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Based on the isospin-dependent quantum molecular dynamics model, finite-size scaling effects on nuclear
liquid-gas phase transition probes are investigated by studying the de-excitation processes of six thermal
sources of different sizes with the same initial density and similar N/Z. Using several probes including the
total multiplicity derivative (dM,y/dT), second moment parameter (M), intermediate mass fragment (IMF)
multiplicity (Nmvr), Fisher’s power-law exponent (7), and Ma’s nuclear Zipf’s law exponent (£), the relationship
between the phase transition temperature and the source size has been established. It is observed that the phase
transition temperatures obtained from the IMF multiplicity, Fisher’s exponent, and Ma’s nuclear Zipf’s law
exponent have a strong correlation with the source size. Moreover, by employing the finite-size scaling law, the
critical temperature 7, and the critical exponent v were obtained for infinite nuclear matter.
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I. INTRODUCTION

Exploration of the properties of nuclear matter is a hot
topic in nuclear physics research. It is associated with the
nuclear equation of state (EOS) and the dynamical description
of the heavy-ion collision process [1-5]. The phenomenon
of liquid-gas phase transition (LGPT) is observed in water;
when the temperature reaches a certain value, water changes
from liquid phase to gas phase. The similarity between the
shape of the nucleon-nucleon interaction in nuclear matter
and the van der Waals nature of the intermolecular interaction
in water indicates the possibility of occurrence of LGPT in
nuclear matter, similar to that in water. This phase transition
feature has attracted significant attention from the heavy-ion
collision community at relativistic [6—13] and intermediate
energies [14—18]. In particular, the study of LGPT in inter-
medium energy heavy-ion collisions is a current focus in both
experimental and theoretical studies [1-5,15-26].

In the past few decades, various LGPT probes were pro-
posed experimentally and theoretically, including interme-
diate mass fragments (IMFs) [27,28], the second moment
parameter [29,30], caloric curve [16,31-33], bimodality in
charge asymmetry [34,35], charge fluctuation of the largest
fragment (NVZ) [36,37], Fisher’s power-law exponent of
fragments [22,38,39], and the nuclear Zipf’s law proposed by
Ma [18,40]. Furthermore, the derivative of total multiplicity
of fragments with respect to temperature and the difference
between the size of the first and second largest clusters are
suggested as LGPT probes in the framework of the statisti-
cal model, canonical thermodynamical model, and statistical

*Corresponding author: mayugang @cashq.ac.cn

2469-9985/2019/99(5)/054614(6)

054614-1

multifragmentation model [41-46]. Recently, studies on the
sensitivity of different LGPT probes based on experimental
measurements indicated that the total multiplicity derivative
and NVZ might be better measures for the critical point from
the final cold fragments and primary fragments [47]. However,
discussions on the properties of these LGPT probes are still
ongoing. Some of the questions raised are as follows: What
is the order of the phase transition in nuclear matter? What
is the finite-size effect of phase transition in nuclei? Here
we attempt to understand the finite-size scaling effect for
different nuclear LGPT probes in the framework of a quantum
molecular dynamics model.

In this article, within the framework of an extended ver-
sion of the isospin-dependent quantum molecular dynam-
ics (IQMD) model, different finite-size systems are excited
at temperatures ranging from O to 20 MeV and their de-
excitation processes are obtained. Specifically, six finite-size
source systems are selected, with the mass numbers A = 36,
52, 80, 100, 112, and 129, and their corresponding charges
Z =15, 24, 33, 45, 50, and 54, respectively, which are ini-
tialized at the same normal density based on the Fermi-Dirac
distribution [25]. We investigate several probes, including
the total multiplicity derivative (dM/dT), second moment
parameter (M;), Ma’s nuclear Zipf’s law exponent (), mul-
tiplicity of IMFs (Npvg), and Fisher’s power-law exponent
(1), to analyze their finite-size effects, and then we apply the
finite-size scaling law for the phase transition temperatures
of different finite-size source systems to extract the critical
exponent for an infinite-size source system.

The rest of this paper is organized as follows. In Sec. II,
a brief introduction for an IQMD model is provided, specifi-
cally for an IQMD version with a single thermal equilibrated
source. In Sec. III, the temperature evolution of different
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LGPT probes is discussed and finite-size scaling is applied
for these probes. Finally, a conclusion is given in Sec. IV.

II. MODEL

The IQMD model is an extended version of the quantum
molecular dynamics model, which uses a many-body theory
to describe the dynamical behavior of heavy-ion collisions at
intermediate energies [25,48-52]. In the IQMD model, each
nucleon is represented by a Gaussian wave packet, i.e.,
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where R; and P; are the time-dependent coordinate and mo-
mentum, respectively. L is the Gaussian width, which is set to
2.16 fm? in the present work. The total effective potential of
nucleons in the nuclear mean field can be expressed as
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where p is the total density of the nuclear system, which is cal-
culated using the interaction density in IQMD [23,24,48,53]
as follows:
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and pp is the saturation density at the ground state, i.e.,
0.16 fm>. p, and pp are neutron and proton densities, re-
spectively. o, B, and y are parameters related to the EOS
of bulk nuclear matter [48]. Cyy is the symmetry energy
coefficient, V, is the Coulomb potential, and t, is the zth
component of the isospin degree of freedom for the nucleon,
which equals 1 or —1 for a neutron or proton, respectively.
UY'k represents the Yukawa potential, and UMP! represents
the momentum-dependent interaction (MDI) potential, which
can be written as follows:

UMPT = § . In(e - (Ap): + 1) - pﬁ )
0

where Ap, which is the relative momentum, 6 = 1.57 MeV,
and € = 500 (GeV/c)~? are the parameters of UMP! and
they can be found in Refs. [48,53]. Instead of the traditional
collision version of the IQMD model, we use a single-source
IQMD model. In this framework, the time evolution of phase-
space information of nucleons and fragments starts from a sin-
gle thermal equilibrated source having an initial temperature
and density. This version of the IQMD model has already been
described by Fang, Ma, and Zhou in Ref. [25]. For simplicity,
the above thermal IQMD version is called ThIQMD hereafter.

In this model, the momentum distribution of the nucleons
at the temperature 7 = 0 (i.e., the nucleus is at the ground
state) is calculated using the local Fermi gas approximation as

PL(R) = h[32p(R)]7, ©)

where p; is the local density of neutrons (i = n) or protons
(i = p). For T > 0, the momentum distribution of nucleons is
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FIG. 1. Temperature dependencies of (a) the total multiplicity

and (b) its derivatives versus source temperature in the ThIQMD
model for different source-size systems.

replaced by the Fermi-Dirac distribution, i.e.,
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where e, = 7 is the kinetic energy with the momentum
p, and V is the source volume. u is the chemical potential
determined by the following equation:

1 /2m 3/2f°° er
= ———dey = p. (7)
2772<h2) 0 e +1 ¢

In the present work, we adopt @ = —390.1 MeV, 8 =
320.3 MeV, and y = 1.14, which correspond to the soft
MDI EOS with the incompressibility of K = 200 MeV. The
fragments recognized by a coalescence mechanism in the
present model are constructed with a relative distance smaller
than 3.5 fm and a relative momentum lower than 300 MeV /c
between two nucleons.

III. CALCULATIONS AND DISCUSSION

In the current work, six source systems with different
masses and charge numbers but with similar N/Z of ap-
proximately ~1.3, i.e., (A,Z) = (36, 15), (52, 24), (80, 33),
(100, 45), (112, 50), and (129, 54), are excited at an initial
temperature varying from 0 to 20 MeV. The de-excitation
process can be studied using the ThIQMD model [25].

A. Phase transition temperature for finite-size nuclear sources

After the model completes the dynamic evolution process
at the initial temperature, the final state observables can be
obtained when the system is at freeze-out state. Figure 1(a)
shows the relationship between the total particle multiplicity
(M) and the source temperature, which is obtained in the
final state. The relationship between the derivative of My
w.r.t. source temperature and the source temperature is also
obtained, which is shown in Fig. 1(b). It can be observed that
the total multiplicity increases with the source temperature.
Moreover, the derivative of total multiplicity w.r.t. tempera-
ture increases initially and thereafter decreases after peaking
at a certain temperature. This is similar to the results provided
by Mallik er al. [41]. As suggested in Refs. [41,42], the
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FIG. 2. Temperature dependence of the IMF multiplicity in the
ThIQMD model for different source-size systems.

temperature corresponding to this peak is the apparent phase
transition temperature, which is denoted by 7. From Fig. 1,
the phase transition temperature 74 increases with the size of
the source and tends to saturate for larger systems.

Figure 2 shows the evolution of the number of IMFs (Npvir)
with the source temperature, where the IMF is defined as
a fragment whose charge number (Z) is larger than 3 and
smaller than the charge number of the source. It is observed
that, as the temperature increases, the number of IMFs has an
increasing trend and then a decreasing trend. There exists a
broad peak in the temperature evolution, which is consistent
with the previous experimental results of Ma et al. [27]. The
temperature corresponding to the peak position represents
the onset point of LGPT. At the phase transition temperature,
we also observe that Nypyr increases with an increase in the
source size.

Through application of the information of fragments, the
value of the second moment M, can be obtained, which could
be employed to search for the phase transition region [29,30].
The general definition of the kth moment is

M, = Z ZF - ni(z). ®)

Zi#Zmax

The results are shown in Fig. 3. The figure shows that M, in-
creases first and then decreases with the temperature, which is
similar to that observed for the derivative of total multiplicity
w.r.t. temperature and the multiplicity of IMFs.

Fisher’s droplet model is extensively applied to the study of
multifragmentation, and its power-law exponent (t) is applied
for locating the phase transition point where its value is usu-
ally approximately 2 ~ 3 [39]. In Fisher’s droplet model [28],
the fragment mass yield distribution Y (A) can be expressed as

Y(A)=YA" )

in a suitable mass or charge region. As the power-law ex-
ponent of mass or charge distributions behaves in a similar
manner, as shown in Ref. [54], we employed the power-law
fit for charge distribution in the range Z = 2 ~7 for different
source-size systems, which eliminates the fluctuation impact
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FIG. 3. Same as Fig. 2 but for M,.

of large or small fragments. The temperature dependence
of the Fisher’s exponent (), which is obtained from the Z
distribution, is shown in Fig. 4. It is evident that t has a
minimum value between 2 and 3, consistent with the results
obtained by Ma et al. [27] and many others. Interestingly, the
Fisher’s exponent (1) increases faster for lighter sources than
for heavier sources after the minimum.

The nuclear Zipf’s law was first proposed by Ma by
defining a nuclear Zipf-type plot [18,40], where the average
cluster size is employed as a function of rank and the resultant
distribution is fitted with a power law given by

(Zrank) X rank—& P (]O)

where & is Ma’s Zipf’s law exponent and rank = i for the
ith largest fragment. In nuclear fragmentation, Ma’s Zipf’s
law reflects the hierarchy distribution of the fragment, which
provides a valuable method to search for the LGPT in finite
systems [18,40]. When & ~ 1, Ma’s nuclear Zipf’s law is
satisfied. The values of Ma’s Zipf’s law exponent &, which
describe the fragment rank distribution of different source-
size systems, are plotted in Fig. 5. As the value of £ equals 1,
the Ma’s nuclear Zipf’s law is satisfied and the corresponding
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FIG. 4. Same as Fig. 2 but for Fisher’s power-law exponent (7).
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FIG. 5. Same as Fig. 2 but for Ma’s nuclear Zipf’s law exponents
(£). The cyan horizontal line represents & equal to 1.

phase transition temperature of different source-size systems
can be extracted.

To evaluate the sensitivity of the above mentioned probes
to the size of the system, the phase transition temperature
values obtained with different probes are shown as a function
of the size of the system. From Fig. 6, it can be observed
that, for the IMF multiplicity (Npr), Fisher’s exponent (7),
and Ma’s Zipf’s law exponent (£), the obtained phase tran-
sition temperature values change considerably as the source
size increases. However, the values of the phase transition
temperature derived from M, and the derivative of the total
multiplicity w.r.t. temperature dM,,/dT vary slowly with
the source size. In this context, we assume that the finite-
size effect should be considered when probing the critical
temperature (7;.), which is the phase transition temperature
for infinite nuclear matter, employed by the approaches of

14: o Nye T.=13.68+0.63MeV, v=0.38+0.01
nEm? T.=13.86+0.69MeV, v=0.38+0.01
o & TC=12.41i2.33MeV, v=0.34+0.19
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FIG. 6. Mass dependence of the phase transition temperatures
(Ty), which are obtained with different probes. For temperatures
deduced from & (red line), T (black line), and Npr(blue line), the
critical temperature of an infinite-size source system and the critical
exponent v are obtained by fitting using Eq. (11). It is observed that,
for an infinite-size source system, the critical temperature is 13.32 £
1.22 MeV on average, and v is 0.37 &+ 0.07.

the IMF multiplicity, Fisher’s exponent, and Ma’s Zipf’s law
exponent.

B. Critical temperature for infinite-size nuclear source

In the above examination, the source sizes of systems are
finite and the deduced phase transition temperatures are valid
only for specific finite-size nuclei. However, from Fig. 6, we
observe that the phase transition temperatures obtained with
the probes, namely Nivr, T, and &, have a strong correlation
with the source size. It is well known that finite-size scaling is
an important factor in studying the phase transition of infinite
matter. In this context, we shall use the finite-size scaling law
to deduce the critical temperature as the source size tends to
infinity [40,55-57]. We apply the extrapolation rule

1T, — Ty| c A™% (11)

to estimate the critical value 7, when the nuclear LGPT takes
place as A — oo and extract the v parameter, which is a
critical exponent for correlation length. Usually, for a three-
dimensional (3D) percolation class, v is 0.9; for the 3D Ising
class or liquid-gas class, v is equal to 0.6 [58]. The fitting
results are shown in Fig. 6, indicating that the above finite-
size scaling law is valid for the phase transition temperatures
deduced from the IMF multiplicity, charge distribution, and
Ma’s nuclear Zipf’s law. The fitting results demonstrate that,
for different phase transition probes, the best-fitted critical
temperatures 7, for an infinite nuclear system are consistent
with each other, i.e., approximately 13.32 + 1.22 MeV on
average, which are close to the experimentally determined
value (T, = 16.6 = 0.86 MeV) in symmetric nuclear mat-
ter, obtained by Natowitz et al. [19] as well as a recent
first-principle prediction for the LGPT critical temperature
(T, = 16 £2 MeV) in symmetric nuclear matter employing
both two- and three-nucleon chiral interactions [59]. Further-
more, the critical exponents for the correlation length (v)
for the above three probes have similar values, 0.37 + 0.07,
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FIG. 7. Plot of In|T, — T,| as a function of —ﬁlnA where T, =
13.32 MeV and v = 0.37 are assumed. The slope of the dashed line
is 1.
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indicating phase transition behavior [60,61]. The present v
value appears to approach the value of 3D Ising or liquid-gas
class rather than the 3D percolation class, which indicates
that the nuclear disassembly in this model belongs to the
3D liquid-gas universality class. However, T values deduced
from the total multiplicity derivative (dMy/dT) and the
second moment parameter (M;) do not follow the finite-size
scaling law well. Thus, they might not be good probes for the
critical behavior of nuclear LGPT.

To further verify the above finite-size scaling law, we plot
In|T, — T4| as a function of —%vlnA where T, = 13.32 MeV
and v = 0.37 are assumed, and T, represents the phase tran-
sition temperatures obtained from &, 7, and Nyvg. In Fig. 7, a
line with the slope =1 is also plotted. All three curves appear
linear with a slope of 1 in the double-In coordinate and are
close to each other, which illustrates that the deduced 7, and
v are the correct values.

IV. SUMMARY

In summary, the de-excitation processes of six finite-size
systems at the same initial normal density are investigated
using a single thermal source version of the IQMD model
(ThIQMD). Their temperatures at the point of LGPT were
obtained by checking different probes, such as the IMF
multiplicity (Npr), Fisher’s power-law exponent of charge
distribution (7), Ma’s Zipf’s law exponent (£), derivative of

total multiplicity w.r.t. temperature (dM;o/dT), and second
moment parameter (M;). The results demonstrate that the
phase transition temperatures obtained from all these probes
have a positive correlation with the source system size and
tend to saturate. Moreover, judging from the finite-size scaling
law, the phase transition temperatures obtained from Ny,
7, and £ follow the same scaling law well, whereas those
from dM,/dT and M, do not. Thus, the IMF multiplicity
(Nvr), Fisher’s power-law exponent, and Ma’s nuclear Zipf’s
law (&) are good probes for estimating the critical behavior of
phase transition, whereas the total multiplicity derivative and
second moment are not. Based on the finite-size scaling law,
the deduced critical temperature is approximately 13.32 +
1.22 MeV and the v exponent is 0.37 & 0.07 for the infinite
nuclear system with N/Z ~ 1.3, and the value of v is close to
the value of 3D Ising or liquid-gas universal classes.
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