera-
tor:

pc.m. =
A∑

j=1

p j . (6)

It should be noted that the electric (1) and magnetic (4)
multipole operators are written in the long-wavelength limit
[39,42]. Moreover, both the operators have the translationally
invariant form prescribed by work [43]. This form is required
to avoid spurious terms caused by the common center-of-mass
motion.

The electric quadrupole and magnetic dipole moments
of a nucleus are related to the matrix elements of the
corresponding operators (1) and (4) as follows [39]:

Q =
√

16 π

5

〈
Jπ J

∣∣ME
20

∣∣JπJ
〉
, (7)

μ =
√

4 π

3

〈
JπJ

∣∣MM
10

∣∣Jπ J
〉
, (8)

where |JπJ〉 is the nuclear wave function with the to-
tal angular momentum J , its projection M = J , and the
parity π .

TABLE I. The potential parameterizations used in
the AVRGM calculations.

Parameterization gc gls

I 1.035 1.000
II 1.024 7.869
III 1.024 7.343
IV 0.977 1.000
V 0.977 3.469
VI 0.977 3.025
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TABLE II. The oscillator radius values (in fm) involved in the
MS-AVRGM bases for the 7Li and 7Be bound states.

Nucleus Set r02,0 r02,1

7Li I 1.303 1.282
II 1.296 1.300

7Be I 1.3068 1.4205
II 1.3085 1.4240

Since the electromagnetic multipole operator M�
Iμ (� �

E in the electric case or M in the magnetic one) is a tensor
operator of rank I with spherical components labeled by
μ (μ = −I, . . . , I − 1, I ), so its matrix elements satisfy the
Wigner–Eckart theorem [41]

〈
n f J

π f

f M f

∣∣M�
Iμ

∣∣niJ
πi
i Mi

〉 =
〈
n f J

π f

f

∥∥M�
I

∥∥niJ
πi
i

〉
√

2Jf + 1
C

Jf M f

JiMi Iμ, (9)

in which 〈n f J
π f

f ‖M�
I ‖niJ

πi
i 〉 is the reduced matrix element; ni

and n f are additional quantum numbers of the initial (i) and

final ( f ) states, respectively; C
Jf M f

JiMi Iμ is the Clebsch–Gordan
coefficient [41]. The reduced transition probability of a nu-
cleus between two bound states with the quantum numbers ni

and Jπi
i for the initial state and n f and J

π f

f for the final one can
be expressed in terms of the reduced matrix elements of the
electromagnetic multipole operator [39]:

B
(
�I, Jπi

i → J
π f

f

) = 1

2Ji + 1

∣∣〈n f J
π f

f

∥∥M�
I

∥∥niJ
πi
i

〉∣∣ 2
. (10)

The partial cross section for a radiative capture to a final
bound state with the total angular momentum Jf and the parity
π f from a partial wave of an initial scattering state normalized
to the unit flux density is given by [42]

σi→ f (Ec.m., �I )

= 1

(2s1 + 1)(2s2 + 1)(2li + 1)

8π (I + 1)

h̄I
(
(2I + 1)!!

)2

(
Eγ

h̄c

)2I+1

× ∣∣〈Jπ f

f

∥∥M�
I

∥∥Jπi
i lisi

〉∣∣ 2
. (11)

Here s1 and s2 are the spins of the nuclei colliding in the en-
trance channel of the reaction with the relative motion energy

Ec.m. in the center-of-mass system; li and si are respectively
the relative orbital angular momentum and the channel spin
that are coupled to the total angular momentum Ji of the initial
state with the parity πi; Eγ = Ec.m. + εn is the energy of the
emitted photon, εn is the breakup threshold for nth bound state
of the final fused nucleus into the initial colliding fragments.
The colliding nuclei are supposed to be unpolarized, and
polarizations of the emitted photon and the formed nucleus are
not considered. Therefore, averaging over the spin projections
of the projectile and the target and summation over the spin
projections of the final products have been performed in
Eq. (11). The total cross section can be found by summing
up the partial ones (11) characterizing the contributions of
the corresponding partial waves in the expansion of the initial
scattering wave function. In the long-wavelength limit, the
electromagnetic multipole operator entering into Eq. (11) has
the form (1) in the electric case or (4) in the magnetic one.

It is generally accepted to write the cross section of a
charged-particle induced reaction in terms of the astrophysical
S factor [44],

σ (Ec.m.) = exp
(−√

EG/Ec.m.

)
Ec.m.

S(Ec.m.), (12)

where EG is the Gamow energy for the colliding particles.
Expressing S through σ in accordance with Eq. (12) and
substituting Eq. (11) in the obtained expression, one can
define the partial astrophysical S factors and, as a result, the
total one for a radiative capture.

Let us consider the quantities (7), (8), and (10) for the
mirror 7Li and 7Be nuclei within the AVRGM. The expansions
in series of the oscillator functions used in the framework of
this model (see Appendix A) lead to the corresponding ex-
pansion series for the matrix elements of the electromagnetic
operators in Eqs. (7), (8), and (10). The electric quadrupole
and magnetic dipole moments take the form

Q =
√

16 π

5

CJJ
JJ 20√

2J + 1

∑
ν̃, ν

C (D)
Jπ lsν̃

〈
Jπ lsν̃

∥∥ME
2

∥∥Jπ lsν
〉
C (D)

Jπ lsν,

(13)

μ =
√

4 π

3

CJJ
JJ 10√

2J + 1

∑
ν̃, ν

C (D)
Jπ lsν̃

〈
Jπ lsν̃

∥∥MM
1

∥∥Jπ lsν
〉
C (D)

Jπ lsν,

(14)

TABLE III. The energies and the widths (in MeV) of the lowest 7/2− and 5/2− resonance states of the 7Li and 7Be nuclei.

Nucleus Jπ Quantity Experiment SS-AVRGM MS-AVRGM

I II III I II III

7Li 7/2− Er 2.18 4.42 2.02 2.18 2.49 2.11 2.18
	 0.069 0.68 0.04 0.05 0.13 0.07 0.08

5/2− Er 4.14 4.95 6.38 6.24 2.83 3.28 3.20
	 0.918 1.01 2.55 2.36 0.21 0.36 0.33

7Be 7/2− Er 2.98 5.36 2.98 3.14 3.35 2.98 3.05
	 0.175 0.89 0.09 0.12 0.22 0.14 0.15

5/2− Er 5.14 5.90 7.35 7.21 3.69 4.13 4.06
	 1.2 1.28 3.01 2.80 0.33 0.51 0.48
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where the Clebsch–Gordan coefficients have the explicit ex-
pressions [41]:

CJJ
JJ 10 =

√
J

J + 1
, CJJ

JJ 20 =
√

J (2J − 1)

(J + 1)(2J + 3)
,

and ν is the number of oscillator quanta. The reduced transi-
tion probability is

B
(
�I, Jπi

i → J
π f

f

)
= 1

2Ji + 1

∣∣∣∣ ∑
ν f , νi

C (D)

J
π f
f l f sν f

〈
J

π f

f l f sν f

∥∥M�
I

∥∥Jπi
i lisνi

〉
C (D)

J
πi
i lisνi

∣∣∣∣
2

.

(15)

The transition of the 7Li (7Be) nucleus from the first excited
state (Jπ = 1/2−) to the ground one (Jπ = 3/2−) is accom-
panied by emission of the photon with the multipolarity �I =
E2 or M1. The total wave functions of these states, which
have been considered as the bound ones of the 4He + 3H
(4He + 3He) system composed of the unexcited clusters and
characterized by l = 1 and s = 1/2, have been expanded
over the AVRGM bases with the coefficients denoted as
C (D)

Jπ lsν .
The partial cross section for the 4He + 3H (4He + 3He) ra-

diative capture with the 7Li (7Be) formation in the framework
of the AVRGM has the form

σi→ f (Ec.m., �I )

= 4π (I + 1)

(2li + 1)h̄I
(
(2I + 1)!!

)2

(
Eγ

h̄c

)2I+1

×
∣∣∣∣ ∑

ν f , νi

C (D)

J
π f
f l f sν f

〈
J

π f

f l f sν f

∥∥M�
I

∥∥Jπi
i lisνi

〉
C (C)

J
πi
i lisνi

∣∣∣∣
2

,

(16)

in which C (C)
Jπ lsν are the expansion coefficients of the total wave

function for the 4He + 3H (4He + 3He) scattering state over
the AVRGM basis (see Appendix A). In Eq. (16), the quantum
numbers (Ji, li ) are equal to (1/2, 0), (3/2, 2), and (5/2, 2) for
the E1 captures, (1/2, 1), (3/2, 1), (5/2, 3), and (7/2, 3) for the
E2 ones, as well as (1/2, 1) and (3/2, 1) for the M1 captures to
the ground state of the 7Li (7Be) nucleus [(Jf , l f ) = (3/2, 1)].
The sum of the corresponding partial cross sections gives the
total cross section for the capture to the ground state σ0. In the
case of the 7Li (7Be) first excited state [(Jf , l f ) = (1/2, 1)],
the list of the allowed quantum numbers are somewhat shorter,
namely, (Ji, li ) are (1/2, 0) and (3/2, 2) for the E1 captures,
(3/2, 1) and (5/2, 3) for the E2 ones, and finally (1/2, 1)
and (3/2, 1) for the M1 ones. The total cross section for the
capture to the first excited state is denoted as σ1. The sum of σ0

and σ1 is the total cross section for the radiative capture, σ =
σ0 + σ1. The corresponding astrophysical S factors are related
to these cross sections by Eq. (12). One more quantity used
for description of the considered radiative captures is the ratio
of the cross sections σ1 and σ0, the so-called branching ratio
R = σ1/σ0.

FIG. 1. The 1/2+ s-wave nuclear phase shift for the 4He + 3H
elastic scattering.

The full set of expressions for all necessary reduced matrix
elements involved in Eqs. (13)–(16) is given in Appendix B.

III. RESULTS

A. Introductory remarks and clarifications

In this investigation, the nucleon-nucleon interaction is de-
scribed by the modified Hasegawa–Nagata NN potential [45]
with the intensities of the central Majorana force gc and the
spin-orbit interaction gls, which are often used as adjustable
parameters. Their values adopted in the calculations are given
in Table I. Parameterizations I–III and IV–VI from Table I are
applied in the SS- and MS-AVRGM calculations, respectively.
As it can be seen, parameterizations IV, V, and VI differ

FIG. 2. The 1/2+ s-wave nuclear phase shift for the 4He + 3He
elastic scattering.
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FIG. 3. The 1/2− p-wave nuclear phase shift for the 4He + 3H
elastic scattering.

from each other by the gls values only. This difference for
parameterizations V and VI is small enough. The similar sit-
uation is in the case of parameterizations II and III. However,
parameterization I differs from parameterizations II and III by
not only the gls value but also the gc one. The reasons for using
the different potential parameterizations will be discussed
below.

In the framework of the SS-AVRGM approach, the single
AVRGM basis with the oscillator radius r0 is applied for
expansions of the total wave functions of all considered states.
In the present work, the r0 value is equal to 1.22 fm. The
MS-AVRGM approach deals with the different AVRGM bases
for continuous and discrete spectra. These bases differ from
each other by values of the oscillator radius. In the continuum,
we use r01 = 1.386 fm for both the 4He + 3H and 4He + 3He

FIG. 4. The 3/2− p-wave nuclear phase shift for the 4He + 3H
elastic scattering.

FIG. 5. The 1/2− p-wave nuclear phase shift for the 4He + 3He
elastic scattering.

systems. Values of the oscillator radius for the 7Li and 7Be
ground (r02,0) and first excited (r02,1) states are presented
in Table II. In the following, the calculations using the SS-
AVRGM with the given r0 value and potential parameteriza-
tions I–III from Table I will be referred to as SS-AVRGM
calculations I–III. The calculation within the MS-AVRGM
approach with the chosen r01 value and r02,0 and r02,1 values
set I from Table II, as well as with potential parameterization
IV from Table I will be referred to as MS-AVRGM calculation
I. In turn, the MS-AVRGM calculations combining set II
from Table II with potential parameterizations V and VI from
Table I will be referred to as MS-AVRGM calculations II and
III, respectively.

FIG. 6. The 3/2− p-wave nuclear phase shift for the 4He + 3He
elastic scattering.
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FIG. 7. The 3/2+ d-wave nuclear phase shift for the 4He + 3H
elastic scattering.

It should be noted that the potential parameterizations and
the oscillator radius values utilized in SS- and MS-AVRGM
calculations I have been already applied in our previous study
[8] for the treatment of the considered systems at astrophys-
ically relevant energies. The adjustable parameters of the po-
tential were fixed in that work to achieve a unified reasonable
description of energy dependences for the s- and d-wave
nuclear phase shifts of the elastic scattering and for the total
astrophysical S factors of the E1 captures in the 4He + 3H and
4He + 3He systems simultaneously. Furthermore, in the case
of the MS-AVRGM, the breakup thresholds for the 7Li and
7Be nuclei were reproduced by the appropriate choice of the
oscillator radius values. The corresponding calculations of the

FIG. 8. The 5/2+ d-wave nuclear phase shift for the 4He + 3H
elastic scattering.

FIG. 9. The 3/2+ d-wave nuclear phase shift for the 4He + 3He
elastic scattering.

f -wave nuclear phase shifts performed in the present work
show that the positions of the lowest 7/2− and 5/2− resonance
states of 7Be and 7Li turn out to be shifted (see Table III,
Figs. 11–14, and Sec. III B for details). Parameterizations
II and V are introduced for reproducing the position of the
lowest 7/2− resonance of 7Be in the SS- and MS-AVRGM
approaches, respectively, while parameterizations III and VI
are those for 7Li. Moreover, set II of the r02,0 and r02,1 values
is used for improving the MS-AVRGM description of the low-
energy experimental data on the total astrophysical S factors
related to the captures to the ground and first excited states of
the final nucleus.

FIG. 10. The 5/2+ d-wave nuclear phase shift for the 4He + 3He
elastic scattering.
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FIG. 11. The 5/2− f -wave nuclear phase shift for the 4He + 3H
elastic scattering.

B. The 3H(α, α)3H and 3He(α, α)3He elastic scattering

Energy dependences of the nuclear phase shifts for
the 4He + 3H and 4He + 3He elastic scattering calculated
within the SS- and MS-AVRGM approaches are depicted in
Figs. 1–14 together with data extracted from experiments
[46–52]. The calculated phase shifts correspond to all par-
tial waves with the orbital angular momentum l = 0, 1, 2,
and 3 that are required for description of the E1, E2, and
M1 radiative-capture processes in the discussed systems at
the considered energies. Before we begin the discussion of
the phase shifts, it should be emphasized that the data for
4He + 3H and most data for 4He + 3He obtained from the
elastic scattering measurements were published without ex-

FIG. 12. The 7/2− f -wave nuclear phase shift for the 4He + 3H
elastic scattering.

FIG. 13. The 5/2− f -wave nuclear phase shift for the 4He + 3He
elastic scattering.

perimental errors. This feature essentially complicates a ques-
tion concerning a degree of agreement between the AVRGM
calculations and the data. Nevertheless, some conclusions on
this agreement will be given in this subsection.

All the AVRGM calculations of the s-wave nuclear phase
shift presented in Fig. 1 for the 4He + 3H scattering agree
reasonably with the data [50]. The data [49] are mainly located
higher than those of Ref. [50] and our curves. In the case
of the mirror system, the corresponding calculations of the
s-wave phase shift are on the whole in a good agreement
with all the data, excepting the data [47] that lie higher than
the others (see Fig. 2). The p-wave nuclear phase shifts are
demonstrated for 4He + 3H in Figs. 3 and 4 and for 4He + 3He
in Figs. 5 and 6. In the case of the 4He + 3H scattering, the

FIG. 14. The 7/2− f -wave nuclear phase shift for the 4He + 3He
elastic scattering.
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FIG. 15. The 3He(α, γ )7Be total astrophysical S factors for cap-
tures to the 7Be ground and first excited states.

MS-AVRGM calculations of the phase shift δ1/2− agree very
well with the data [50] while the MS-AVRGM calculations
of the phase shift δ3/2− do slightly worse. Within the SS-
AVRGM approach, the calculations of the phase shift δ1/2−

give adequate description of the data [49], but the calculations
of the phase shift δ3/2− are underestimated in comparison with
the data from that work. For the 4He + 3He scattering, the
MS-AVRGM calculations of the p-wave phase shifts δ1/2− and
δ3/2− are in a good agreement with the data and provide a
better description than the SS-AVRGM ones. The data [47]
on δ1/2− and δ3/2− lie higher than the other data and our curves
as in the case of the s-wave phase shift δ1/2+ . The data on the
d-wave phase shifts δ3/2+ and δ5/2+ presented, respectively,
in Figs. 7 and 8 for 4He + 3H and in Figs. 9 and 10 for
4He + 3He are predominantly concentrated in vicinity of 00

with a large scatter for both the systems. In these figures, the
calculated d-wave phase shifts lie close enough to the data at
low and intermediate energies.

MS-AVRGM calculations II and III for the phase shifts
discussed above are almost indistinguishable in the figures.
The same situation is in the case of the SS-AVRGM ones.
Moreover, the s- and d-wave phase shifts obtained from MS-
AVRGM calculation I also turn out to be almost identical to
those from MS-AVRGM calculations II and III. The consid-
ered phase shifts obtained from SS-AVRGM calculations II

FIG. 16. The total astrophysical S factor for the 3He(α, γ )7Be
reaction.

and III differ from those of SS-AVRGM calculation I and on
the whole describe the data slightly better.

Let us discuss in more detail the f -wave nuclear phase
shifts shown in Figs. 11 and 12 for 4He + 3H and in Figs. 13
and 14 for 4He + 3He. SS- and MS-AVRGM calculations I
give the positions of the lowest 7/2− and 5/2− resonance
states shifted in comparison with their experimental values
[53] both for 7Li and for 7Be. For this reason, SS- and MS-
AVRGM calculations II and III were done. Energies (Er) and
widths (	) of the considered resonances obtained from all
these calculations and from the experiments [53] are given
in Table III. The energies of the 7/2− and 5/2− resonances
from SS-AVRGM calculation I are overestimated for both the
systems. As to MS-AVRGM calculation I, the 7/2− resonance
energies are also overestimated whereas the 5/2− ones are
underestimated. SS- and MS-AVRGM calculations II (III)
reproduce the 7/2− resonance energy for the 7Be (7Li) system
and give very good description of the data on the phase
shift δ7/2− . The obtained curves lie very close to each other.
Furthermore, MS-AVRGM calculations II and III improve the
description for the 5/2− resonance position together with the
data on the phase shift δ5/2− of the 4He + 3He and 4He +
3H scattering as compared with MS-AVRGM calculation I.
However, SS-AVRGM calculations II and III make worse the
relative description as compared to SS-AVRGM calculation I.

TABLE IV. The breakup thresholds (in MeV) for the 7Li and 7Be ground and first excited states.

Nucleus Quantity Experiment SS-AVRGM MS-AVRGM

I II III I II III

7Li ε0 2.467 1.672 2.359 2.332 2.467 2.490 2.469
ε1 1.989 1.546 1.337 1.376 1.989 2.077 2.115

7Be ε0 1.586 0.828 1.481 1.456 1.586 1.714 1.694
ε1 1.157 0.710 0.520 0.556 1.157 0.962 0.987
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FIG. 17. The branching ratio for the 3He(α, γ )7Be reaction.

SS- and MS-AVRGM calculations III of the 4He + 3He and
4He + 3H f -wave phase shifts are similar enough to SS- and
MS-AVRGM calculations II, respectively.

As concerns the AVRGM calculations of the resonance
widths, their values are sensitive to the resonance positions.
When the calculated resonance positions either coincide with
the experimental ones or lie close enough to them, the calcu-
lated widths also appear to be in an agreement with the exper-
imental data. This suggestion is clearly seen from Table III.

It is worthwhile to mention that the ab initio description of
the resonance states for the 7Li and 7Be nuclei in Ref. [24]
also meets some difficulties, which are partly similar to those
of our microscopic MS-AVRGM calculation I. For example,
the lowest 7/2− and 5/2− resonance energies for both the
systems from the ab initio calculation [24] turn out to be
shifted, namely, the 7/2− resonance energy is overestimated
in comparison with the experimental one while the 5/2−
resonance energy is underestimated. To avoid the problems,
authors of that work had to introduce adjustable parameters.

C. The 3He(α, γ )7Be radiative capture

Let us consider the radiative capture in the 4He + 3He
system, i.e., the 3He(α, γ )7Be reaction. The calculated total

FIG. 18. The 3He(α, γ )7Be total astrophysical S factors for
the E1, E2, and M1 captures calculated within the MS-AVRGM
approach.

astrophysical S factors for captures to the ground (S0) and
first excited (S1) states of 7Be and related experimental data
extracted from direct measurements [33,54–61] are shown in
Fig. 15. References [54–58] are the so-called “old” data, and
Refs. [33,59–61] are the modern ones. SS- and MS-AVRGM
calculations I actually generalize our previous calculations
[8]. In the present work, we cover significantly larger energy
range and take into account the E2 and M1 captures. SS-
AVRGM calculation I of the astrophysical S0 and S1 factors
describes the modern data well. The MS-AVRGM one does
slightly worse but reproduces the breakup thresholds for the
7Be ground and first excited states. The breakup thresholds
obtained from all the AVRGM calculations and from the
experiments [53] are given in Table IV. As it has been
demonstrated in the previous subsection, the 7/2− and 5/2−
resonance energies turn out to be shifted in AVRGM calcu-
lations I. MS-AVRGM calculations II and III improve the
description of the modern data on the astrophysical S0 and S1

factors but slightly shift the breakup thresholds. An advantage
of the former is the capability of reproducing the 7/2− reso-
nance energy (see Table III). SS-AVRGM calculation II also

TABLE V. Zero-energy astrophysical S-factor values S(0) (in keV b) and ratios (in MeV−1) of zero-energy derivative values S′(0) of the
astrophysical S factors to the S(0) values for the 3H(α, γ )7Li and 3He(α, γ )7Be reactions obtained by extrapolating the total astrophysical S
factors calculated within the AVRGM.

Reaction Quantity SS-AVRGM MS-AVRGM

I II III I II III

3H(α, γ )7Li S(0) 0.111 0.132 0.132 0.092 0.095 0.095
S′(0)/S(0) −1.188 −1.160 −1.162 −0.955 −0.920 −0.921

3He(α, γ )7Be S(0) 0.561 0.694 0.694 0.502 0.504 0.504
S′(0)/S(0) −0.524 −0.513 −0.534 −0.225 −0.208 −0.209
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FIG. 19. The 3H(α, γ )7Li total astrophysical S factors for cap-
tures to the 7Li ground and first excited states.

reproduces the 7/2− resonance energy but is overestimated
compared to the modern data on the astrophysical S0 factor.

The calculated total astrophysical S factor
together with experimental data [21,22,33,54–71]
(Refs. [21,22,33,59–61,65–71] are the modern data, and
the rest are the “old” ones) and the calculated branching ratio
along with the data from the direct measurements [33,54–61]
for the 3He(α, γ )7Be reaction are depicted in Figs. 16 and 17,
respectively. Extrapolations at zero collision energy of
the calculated total astrophysical S factor are presented in
Table V. At low energies, the MS-AVRGM calculations of the
total astrophysical S factor are very similar to each other and
describe the modern data well enough. The main differences
arise in vicinities of the peaks corresponding to the 7/2−

FIG. 20. The total astrophysical S factor for the 3H(α, γ )7Li
reaction.

FIG. 21. The branching ratio for the 3H(α, γ )7Li reaction.

and 5/2− resonances. The position of the former peak in the
energy dependence obtained from MS-AVRGM calculation II
coincide with that from the experimental data but calculated
values of the total astrophysical S factor lie slightly higher.
SS-AVRGM calculation I describes the modern data very
well up to vicinity of the first peak. However, the position
of this peak is significantly shifted in the calculated energy
dependence. SS-AVRGM calculation II reproduces the
peak position corresponding to the 7/2− resonance but is
considerably overestimated compared to the modern data at
very low energies. The main differences between SS-AVRGM
calculations II and III are only in the peaks positions. As to
the branching ratio, the differences between the AVRGM
calculations are more evident. MS-AVRGM calculations II
and III describe adequately the modern data on the branching

FIG. 22. The 3H(α, γ )7Li total astrophysical S factors for the E1,
E2, and M1 captures calculated within the MS-AVRGM approach.
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ratio while SS-AVRGM calculations II and III lie slightly
lower.

The E1, E2, and M1 capture contributions to the energy de-
pendence of the total astrophysical S factor for 3He(α, γ )7Be
obtained from MS-AVRGM calculations II and III are drawn
in Fig. 18. These calculations give almost identical result for
the E1 contribution but their results differ from each other
both for the E2 contribution and for the M1 one. The E1
capture contribution plays the dominating role over the whole
energy range. In particular, it is in accordance with results of
Refs. [24,28,29,72]. The E2 capture from the 7/2− partial
wave of the 4He + 3He scattering state to the 7Be ground
state is responsible for formation of the first peak in the
energy dependence. In turn, the E2 captures from the 5/2−
partial wave to the 7Be ground and first excited states provide
formation of the second peak. The M1 captures are negligible
at the considered energies.

D. The 3H(α, γ )7Li radiative capture

In the case of the 3H(α, γ )7Li reaction, energy depen-
dences obtained in the framework of the AVRGM are depicted
along with experimental data in Fig. 19 for the astrophysical
S0 and S1 factors, in Fig. 20 for the total astrophysical S factor,
and in Fig. 21 for the branching ratio. The total astrophysical
S-factor data are taken from works [20,62,73–78]. The data
on the astrophysical S0 and S1 factors and on the branching
ratio are extracted from the direct measurements [73–75,77].
The E1, E2, and M1 contributions to the 3H(α, γ )7Li total
astrophysical S factor obtained by MS-AVRGM calculations
II and III are demonstrated in Fig. 22. The calculated total
astrophysical S factor extrapolated at zero collision energy is
presented in Table V.

SS- and MS-AVRGM calculations I for the 3H(α, γ )7Li
astrophysical S0 and S1 factors provide only reasonable but
not perfect description of the data, especially those from
Ref. [77]. Nevertheless, MS-AVRGM calculation I reproduces

the breakup thresholds for the 7Li bound states. MS-AVRGM
calculations II and III slightly shift these breakup thresholds
but allow one to achieve a perfect description of the data
[77]. In addition, the 7/2− resonance energy resulting from
MS-AVRGM calculation III coincides with its experimental
value (see Table III). All the calculated breakup thresholds
for 7Li and their experimental values [53] are presented in
Table IV. SS-AVRGM calculations II and III make a reason-
able enough description of the astrophysical S1-factor data
[77] but significantly exceed the data on the astrophysical S0

factor from that work. At the same time, the astrophysical S0-
and S1-factor data from Ref. [75] are simultaneously described
well.

All the MS-AVRGM calculations provide a perfect de-
scription of the data [77] on the 3H(α, γ )7Li total astrophysi-
cal S factor. Despite lack of the experimental data in vicinity
of the 7/2− resonance energy, MS-AVRGM calculation III is
supposed to reproduce the peak position at the corresponding
energy in the real energy dependence. The same can be said
about SS-AVRGM calculation III, which by the way describes
the data [75] rather well. Most likely, only experiments can
determine which of these calculations is better for a quantita-
tive description of the peak. MS-AVRGM calculations II and
III of the total astrophysical S factor are almost identical at
all energies, excepting vicinities of the peaks at the 7/2− and
5/2− resonance energies. The similar situation is in the case
of SS-AVRGM calculations II and III. For the branching ratio,
AVRGM calculations II and III have quite evident differences.
Nevertheless, MS-AVRGM calculations II and III give a good
description of the data [77] on the 3H(α, γ )7Li branching ratio
whereas the SS-AVRGM ones do well for the data [75].

The general statements about the contributions of the E1,
E2, and M1 captures to the 3H(α, γ )7Be total astrophysical S
factor done in the previous subsection remain correct in the
case of the considered mirror reaction. However, the quantita-
tive behavior of these contributions is obviously different for
the reactions.

TABLE VI. The rms nuclear radii and the electromagnetic properties of 7Li and 7Be in the framework of the AVRGM. The results are
obtained assuming the nucleons to be the point-like objects.

Nucleus Quantity SS-AVRGM MS-AVRGM

I II III I II III

7Li rc (fm) 2.235 2.157 2.160 2.190 2.170 2.172
rn (fm) 2.301 2.214 2.217 2.232 2.211 2.213
rm (fm) 2.273 2.189 2.192 2.214 2.194 2.196

Q (e fm2) −3.921 −3.492 −3.507 −3.325 −3.248 −3.257
μ (μN ) 3.1597 3.1563 3.1565 3.1500 3.1496 3.1497

B(E2) (e2 fm4) 7.857 7.249 7.236 5.485 5.628 5.616
B(M1) (μ2

N ) 2.167 2.134 2.138 2.172 2.170 2.171
7Be rc (fm) 2.363 2.254 2.258 2.268 2.258 2.260

rn (fm) 2.293 2.194 2.197 2.222 2.214 2.216
rm (fm) 2.333 2.228 2.232 2.248 2.239 2.241

Q (e fm2) −6.538 −5.748 −5.774 −5.541 −5.464 −5.480
μ (μN ) −1.2814 −1.2776 −1.2778 −1.2711 −1.2705 −1.2706

B(E2) (e2 fm4) 21.935 19.867 19.830 16.423 16.528 16.522
B(M1) (μ2

N ) 1.580 1.551 1.555 1.510 1.497 1.499
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TABLE VII. The rms nuclear radii of 7Li obtained in previous works.

Authors, reference Year Method Quantity, value

rc (fm)

Experiment

Suelzle et al. [79] 1967 MDAHO 2.39 ± 0.03

Van Niftrik et al. [80] 1971 MDAHO 2.55 ± 0.07

Bumiller et al. [81] 1972 MIA 2.35 ± 0.10

MDAHO 2.29 ± 0.04

Gibson et al. [82] 1982 MDAHO 2.39

Tanihata et al. [83] 1985 MDAHO 2.43 ± 0.03

Tanihata et al. [84] 1988 MDAHO 2.27 ± 0.02

2.40 ± 0.02

Theory

Kanada et al. [85] 1980 RGM 2.44

Kajino et al. [86] 1984 RGM 2.35, 2.51, 2.55, 2.80

Kajino et al. [87] 1984 RGM 2.35, 2.55, 2.57

Walliser, Fliessbach [88] 1985 ECM 2.46, 2.47

Buck et al. [89] 1985 PCM 2.42 ± 0.04

Kajino [29] 1986 RGM 2.15, 2.35, 2.39, 2.43, 2.44, 2.55, 2.56

Mertelmeier, Hofmann [90] 1986 RGM 2.27, 2.31, 2.38

Buck, Merchant [91] 1988 PCM 2.43 ± 0.02

Nollett [72] 2001 VMC 2.30 ± 0.01

Neff [92] 2011 FMD 2.46

Dohet-Eraly et al. [24] 2016 NCSM 2.21

NCSMC 2.42

rn (fm)

Experiment

Gibson et al. [82] 1982 MDAHO 2.5

Tanihata et al. [83] 1985 MDAHO 2.54 ± 0.03

Tanihata et al. [84] 1988 MDAHO 2.38 ± 0.02

Theory

Kajino et al. [86] 1984 RGM 2.35, 2.51, 2.57, 2.83

Kajino et al. [87] 1984 RGM 2.34, 2.35, 2.57, 2.59

rm (fm)

Experiment

Tanihata et al. [83] 1985 MDAHO, MDAG 2.50 ± 0.03

Tanihata et al. [84] 1988 MDAHO 2.33 ± 0.02

MDAG 2.35 ± 0.03

Theory

Mertelmeier, Hofmann [90] 1986 RGM 2.34, 2.40, 2.46

Csótó, Langanke [93] 2000 RGM 2.28, 2.31, 2.36, 2.39, 2.46, 2.48, 2.50, 2.55
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TABLE VIII. The 7Li electromagnetic moments from preceding investigations.

Authors, reference Year Method Quantity, value

Q (e fm2 )
Combination of calculation (calc.) with experimental data (exp.) from 7Li atomic (molecular) spectroscopy

Kahalas, Nesbet [94] 1963 calc. [94] + exp. [95] −4.44
Wharton et al. [96] 1964 exp. [96] + calc. [94] −4.50 ± 0.45
Browne, Matsen [97] 1964 calc. [97] + exp. [95] −4.3
Cade, Huo [98] 1967 calc. [98] + exp. [96] −3.43a

Bender, Davidson [101] 1969 calc. [101] + exp. [96] −4.3a

Lu, Present [102] 1970 calc. [102] + exp. [95] −4.3 ± 0.3
Green [99] 1971 calc. [99] + exp. [96] −3.66 ± 0.03
Orth et al. [103] 1975 exp. [103] + calc. [104] −4.125

exp. [103] + calc. [105] −4.054
exp. [103] + calc. [106] −4.125

averaging −4.1 ± 0.6
Garpman et al. [106] 1975 calc. [106] + exp. [103] −4.1 ± 0.5
Nagourney et al. [107] 1978 exp. [107] + calc. [106] −5.9 ± 0.8
Sundholm et al. [108] 1984 calc. [108] + exp. [109] −4.06
Diercksen et al. [110] 1988 calc. [110] + exp. [111] −4.055 ± 0.080

Analysis of experimental data (exp.) on nuclear scattering and their reanalysis (rean.)
Suelzle et al. [79] 1967 exp. |4.20 ± 0.25|
Van Niftrik et al. [80] 1971 exp. |3.8 ± 1.1|
Bamberger et al. [112] 1972 exp. −1 ± 2
Egelhof et al. [113] 1980 exp. −3.4 ± 0.6
Vermeer et al. [114] 1984 exp. −4.0 ± 1.1
Weller et al. [115] 1985 exp. −3.70 ± 0.08
Barker et al. [116] 1989 rean. of exp. −4.06 ± 0.08
Grawert, Derner [117] 1989 rean. of exp. −3.84 ± 0.15

−3.63 ± 0.12
−3.82 ± 0.15

Voelk, Fick [100] 1991 rean. of exp. −4.00 ± 0.06
T heory

Kanada et al. [85] 1980 RGM −3.70
Bouten, Bouten [118] 1981 HF −3.62
Kajino et al. [86] 1984 RGM −3.50, −4.39, −4.41, −4.58
Kajino et al. [87] 1984 RGM −3.50, −3.55, −4.38, −4.39, −4.41
Walliser, Fliessbach [88] 1985 ECM −3.85
Buck et al. [89] 1985 PCM −3.74 ± 0.08
Kajino [29] 1986 RGM −2.13, −3.50, −3.70, −3.71, −3.73, −4.38, −4.41
Mertelmeier, Hofmann [90] 1986 RGM −3.42, −3.71, −4.19
Buck, Merchant [91] 1988 PCM −3.83 ± 0.13
Csótó, Langanke [93] 2000 RGM −3.51, −3.52, −3.73, −3.75, −3.77, −3.78, −3.80, −3.83
Nollett [72] 2001 VMC −3.7 ± 0.2
Neff [92] 2011 FMD −3.91
Dohet-Eraly et al. [24] 2016 NCSM −2.67

NCSMC −3.72
μ (μN )

Lutz [119] 1967 exp. 3.256
Van Niftrik et al. [80] 1971 exp. 3.2 ± 0.4
Raghavan [120] 1989 exp. 3.256b

T heory
Bouten, Bouten [118] 1981 HF 3.22
Walliser et al. [122] 1983 RGM 3.148
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TABLE VIII. (Continued.)

Authors, reference Year Method Quantity, value

μ (μN )
Kajino et al. [86] 1984 RGM 3.14, 3.15, 3.16
Kajino et al. [87] 1984 RGM 3.15, 3.16
Walliser, Fliessbach [88] 1985 ECM 3.20, 3.38
Buck et al. [89] 1985 PCM 3.384
Mertelmeier, Hofmann [90] 1986 RGM 2.79, 3.16
Dohet-Eraly et al. [24] 2016 NCSM 3.00

NCSMC 3.02

aThis value could be obtained by combining the corresponding calculation with the experimental data from Ref. [96] (see, for example,
Refs. [99,100]).
bThis value was obtained in Ref. [120], using experimental data [121].

TABLE IX. The 7Li reduced transition probabilities from preceding investigations.

Authors, reference Year Method Quantity, value

B(E2) (e2 fm4)
Stelson, McGowan [123] 1960 exp. 7.3 ± 1.5
Ritter et al. [124] 1962 exp. 7.6 ± 1.1
Van Niftrik et al. [80] 1971 exp. 7 ± 4
Bamberger et al. [112] 1972 exp. 7.4 ± 0.1
Häusser et al. [125] 1973 exp. 8.3 ± 0.6
Vermeer et al. [114] 1984 exp. 7.42 ± 0.14
Weller et al. [115] 1985 exp. 8.3 ± 0.5
Kajino et al. [126] 1988 rean. of exp. 8.9
Vermeer et al. [127] 1989 rean. of exp. 7.59 ± 0.10
Barker et al. [116] 1989 rean. of exp. 7.59 ± 0.10
Grawert, Derner [117] 1989 rean. of exp. 9.7 ± 1.6

8.0 ± 1.3
7.3 ± 1.2

Voelk, Fick [100] 1991 rean. of exp. 7.27 ± 0.12
Theory

Bouten, Bouten [118] 1981 HF 6.26
Walliser et al. [122] 1983 RGM 7.55
Kajino et al. [86] 1984 RGM 6.61, 10.42, 10.57, 11.64
Kajino et al. [87] 1984 RGM 6.61, 6.77, 10.33, 10.47, 10.57
Walliser, Fliessbach [88] 1985 ECM 8.04
Buck et al. [89] 1985 PCM 7.0 ± 0.3
Kajino [29] 1986 RGM 2.46, 6.61, 7.40, 7.46, 7.55, 10.27, 10.57
Mertelmeier, Hofmann [90] 1986 RGM 5.38, 6.86, 8.49, 11.3
Buck, Merchant [91] 1988 PCM 7.75 ± 0.50

B(M1) (μ2
N )

Van Niftrik et al. [80] 1971 exp. 2.48 ± 0.12
Theory

Bouten, Bouten [118] 1981 HF 2.185
Walliser et al. [122] 1983 RGM 2.17
Kajino et al. [86] 1984 RGM 2.16, 2.17, 2.34
Kajino et al. [87] 1984 RGM 2.16, 2.17
Walliser, Fliessbach [88] 1985 ECM 2.13, 2.45
Buck et al. [89] 1985 PCM 2.45
Mertelmeier, Hofmann [90] 1986 RGM 1.96, 2.10, 2.15, 2.17

054618-14



4He + 3H AND 4He + 3He RADIATIVE CAPTURE, ELASTIC … PHYSICAL REVIEW C 99, 054618 (2019)

TABLE X. The rms nuclear radii of 7Be obtained in previous works.

Authors, reference Year Method Quantity, value

rc (fm)
Experiment

Tanihata et al. [83] 1985 MDAHO 2.52 ± 0.03
Tanihata et al. [84] 1988 MDAHO 2.36 ± 0.02
Nörtershäuser et al. [128] 2009 MIA 2.647 ± 0.017

T heory
Kajino et al. [86] 1984 RGM 2.65, 2.74
Mertelmeier, Hofmann [90] 1986 RGM 2.39
Nollett [72] 2001 VMC 2.41 ± 0.01
Mason et al. [31] 2009 DM 2.52
Neff [92] 2011 FMD 2.67
Dohet-Eraly et al. [24] 2016 NCSM 2.375

NCSMC 2.62

rn (fm)
Experiment

Tanihata et al. [83] 1985 MDAHO 2.41 ± 0.03
Tanihata et al. [84] 1988 MDAHO 2.25 ± 0.02

T heory
Kajino et al. [86] 1984 RGM 2.40, 2.50

rm (fm)
Experiment

Tanihata et al. [83] 1985 MDAHO, MDAG 2.48 ± 0.03
Tanihata et al. [84] 1988 MDAHO 2.31 ± 0.02

MDAG 2.33 ± 0.02
Theory

Mertelmeier, Hofmann [90] 1986 RGM 2.34
Csótó, Langanke [93] 2000 RGM 2.36, 2.43, 2.44, 2.51, 2.54, 2.55, 2.56, 2.62
Mason et al. [31] 2009 DM 2.48

E. The 7Li and 7Be electromagnetic properties and nuclear radii

The important electromagnetic properties of the 7Li and
7Be nuclei, such as the electric quadrupole (Q) and magnetic
dipole (μ) moments of the ground state and the reduced prob-
abilities of E2 (B(E2)) and M1 (B(M1)) transitions from the
ground state to the first excited one, as well as the root-mean-
square (rms) radii for the charge (rc), neutron matter (rn), and
nucleon matter (rm) density distributions in the ground state
are also considered in the present work. The calculation of
these quantities and a further comparison with available data
are the components of a useful test of the approach relia-
bility. Values of the considered quantities calculated within
the AVRGM are presented in Table VI for both the nuclei.
Related experimental data, estimations, and other calculations
known to us at the present time are collected in Tables VII–IX
for 7Li and in Tables X and XI for 7Be. In these tables,
the following abbreviations are introduced: MDAHO/MDAG
is the model-dependent analysis of experimental data based
on the harmonic-oscillator/Gaussian distribution of nucleons,
MIA is the model-independent analysis of experimental data,
ECM is the elementary cluster model, PCM is the potential
cluster model, VMC is the variational Monte-Carlo method,
FMD is the fermionic molecular dynamics, NCSM is the
no-core shell model, DM is the dicluster model, HF is the
Hartree-Fock method.

Many experimental data on the rms radii both for 7Li
(see Table VII) and for 7Be (see Table X) were extracted by
assuming some model distribution of nucleons. There were
usually supposed that the density of nucleon distribution had
the harmonic-oscillator form. Nevertheless, there are also the
model-independent extractions of the rms charge radius rc.
Most theoretical calculations provide the charge radius solely,
probably, because its experimental values used for comparison
were obtained more reliably than values for the rms matter
radii rn and rm.

As it can be seen from Tables VIII and IX , the studies of
the electric quadrupole moment Q and the reduced transition
probability B(E2) for 7Li have a long story. Among them,
there are the experimental measurements, their analyses and
reanalyses, as well as the theoretical calculations. In the 7Be
case (see Table XI), a number of the investigations is much
lesser than for 7Li, and experimental data on Q and B(E2) are
quite absent. As to the magnetic dipole moment μ and the
reduced transition probability B(M1), they were investigated
equally for both the nuclei but more poorly than, for example,
Q and B(E2) for 7Li.

The quantities discussed in this subsection were calculated
within the various models (see Tables VII–XI). The results of
those calculations reveal a certain scatter but, on the whole,
most of them are close to the experimental ones, which in
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TABLE XI. The 7Be electromagnetic properties from preceding investigations.

Authors, reference Year Method Quantity, value

Q (e fm2 )
Theory

Kajino et al. [86] 1984 RGM −4.89, −5.51
Mertelmeier, Hofmann [90] 1986 RGM −5.84
Csótó, Langanke [93] 2000 RGM −6.22, −6.27, −6.40, −6.61, −6.64,−7.23, −7.28, −7.41
Nollett [72] 2001 VMC −5.9 ± 0.3
Mason et al. [31] 2009 DM −4.79
Neff [92] 2011 FMD −6.83
Dohet-Eraly et al. [24] 2016 NCSM −4.57

NCSMC −6.14
μ (μN )

Kappertz et al. [129] 1998 exp. −1.398 ± 0.015
Nörtershäuser et al. [128] 2009 exp. −1.3995 ± 0.0005

Theory
Kajino et al. [86] 1984 RGM −1.27, −1.28
Buck et al. [89] 1985 PCM −1.533
Mertelmeier, Hofmann [90] 1986 RGM −1.27
Mason et al. [31] 2009 DM −1.53
Dohet-Eraly et al. [24] 2016 NCSM −1.14

NCSMC −1.16

B(E2) (e2 fm4)
Theory

Walliser et al. [122] 1983 RGM 21.76
Kajino et al. [86] 1984 RGM 22.7, 29.2
Mertelmeier, Hofmann [90] 1986 RGM 17.0
Mason et al. [31] 2009 DM 18.3

B(M1) (μ2
N)

Ajzenberg-Selove [130] 1979 exp. 1.87 ± 0.25a

T heory
Walliser et al. [122] 1983 RGM 1.58
Kajino et al. [86] 1984 RGM 1.58
Buck et al. [89] 1985 PCM 1.87
Kajino [29] 1986 RGM 1.59
Mertelmeier, Hofmann [90] 1986 RGM 1.58
Mason et al. [31] 2009 DM 1.86

aThis value could be obtained by using experimental data given in Ref. [130] (see, for example, Refs. [90,122]).

turn lie rather close to each other. Finally, our results pre-
sented in Table VI could be also characterized in the similar
manner.

IV. CONCLUSION

In the present work, the microscopic study of the mirror
radiative capture reactions 3H(α, γ )7Li and 3He(α, γ )7Be has
been performed in the framework of the AVRGM. The con-
sidered wide energy region covered not only the low energies
but also the intermediate ones including the lowest resonances
of the 7Li and 7Be nuclei. Along with the dominating E1
transitions, the E2 and M1 ones have been taken into con-
sideration. The 3He(α, γ )7Be total astrophysical S factor cal-
culated within the MS-AVRGM approach agrees reasonably
well with the modern data in the range from the low energies
up to vicinity of the 7/2− resonance of 7Be. MS-AVRGM
calculations II and III have visible differences in vicinities of

the resonances only. The former gives the exact 7/2− reso-
nance position whereas the latter slightly shifts this position
in the energy dependence. In both the calculations, the total
astrophysical S factors for the captures to the 7Be ground
and first excited states and the 3He(α, γ )7Be branching ratio
describe sufficiently well the data from the modern direct
measurements. The 3H(α, γ )7Li total astrophysical S factor
calculated within the MS-AVRGM approach is in a perfect
agreement with the data both from Ref. [77] and from the
recent work [20]. MS-AVRGM calculation II slightly shifts
the 7/2− resonance position while MS-AVRGM calculation
III reproduces it. The total astrophysical S factors for the
captures to the 7Li ground and first excited states and the
corresponding branching ratio also agree very well with the
data [77]. As in the case of the mirror reaction, MS-AVRGM
calculations II and III for the 3H(α, γ )7Li total astrophysical S
factor differ visibly from each other in the resonance vicinities
only.
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The 3H(α, α)3H and 3He(α, α)3He elastic scattering and
the properties of the 7Li and 7Be bound and low-lying res-
onance states have been also considered within the AVRGM.
The 3H(α, α)3H and 3He(α, α)3He s-, p-, and d-wave nuclear
phase shifts obtained from MS-AVRGM calculations II and
III describe the data rather reasonably. The 7/2− f -wave
phase shifts obtained from these calculations also agree with
the data rather well. Unfortunately, the calculated positions of
the 5/2− resonances turn out to be shifted. That is why the
calculated 5/2− f -wave phase shifts provide reasonably only
the qualitative description of the data on the 3H(α, α)3H and
3He(α, α)3He scattering while the quantitative description
is not good enough. The energy dependences of the s-, p-,
and d-wave phase shifts from MS-AVRGM calculation II are
almost identical to those from MS-AVRGM calculation III at
all considered energies. For the energy dependences of the
f -wave phase shifts, the differences arise in vicinities of the
resonance positions. As for the 7Li and 7Be properties, the
calculated electromagnetic quantities, rms nuclear radii, and
breakup thresholds of the 7Li and 7Be bound states are in a
good correspondence with the data. Moreover, the energies
of the 7/2− resonance states of the 7Be and 7Li nuclei are
reproduced within MS-AVRGM calculation II and III, respec-
tively, and the calculated widths of these resonances are in a
reasonable agreement with the experimental values.

The developed microscopic SS- and MS-AVRGM ap-
proaches are successful in the unified consistent description
of the considered reactions in the low-energy region. It was
shown in our previous work [8] for the first time. However, the
present study demonstrates that the extension of the consid-
ered energy range and the data set to be described simultane-
ously leads to some problems. For example, the 3He(α, γ )7Be
and 3H(α, γ )7Li unified AVRGM treatment reproducing the
lowest 7/2− resonance energy of 7Be gives the shifted slightly
energy of the analogous resonance of 7Li and vice versa. The
simultaneous reproducing the lowest 7/2− resonance energies
of 7Li and 7Be is desirable for a perfect description of the
corresponding reactions at the intermediate energies. It should
be noted that the well-founded ab initio description of the
considered reactions given in the recent work [24] within
the NCSMC approach also met to some extent the similar
problems. In particular, the resonance positions obtained in
that work without any parameters turned out to be shifted,
and their reproducing in fact required introducing adjustable
parameters. On the whole, both our microscopic MS-AVRGM
approach and that ab initio NCSMC one make it possible to
describe the wide enough set of the data in the consistent
manner and to obtain useful information in the research area.

Descriptive capabilities and a success of any nuclear model
depend on different circumstances. One of the most crucial
features of a model is the quality of a trial wave function that
should incorporate most significant components, which are in
fact responsible for the model limitations. Thus, improving
this function by an extension of the model space could be
considered as a way for developing an approximate approach.
As to directions for further development and extension of our
approach, there are several lines. The most obvious way is
to apply more complicated intrinsic cluster wave functions,
for example, with a greater number of the expansion terms.

The next one is to take into consideration other cluster chan-
nels, including three-cluster configurations. Enriching the trial
wave function by polarization terms for better description of
the internal region is one more way for improving the devel-
oped approach. Finally, the predictive power of the approach
can be increased by generalization of its algorithms to cover
a wider class of nuclear potentials, in particular, utilized in ab
initio calculations.
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APPENDIX A

Expansions over the basis of the eigenfunctions of a three-
dimensional harmonic oscillator and cluster aspects of nu-
clear structure and dynamics serve as starting points of the
AVRGM. Cluster representation suggests the following form
of the trial many-particle total wave function of a two-cluster
system:

� = Â{φ(1)φ(2) f (q)}, (A1)

where Â is the antisymmetrization operator; φ(1) and φ(2)

are the intrinsic wave functions of the clusters; f (q) is the
relative motion wave function; q is the vector characterizing
the relative distance between the clusters. The intrinsic wave
functions are usually considered to be fixed, and the problem
is reduced to finding f (q). The expansion of f (q) over the
oscillator functions

fνlm(q) = (−1)(ν−l )/2

√
2Г

(
(ν − l + 2)/2

)
r3

0 Г
(
(ν + l + 3)/2

) (q/r0)l

× L(l+1/2)
(ν−l )/2

(
q2/r2

0

)
exp

(−q2/2 r2
0

)
Ylm(nq), (A2)

in which Г and L(β )
n are the gamma-function and the general-

ized Laguerre polynomial, respectively, and r0 is the oscillator
radius, leads to representation of the total wave function in the
form of series

� =
∑

Jπ Mlsν

CJπ Mlsν�Jπ Mlsν (A3)

of the AVRGM basis functions

�Jπ Mlsν = NJπ lsν Â
{ ∑

m+σ=M

CJM
lm sσ [φ(1)φ(2)]sσ fνlm(q)

}
.

(A4)

In Eq. (A4), spins of the clusters are coupled to the channel
spin s, which is in turn coupled with the orbital angular
momentum l to the total angular momentum J; π is the
parity depending on the parities of the intrinsic cluster wave
functions and the function fνlm; NJπ lsν is the normaliza-
tion. Thus, the problem transforms to determination of the
expansion coefficients CJπ Mlsν . These coefficients obey an
infinite set of linear algebraic equations obtained by projecting
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the Schrödinger equation onto the AVRGM basis functions
(A4). For the discrete spectrum, the summation in Eq. (A3)
can be truncated at a sufficiently large value ν = νmax, and a

finite set of homogeneous algebraic equations for the expan-
sion coefficients C(D)

Jπ Mlsν arises:

∑
l s

νmax∑
ν = ν0

(〈Jπ Ml̃s̃ν̃|H |Jπ Mlsν〉 − E δs̃sδl̃ lδν̃ν

)
C(D)

Jπ Mlsν = 0, ν̃ = ν0, ν0 + 2, . . . , νmax. (A5)

For the continuum, such truncation of the expansion series is not appropriate. It is necessary to take properly into account the
asymptotic behavior C (as)

Jπ Mlsν of the expansion coefficients C (C)
Jπ Mlsν [8], starting from a sufficiently large value ν = νas. This results

in a finite set of inhomogeneous algebraic equations of the following type:

∑
l s

νas−2∑
ν=ν0

(〈Jπ Ml̃s̃ν̃|H |Jπ Mlsν〉 − E δs̃sδl̃ lδν̃ν

)
C (C)

Jπ Mlsν = FJπ Ml̃s̃ν̃ , ν̃ = ν0, ν0 + 2, . . . , νas, (A6)

FJπ Ml̃s̃ν̃ = −
∑
l s

ν ′
max∑

ν = νas

〈Jπ Ml̃s̃ν̃|H |Jπ Mlsν〉C (as)
Jπ Mlsν . (A7)

The matrix elements entering into Eq. (A7) decrease significantly for ν → � [7], and the contribution of the corresponding
terms is negligible. This fact justifies the truncation in Eq. (A7) at some upper limit ν = ν ′

max.
The convergence of the expansion (A3) for discrete spectrum functions that are square-integrable ones is evident. Convergence

properties of this expansion for continuum functions, which do not belong to the space of the square-integrable ones, were studied
comprehensively in Refs. [131,132], and the pointwise convergence was proved.

The total angular momentum and parity conservation removes the summation over Jπ in Eqs. (A5)–(A7). The channel spin
of the considered systems has the only one value s = 1/2, which ensures the absence of the tensor interaction contribution
and hence causes decoupling of the channels with the different orbital angular momentum l . As a result, the single summation
over the number of oscillator quanta ν remains in Eqs. (A5)–(A7) for the considered states. Our calculations were performed
at different sizes of the AVRGM basis (A4). At the fixed Jπ , M, l , and s values, the number of the AVRGM basis functions
(A4) involved in the expansions was varied from a few tens up to a thousand. Since numerical procedures and algorithms are
elaborated well, so it allows one to use a rather large size of the truncated basis. The numerical calculations of the quantities
characterizing the discrete spectrum states demonstrate that it is sufficient to include about a hundred terms in the expansions.
As to the continuum, the situation looks more complicated. The radiative capture treatment requires to increase the number of
the utilized basis functions (A4). The reliable calculations should take into account at least five hundred terms in the expansions.

APPENDIX B

In this section, the reduced matrix elements of the electric dipole and quadrupole operators and the magnetic dipole one for the
mirror seven-nucleon 4He + 3H and 4He + 3He systems derived in the framework of the MS-AVRGM approach are presented.
The corresponding explicit expressions read

〈
J

π f

f l f sν f

∥∥ME
1

∥∥Jπi
i lisνi

〉 = e
√

r01r02 ζ
ρ10

14

√
3

π
�

(1)
Jf l f Ji lis

(√
r01

r02
F (1, li; 1, 0)

l f ν f liνi s +
√

r02

r01
F

(1, l f ; 0, 1)
l f ν f liνi s

)
, (B1)

〈
J

π f

f l f sν f

∥∥ME
2

∥∥Jπi
i lisνi

〉 = e r02r01
ρ11

2a1

√
5

π

[
a2 �

(2)
Jf l f Jilis

(
r01

r02
F (1, li; 2, 0)

l f ν f liνis
+ r02

r01
F

(1, l f ; 0, 2)
l f ν f liνis

)
−

√
30

∑
l

�
(2, l )
Jf l f Ji lis

F (2, l; 1, 1)
l f ν f liνis

]
,

(B2)

〈
J

π f

f l f sν f

∥∥MM
1

∥∥Jπi
i lisνi

〉 = μN
ρ9

2

√
3

π

[
g�

(1)
Jf l f Ji lis

F
(1, l f ; 0, 0)

l f ν f liνis
− 2ρ

a1

√
6

∑
l

�
(1, l )
Jf l f Ji lis

F (2, l; 1, 1)
l f ν f liνis

]
. (B3)

Here the following denotations are introduced:

�
(λ)
Jf l f Jilis

= (−1)Ji+l f +s+λ �Jf Jili C
l f 0
li0 λ0

{
li s Ji

Jf λ l f

}
,

�
(λ, l )
Jf l f Jilis

= (−1)Ji+l f +s+λ �Jf l f Jili Cl0
l f 0 10 Cl0

li0 10

{
1 λ 1
l f l li

}{
li s Ji

Jf λ l f

}
,
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�
(λ)
Jf l f Ji lis

= (−1)Jf +l f +s+λ �Jf Ji s

√
s(s + 1) δl f li

{
s l f Ji

Jf λ s

}
,

� j1 j2... jn =
√

(2 j1 + 1)(2 j2 + 1) . . . (2 jn + 1) ,

F (k, l; λ2, λ1 )
l2ν2 l1ν1 s = 2π

κν2l2s κν1l1s(ν2 − λ2)!(ν1 − λ1)!

∂ν2−λ2

∂Qν2−λ2

∂ν1−λ1

∂Rν1−λ1

∫ 1

−1
U (k)(Q, R, t ) Pl (t ) dt

∣∣∣∣
Q=R=0

,

κ2
νls = 2π

ν!

[(
6

7

)ν

− 3

(
5

14

)ν

+ 3

(
−1

7

)ν

−
(

− 9

14

)ν]
ενl ,

ενl =

⎧⎪⎨
⎪⎩

2 l+1ν!((ν + l )/2)!

(ν + l + 1)!((ν − l )/2)!
, l � ν, l + ν − even,

0, in other cases,

U (1)(Q, R, t ) ≡ U (1)(Q, R) = w (u − 1)3,

U (2)(Q, R, t ) ≡ U (2)(Q, R) = w (a2u + a3) (u − 1)2,

u = exp

(
ρQRt

2

)
, w = exp

[
3

7

(
ς (Q2 − R2) − 3

2
ρQRt

)]
,

ρ = 2
r01r02

r2
01 + r2

02

, ς = r2
01 − r2

02

r2
01 + r2

02

,

{a1, a2, a3} = {196, 34, 15}, g = gp, ζ = −1 for the 4He + 3H system,

{a1, a2, a3} = {98, 25, 24}, g = gn, ζ = 1 for the 4He + 3He system,{a b c
d e f

}
is the 6 j symbol [41], δ f i is the Kronecker symbol, Pl (t ) is the Legendre polynomial, and t = cos θQR, θQR is the

angle between the vectors Q and R.
Equations (B1)–(B3) are in fact found by utilizing the generating functions method (see Ref. [8] and references cited therein

for details). It should be reminded that the first step of this method includes the calculation of matrix elements between the
generating functions for the AVRGM basis [8], the so-called generating matrix elements. For the considered operators, these
generating matrix elements have the form

〈Q, sσ f |ME
1μ|R, sσi〉 = e

√
r01r02 ζ

ρ10

7
δσ f σi U (1)(Q, R)

(
Q̃Y1μ(nQ̃) + R̃Y1μ(nR̃ )

)
, (B4)

〈Q, sσ f |ME
2μ|R, sσi〉 = e r02r01

ρ11

a1
δσ f σi

[
U (2)(Q, R)(Q̃ + R̃)

2
Y2μ(nQ̃+R̃ ) − 49

U (1)(Q, R)

u − 1

(
Q̃2 Y2μ(nQ̃) + R̃2 Y2μ(nR̃ )

)]
,

(B5)

〈Q, sσ f |MM
1μ|R, sσi〉 = μN

ρ9

2

√
3

π

(
g
√

s(s + 1) C
sσ f

sσi 1μ U (1)(Q, R) − i
2ρ

a1
δσ f σi U (2)(Q, R) [Q × R]1μ

)
, (B6)

where σi and σ f are the channel spin projections of the initial and final states, respectively; R and Q are the generating parameters
related to the scaled ones R̃ and Q̃ by

R̃ =
√

r02

r01
R, Q̃ =

√
r01

r02
Q.

The next steps consist in obtaining all the necessary matrix elements between the AVRGM basis functions from the generating
matrix elements (B4)–(B6) with the aid of the relation between the AVRGM basis and the generating functions. Finally, the
reduced matrix elements (B1)–(B3) are extracted by the Wigner–Eckart theorem (9).
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