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The reactions of 40Ar + 45Sc are studied using the quantum molecular dynamics (QMD) model at various
incident energies. The phase space generated using the QMD model is coupled with various clusterization
algorithms to identify fragments. The obtained charge yield of intermediate mass fragments (3 � Zf � 12) is
fitted with power law [Y (Zf ) ∝ Z−τ

f ] and exponential fits [Y (Zf ) ∝ e−λZ f ] in search of critical behavior. We
also analyzed other critical parameters based on the moments and the charge of the second largest fragment.
Our detailed study indicates that the extraction of the critical point of the liquid-gas phase transition is nearly
insensitive towards different spatial-based clusterization algorithms, freeze-out time, as well as towards different
binding energies at microlevels.
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I. INTRODUCTION

The similarity between nucleon-nucleon interactions
(short-range repulsive and long-range attractive parts) and
the Van der Waal’s forces between molecules indicates the
existence of a liquid-gas phase transition in excited nuclear
matter [1–18]. Conversely, based on the similarity between the
equations of state for both phases (that differs approximately
by five orders of magnitude), it is considered that, like liquid-
gas phase transition in macroscopic systems, multifragmen-
tation phenomenon must also contain some signals of the
phase-transitions in nuclear matter [1–18]. In this direction,
it was found that the mass/charge yields when fitted as a
function of mass (A f )/charge (Z f ) obey a power law [Y(A f ) ∝
A f

−τ /Y(Z f ) ∝ Z f
−τ ] at a certain excitation energy; the plausi-

ble signal of the liquid-gas phase transition in nuclear matter
[3–18]. Such a signal was first noted by the Pioneer Purdue
group [9]. Later on, this behavior was also reported by various
other theoretical groups and was found to be in accordance
with the earlier predictions of the Fisher’s droplet model
[3,5–7,10,11]. It is worth mentioning that the occurrence of a
phase transition in multifragmentation phenomenon was also
questioned in some studies. The study conducted by Porile
et al. [19] presented one such classical example.

The occurrence of the phase transition in nuclear matter has
been predicted using two different approaches: (i) Using those
models that predict the phase transition based on the breaking
of nuclear matter at subnormal densities and (ii) using the
evolution of the decay mechanism of nuclei as a function of
excitation energy. Though the former one is purely a theoreti-
cal concept, the latter one, however, can be used to pin down
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the phase transition experimentally as well [3–12,17,18]. In
the present work, we will focus on the latter method. In this
method, the critical point of the phase transition (also termed
as the onset of multifragmentation) corresponds to a minimum
in the value of the critical parameter (τ ) when plotted as a
function of incident energy [9–12,14,18]. For example, Li
et al. [10] reported experimental findings of the charge spectra
of fragments emitted in the reactions of 40Ar + 45Sc and ob-
served a minimum in the critical exponent (τ ) at incident en-
ergy of 23.9 ± 0.7 MeV/nucleon. The percolation model was
also used in this study for theoretical understanding [10,11]. In
another experiment, Ogilvie et al. [8] reported the existence of
the above minimum in the Au induced reactions on C, Al, and
Cu targets at incident energy of 600 MeV/nucleon. Similarly,
William et al. [2] performed the experiment for the reaction
of 84Kr + 197Au and compared their results to the statistical
multifragmentation model (SMM). It is worth mentioning that
some studies use exponential fits [Y (Z f ) ∝ e−λZ f ] rather than
power-law fits [Y (Z f ) ∝ Z−τ

f ] to extract the corresponding
minimum [1,8,10,11].

Among various transport models, n-body theories such as
the quantum molecular dynamics (QMD) model [20] and its
isospin-dependent variant [21] enjoy special status since they
can preserve the individual correlations among the nucleons.
These models were also used couple of times in the past to
get glimpse of the phase transition [3,5,22,23]. In one of such
studies, Ma et al. [3] used the QMD model and reported a
minimum in τ at 65 MeV/nucleon for the reactions of 40Ar +
27Al. On the other hand, Puri et al. found a flat behavior of the
power-law parameter τ for the reaction of 40Ar + 45Sc using
the isospin-dependent quantum molecular dynamics (IQMD)
model [22].

In some studies, it was pointed out that the power-law
observation of the mass (charge) distribution is necessary, but
not a sufficient condition for extracting the phase transition or
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critical point in a heavy-ion reaction. Therefore, various other
quantities such as the moments of the charge distribution,
the Campi scatter plots, the multiplicity derivative of the
fragment multiplicity, as well as the fluctuation in the charge
of the largest fragment and the second largest fragment and
so on have also been put forward [4–7,14–16]. Belkacem
et al. performed a detailed study of these parameters for
the reaction of 197Au + 197Au at 35 MeV/nucleon using the
classical molecular dynamics (CMD) model [7]. In another
study, Ma et al. [4,5] examined the reactions of 40Ar on
27Al, 48Ti, 58Ni at 47 MeV/nucleon using the TAMU neutron
ion multidetector for reaction oriented dynamics (NIMROD)
setup for various critical parameters [4,5].

Interestingly, only a few studies discussed the influence of
input parameters as well as fragment formation criteria on the
critical exponent. For example, Li et al. [11] varied the initial
lattice size from 50 to 800 in percolation model calculations
and found a shift in the minimum of τ till lattice size of 500
and no effect was recorded afterwards. In another study, Pan
et al. [12] varied the critical density (at which fragments are
assumed to be formed) in the percolation model and reported
a similar effect. In a recent study, Lin et al. examined the
sensitivity of various phase transition parameters for primary
and secondary fragments using statistical multifragmentation
model (SMM) calculations [14]. They showed that the anal-
ysis of primary and secondary fragments can influence the
critical point observation. The importance of the simultaneous
study of various critical parameters was also put forward.

It should be noted that all the above-mentioned dynamical
studies were conducted by employing the minimum spanning
tree (MST) method as a fragment identifier [3–5,7,22–24]. At
the same time, improvements over the MST method were also
reported time to time [3,4,20,25–31]. These modifications
range from the simple momentum cut to complicated energy
minimization. We must also keep in mind that the clusteriza-
tion method is enforced at a certain reaction time to identify
fragments. Therefore, one has to also examine the phase
transition by keeping in mind the associated questions such as
freeze-out time, initialization, parameters of the clusterization
algorithm, and so on. In this work, we will focus on the role
of these improvements (over the MST method) in deciding the
phase transition in heavy-ion reactions.

This paper is organized as follows. In Sec. II, we present
brief details of the n-body dynamical model along with vari-
ous clusterization techniques to be used in the present work.
The results are discussed in Sec. III followed by a summary in
Sec. IV.

II. MODEL

The QMD model [20] is a microscopic n-body dynamical
model used to simulate a heavy-ion collision on an event-
by-event basis. In this model, each nucleon, represented by
a Gaussian wave packet, propagates using the Hamilton’s
classical equations of motion

ṙi = ∇pi H ; ṗi = −∇ri H. (1)

Here Hamiltonian H consists of the kinetic and potential
terms. The potential term mimic the two- and three-body

interactions in terms of density functionals. In this study, a
soft equation of state together with energy-dependent cross-
section is used [20,25,26,28–32]. The information about the
phase space generated by the QMD model is then injected into
various clusterization algorithms discussed in the following
paragraphs.

A. Minimum spanning tree method

The MST method [20] identifies various fragments on
the basis of the distance among its constituent nucleons.
Accordingly, two nucleons share the same fragment if their
distance is less than 4 fm, i.e.,

|ri − r j | � 4 fm, (2)

where ri and r j are the centroids of the nucleons in coordinate
space.

B. Minimum spanning tree method with momentum cut

To avoid the formation of loosely bound/unbound frag-
ments, the relative momenta of the nucleons is also con-
strained in addition to their coordinate space [28,29]. Accord-
ingly, we demand

|ri − r j | � 4 fm; |pi − p j | � pFermi, (3)

where pi and p f are the momentum coordinates of the ith and
jth nucleons and pFermi is the Fermi momentum.

C. Binding-energy-based clusterization algorithm

In this algorithm a more realistic approach is considered
where the realization of the fragment structure depends on the
interactions and relative kinetic energy of the nucleons of a
fragment identified by the MST method. The following mech-
anism is adopted for identifying such realistic fragments.

(1) Identify the clusters using the MST method and
(2) Then subject each such fragment to the following

binding energy check:

ζ =
A f∑
i=1

⎡
⎣(

pi − pc.m.
A f

)2

2m
+ 1

2

A f∑
j �=i

Vi j (ri, r j )

⎤
⎦ < Ebind. (4)

In the above equation, A f and pc.m.
A f

represent the total number
of nucleons in a cluster and center-of-mass momentum of that
cluster, respectively. The probability of the fragment sustain-
ability depends on the Ebind (binding energy) [26,27,30,31].
Generally, one can use the binding energy corresponding to
a cold or hot nucleus. Two of us have already shown that
one should implement thermal binding energies instead of
cold binding energies to filter the unstable fragments (for
details see Refs. [30,31]) at the time of their identification.
We will continue with this approach in this work also and
will implement only temperature-dependent binding energies
to filter the unstable fragment structures. Interestingly, for the
hot binding energies, various formulas were proposed in the
literature [33–35]. We shall discuss some of these formulas in
the following paragraphs [26,30].
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TABLE I. Parameters of the temperature-dependent binding energy formulas of Pi et al. [34] and Sauer et al. [35] used in the present work.
All values are in MeV.

Label av as ac asym αv αs αCoul αsym ass αss

Pi et al. 16.00 20.80 0.7714 33.960 0.064 0.2238 0.00102 71.50 71.54 0.8184
Sauer et al. 16.10 19.00 0.7000 30.020 0.055 0.1500 0.00070 60.04 0.0 0.0

In this method, the excitation energies of various fragments
are taken into account and Ebind is calculated using the so-
called temperature-dependent binding energy formulas. This
method is dubbed as minimum spanning tree with thermal
binding energy cut (MSTBT) [30,31]. Here we use three
different temperature-dependent binding energy formulas pro-
posed by Davidson et al. [33], Pi et al. [34], and Sauer
et al. [35]. A few details of the temperature-dependent binding
energy formulas are as followings.

The first formula put forward by Davidson et al. used the
canonical ensemble theory. This formula reads as

EBind(T ) = α(T )A f + β(T )A2/3
f

+
(

γ (T ) − η(T )

A1/3
f

)
(4t2

ς + 4|tς |)
A f

+ 0.8076
Z f

2R(0)

A1/3
f R(T )

×
(

1 − 0.7636

Z2/3
f

− 2.29
R(0)2[

R(T )A1/3
f

]2

)

+ δ(T )
f (A f , Z f )

A3/4
f

, (5)

where tς = (2Z f − A f )/2 represents the isospin asymmetry
of a nucleus. To derive this formula, the excitation energy of
a nucleus is fitted according to canonical ensemble theory and
is converted into the temperature of the considered system.

The other formula implemented for filtering the loosely
bound fragments is given as

EBind(T ) = (av − αvT 2)A f − (as − αsT
2)A2/3

f

−
[

ac

(
1 − aCoul

A2/3
f

)
− αCoulT

2

]
Z2

f

A1/3
f

−(asym − αsym × 10−4T 2)
(A f − 2Z f )2

A f

+(ass + αssT
2)

(A f − 2Z f )2

A4/3
f

. (6)

This formula was proposed by Sauer et al. [35] and Pi et al.
[34] using two different theories. Sauer et al. obtained this
formula by employing the thermal Hartree-Fock approxi-
mation (TDHF), whereas Pi et al. used hot Thomas-Fermi
calculations. In the first case, the density of the nucleus was
considered to be somewhat greater at the interior compared to
its surface, but in the latter case, the density was considered
to vary continuously from the interior to the surface. Also,

Pi et al. considered the contribution of the surface nucleons
towards the nuclear symmetry energy; in contrast to Sauer
et al. who ignored this contribution. In the case of the formula
by Sauer et al., the coefficient aCoul was set to be zero, whereas
aCoul was taken to be 3.1445 by Pi et al. We find that the
formula proposed by Pi et al. is more accurate compared to
Sauer et al. for lighter mass nuclei. The parameter set used in
the formulas of Sauer et al. and Pi et al. are listed in Table I.
On the contrary, the parameter set used in the binding energy
formulas of Davidson et al. is extracted from the graphical
representation reported in Ref. [33]. The versions of the
MSTBT method with binding energy formulas of Davidson
et al., Pi et al., and Sauer et al. are termed as MSTBT
(3.1), MSTBT (3.2), and MSTBT (3.3), respectively. As far
as the extraction of the temperature from nonequilibrated
system (like typical heavy-ion collisions) is concerned, there
are many methods listed in the literature that account for
diffusion of the surface and so on [36]. However, the present
formulas are valid upto 4 MeV only. Therefore, using thermal
binding energies with fixed temperature is just a case study to
understand whether one needs to look at excited fragments in
a different way or not. Such assumptions were introduced in
our previous work successfully [30].

III. RESULTS AND DISCUSSIONS

A. Influence of different clusterization algorithms
on various critical parameters

It is well known that the identification of the fragments
based on the spatial correlations should be done when the
system is diluted and fragments are well separated. Therefore,
in the present study, clusterization algorithms are enforced
at a freeze-out time of 300 fm/c where fragments are well
separated from each other.

In Fig. 1, we display the fragment charge spectra obtained
in the central reactions of 40Ar + 45Sc at different incident
energies between 15 and 115 MeV/nucleon. The results ob-
tained using MST, MSTP, and MSTBT methods are repre-
sented by squares, circles, and inverted triangles, respectively.
It should be noted that for the discussion of Figs. 1 to 3,
MSTBT results correspond to the results of MSTBT (3.1) (at
4 MeV) version. From the figure, the well-known trends can
be noted. The heavier fragments dominate the spectra at lower
incident energies, which is taken over by the lighter fragments
at higher incident energies. At the same time, one sees nearly
no effect of different clusterization algorithms on the spectra
[2,3,10,11].

Now to see how different algorithms can affect the criti-
cal point, the charge yield distribution of intermediate mass
fragments is fitted with a power law (∝Z−τ

f ) and exponential
fitting (∝e−λZ f ) (not shown in Fig. 1 to maintain the clarity
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FIG. 1. The charge distributions of central reactions of 40Ar + 45Sc at different projectile incident energies in the range of 15 to
115 MeV/nucleon. The open squares, open circles, and open, inverted triangles represent the results using the MST, MSTP, and MSTBT
methods, respectively. The lines are to guide the eyes and correspond to power-law fits over fragment charge distributions for IMFs
[3 � Zf �12].

of the figure). In Fig. 2, the values of τ (upper panel) and λ

(lower panel) obtained using different algorithms are plotted
as a function of incident energy. Various symbols have the
same meaning as in Fig. 1. In addition, the calculation with
temperature of 2 MeV is also displayed in the figure (labelled
as MSTBT′).

Looking at the Fig. 2, one notices that the value of τ (λ)
increases with projectile’s incident energy beyond 20 (25)
MeV/nucleon; mimicking the increase in the sharpness of
the charge spectra of the fragments. It is worth noting that
even though the fragment charge yields (presented in Fig. 1)
differ significantly for different algorithms, their power-law
parameter τ (λ) shows almost similar trends with incident
energy within error bars except for the MSTP method, where
deviation is more significant. This happens due to a sharp
decrease in the probability of the larger charge fragments. The
minima in the τ (λ) is obtained using fourth-order polynomial
fit as was done in Refs. [10,11,22,23]. The minima in τ (or
critical point) is found at incident energies of 18.03, 19.04,
and 18.03 MeV/nucleon using MST, MSTP, and MSTBT
methods, respectively. Whereas no minima in τ is obtained
in the case of MSTBT′ (inverted lined triangles) method.

Similarly, for the exponential fits, the parameter λ has minima
at incident energy of 21.06, 19.04, 19.04, and 17.02 using
MST, MSTP, MSTBT, and MSTBT′ methods, respectively. It
is worth mentioning that the values of τ (λ) are much lower
than the experimentally measured or expected values. This
may be due to the lack of exact Fermionic properties (such
as specific heat) of the nucleons in the present dynamical
model (see Refs. [37,38]). As mentioned above, the cold
binding energies can also be enforced to check the stability
of the fragments (dubbed as MSTB method) [26]. Though
we already discarded its use in Ref. [30] here results with
MSTB are also displayed for the reference purpose only.
Interestingly, no minimum was observed when cold binding
energies were used. This further shows that demanding cold
binding energies for the fragment filtration is too stringent
a condition. Probably one needs to wait longer to have cold
fragments, but in that case, one runs into the risk of having
spurious fragments. On the other hand, the use of thermal
binding energy seems to be a reasonable condition. As noted,
all different cluster identifiers reach nearly the same conclu-
sion. It clearly demonstrates that the effect of different cluster
identifiers is nearly insignificant.
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FIG. 2. The extracted values of power-law parameter τ (using
power law fits [Y(Zf ) ∝ Z−τ

f ] and parameter λ (using exponential
fits [Y(Zf ) ∝ e−λZ f ] of IMFs as shown in Fig. 1) plotted as a function
of incident energy. Different symbols carry the same meaning as in
Fig. 1.

In a recent study, Lin et al. pointed that one should study
various order parameters simultaneously to pin down the exact
critical point [14]. Also the earlier studies showed that the
occurrence of a minimum in τ (λ) is necessary but not a
sufficient condition for the observation of phase transition [6].
Campi suggested using the moments of the charge distribution
to pin down the critical point [15]. In general, the ith moment
of the charge distribution having multiplicity “n” can be
defined as

Mi =
∑

Z f �=Zmax

Zi
f n(Z f ). (7)

Here, Z f is the charge and n(Z f ) is the multiplicity of the
fragment with charge Z f in an event. The values obtained
are then averaged over all events. In most of the studies two
particular combinations of these moments are used namely
normalized second moment (S2) and γ2 [4–7,13]. These are
defined as

S2 = M2

M1
, (8)

and

γ2 = M2M0

M2
1

, (9)

where M0, M1, M2 are the zeroth, first, and second moments
of the charge distribution, respectively. In such an analysis,
the parameters 〈S2〉 and 〈γ2〉 are expected to give maximal

FIG. 3. The critical parameters 〈S2〉, 〈γ2〉 and 〈Zmax2〉 plotted as a
function of the projectile incident energy using various clusterization
algorithms. Symbols carry same meaning as in Fig. 2.

values at the critical point mimicking the largest fluctuations
of the fragment charge distribution. Also due to the exclusion
of largest cluster charge, one expects 〈S2〉 to be proportional
to the isothermal compressibility [13]. In other studies, the
charge of the second largest fragment (〈Zmax2〉) is also found
to show a maximal value at the critical point when plotted
as a function of the incident energy of the projectile [5]. We
also analyzed these parameters using various clusterization
algorithms.

In Fig. 3, we display the values of the parameters 〈S2〉,
〈γ2〉, and 〈Zmax2〉 as a function of incident energy using MST,
MSTP, and MSTBT methods. The symbols have the same
meaning as in Fig. 2. We see that all three parameters give
almost the same results over the entire range of the incident
energy. The effect of different clusterization algorithms is
nearly insignificant.

The parameter 〈S2〉 shows a maximal value at
12 MeV/nucleon for the fragments identified using MST,
MSTP, and MSTBT methods. Note that this predicted critical
point is much lower than the expected or measured value
due to the inclusion of classical heat capacity in spite of the
Fermionic one [38]. As pointed out in Ref. [38], the classical
heat capacity is much larger than the Fermionic heat capacity,
therefore, causing lesser production of IMFs and a larger
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FIG. 4. Same as Fig. 2, but for the different thermal binding en-
ergy formulas implemented in the clusterization algorithm. Symbols
are explained in the text.

Zmax. We also noted that the MST method gives highest value
of 〈S2〉 due to maximum number of bound charge fragments.

Similarly, the parameters 〈γ2〉 and 〈Zmax2〉 show maxima at
15 MeV/nucleon using MST, MSTP, and MSTBT algorithms.
It is worth mentioning that we also checked the sensitivity of
our results by varying the freeze-out time from 300 to 400
fm/c. The critical values of τ (λ) read as 19.04 (20.05), 17.01
(18.03), and 21.06 (22.07) for MST, MSTP, and MSTBT
methods, respectively. In other words, the effect of different
freezing time is about 5−10% only. The effect is of similar
order as we obtain for different clusterization algorithms.

On the other hand, no effect of different freeze-out time
is seen on the other transition parameters such as 〈S2〉,
〈γ2〉, and 〈Zmax2〉. All these parameters remain completely
insensitive towards both different clusterization algorithms
as well as towards different freeze-out time (from 300 to
400 fm/c).

B. Effect of different thermal binding energies
in clusterization algorithm

Now we would like to draw the attention of the reader to
the studies conducted by Souza et al. [39] using the SMM
and Karthikraj et al. [40] using the dynamical cluster model
(DCM). In both these studies, results were reported depending
on the binding energy formulas one uses in the analysis codes.
Souza et al. conducted their study using the SMM model to
constraint the symmetry energy using an isoscaling parameter
based on the lighter fragments [39]. They took three liquid-

FIG. 5. Same as Fig. 3, but using different thermal binding
energy formulas implemented in the clusterization algorithm.

drop-based binding energies, i.e., LDM1 [41], LDM2 [42],
and LDM3 [43] to draw the breakup conditions for nuclei.
The isoscaling parameter and thus, the symmetry energy was
found to vary significantly with the choice of the binding
energy formula in their analysis program. A similar type of
results were reported by Karthikraj et al. but using different
temperature-dependent binding energies in the DCM model
to look for the α-structure of nuclei [40]. They studied the
decay of the 56Ni∗ compound nucleus formed in the reaction
of 35S + 24Mg. The α-structure was found to depend signif-
icantly on the temperature-dependent binding energy one is
using in analysis code.

Keeping the above studies in mind, we extended our work
by using different thermal binding energy formulas (discussed
in Sec. II). We used MSTBT (3.1), MSTBT (3.2), and MSTBT
(3.3) methods for analyzing the stable fragment structures
and finally critical parameters namely, τ, λ, 〈S2〉, 〈γ2〉, and
〈Zmax2〉.

The results of τ and λ using different versions of MSTBT
methods are plotted in Fig. 4, whereas Fig. 5 depicts the
results for 〈S2〉, 〈γ2〉, and 〈Zmax2〉 parameters. The inverted
triangles, stars, and pentagons represent the results obtained
using MSTBT (3.1), MSTBT (3.2), and MSTBT (3.3) meth-
ods, respectively. From Fig. 4, we observe minima in τ at
18.03, 17.02, and 17.72 MeV/nucleon for MSTBT (3.1),
MSTBT (3.2), and MSTBT(3.3) methods, respectively. For λ,
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minima are obtained at 19.04, 20.05, and 19.04 MeV/nucleon
for MSTBT (3.1), MSTBT (3.2), and MSTBT (3.3) methods,
respectively.

All other parameters 〈S2〉, 〈γ2〉, and 〈Zmax2〉 (see in Fig. 5)
show the insignificant effect of different versions of the
MSTBT method. Our these results are in agreement with
previously reported results [30,31].

IV. SUMMARY

In the present study, we investigate the connection between
liquid-gas phase transition (or the onset of multifragmenta-
tion) and fragment charge yields for the central reactions
of 40Ar + 45Sc. The present study is carried out using the
quantum molecular dynamics model as phase-space generator

coupled with different clusterization algorithms. Our detailed
study clearly indicates that different quantities advocated to
study the phase transition [namely the minimum in the crit-
ical parameter τ (λ) and maxima in 〈S2〉, 〈γ2〉 and 〈Zmax2〉]
give nearly consistent results. Further, all these results are
nearly insensitive towards different cluster algorithms, dif-
ferent freeze-out time, as well as towards different thermal
binding energies formulas, and therefore, present a universal
behavior.
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