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Neutron-proton mass splitting and pygmy dipole resonance in 208Pb
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The pygmy dipole resonance (PDR) of 208Pb is studied with random phase approximation method. The effect
of the neutron-proton mass splitting is discussed in the framework of relativistic mean field theory via including
the scalar-isovector meson δ explicitly. The model is calibrated with nuclear bulk properties as well as finite
nuclei data, and is further checked by terrestrial experimental and astrophysical constraints. The inclusion of δ

meson reduces the neutron skin thickness of 208Pb as well as 48Ca, which are turned out to be closely related.
The energy of pygmy dipole resonance is in a large extent dominated by the excitations of neutrons near the
Fermi surface. We found that the peak positions of the giant dipole resonance (GDR) and the PDR are sensitive
to the nucleon-meson coupling in the scalar-isovector channel. A linear correlation between the neutron-proton
effective mass splitting at saturation density and the relative offset of GDR and PDR is identified in 208Pb.
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I. INTRODUCTION

The relativistic mean field (RMF) theory is widely used in
nuclear investigations [1,2]. The meson-exchange-type RMF
model was first proposed by Walecka [3]. The nucleons move
independently in a mean field provided by the cancellation
between scalar σ and vector ωμ meson fields. The isospin
asymmetry is treated via an effective �ρμ meson [4]. By
adjusting the coupling constants, one can make the nuclear
matter saturated appropriately. In quantitative applications, it
is realized that the inclusions of the self or cross couplings
between various mesons are necessary. For example, the
electron fraction Ye for the uniform neutron-rich matter in β

equilibrium depends on the cross coupling between ω and
�ρμ mesons [5]. The �δ meson, which is the counterpart of �ρμ

meson in the isospin space, is often omitted in some relativis-
tic meson-exchange models in order to reduce the number of
the adjustable parameters. However, there are already some
researches suggested that the scalar-isovector meson �δ plays
significant roles in the asymmetric nuclear matter [6] and
compact stars [7]. The inclusion of the �δ meson increases
the neutrino emissivity in direct Urca process in neutron star
cooling [8]. One unique effect of �δ meson is to split the
neutron-proton effective mass.

In nonrelativistic models the effective mass of a nucleon
measures the nonlocality and the momentum dependence of
the single-particle potential in nuclear medium. It has been
reported that in 208Pb the effective mass is linearly corre-
lated with the energy weighted sum rule (EWSR) m1 of the
isovector giant dipole resonance (IVGDR). Therefore, from
the experimental value of m1, the effective nucleon mass in
symmetric nuclear matter at saturation density is determined
as m∗/m = 0.77 ± 0.03 [9]. The splitting of the effective mass
is thought to be sensitive to the neutron/proton ratio in the
early universe and will affect the nucleus-nucleus reaction
dynamics [10]. Attempts have been made to constrain the

neutron-proton effective mass splitting via nucleon-nucleus
scattering data [11] and nucleus giant resonances [12]. How-
ever, up to now it is still opaque and even the sign of
the splitting has not been determined [13]. In relativistic
approaches an additional effective mass exists, namely, the
Dirac mass [14]. It characterizes the Lorentz transformation
property of the scalar potential and typically has a low value
[15]. The effective mass has an important influence on the
nucleon single-particle states. It has been shown that the
energy-dependent effective mass, which means correcting the
scalar and vector potentials with a linear density dependence,
can significantly increase the states density around the Fermi
surface, and achieve a better agreement with experimental
single nucleon spectra [16]. The response of a nucleus to
external perturbations is sensitive to the single-particle spectra
and studying them are important approaches to reveal the
nuclear structure and interaction details.

The centroid energy of the isoscalar giant monopole res-
onance (ISGMR) is proportional to the square root of the
finite nucleus compression modulus KA [17]. The resonance
structures, such as the giant dipole resonance (GDR), in
spherical nuclei are closely related to the symmetry energy
[18], as is the pygmy dipole resonance (PDR) [19,20]. PDR
emerges as the electric dipole strength near the particle sepa-
ration threshold in neutron-rich nucleus [21–25], which draws
more and more attentions from experimental studies [26] and
theoretical investigations [27]. PDR usually exhausts only a
few percent of the integrated strength, and sometimes one
needs to separate it from the low-energy tail of GDR and
other low-lying structures, such as the magnetic dipole (M1)
resonance [28]. PDR is important to neutron capture rate
and nucleosynthesis [29]. Basically, in neutron-rich isotopes
the PDR strength increases with neutron-to-proton ratios,
but the evolution also exhibits specific shell effects [30,31].
Recently, intense discussions are made to illustrate its col-
lectivity [31,32], relationship with the neutron skin thickness
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[30,33–35], and the deformation [36,37]. The GDR manifests
the relative motion between neutrons and protons, hence is of
isovector nature. In contrast, PDR is caused by the oscillation
of the excess neutrons against an inert core and exhibits some
isoscalar character [38]. The isoscalar dominance of PDR
is suggested by previous studies using Skyrme interactions
[39,40], and is manifested as its close connection with the
low-lying isoscalar torus mode [41]. Meanwhile, the different
results from (α, α′γ ) and (γ , γ ′) reactions indicate that PDR
splits into isoscalar and isovector components [42–44], imply-
ing fine structures exist in PDR. In addition to the electromag-
netic probe [45–47], other experimental approaches have been
considered, such as studying PDR through decay patterns
[48,49]. Given the complexity of the issues, investigating the
effect of isospin asymmetry on PDR, such as revealing the
possible correlation between neutron-proton mass splitting
and PDR, will be beneficial.

II. THEORETICAL FRAMEWORK

The interaction between nucleons are described by ex-
changing various mesons, including the scalar meson σ , the
vector meson ωμ, the scalar-isovector meson�δ, and the vector-
isovector meson �ρμ. The Lagrangian density of the whole
nuclear system reads

L = L0 + Lint. (1)

Lint is the interacting part, generally, it can be expressed as

Lint = −ψ̄{(gσ σ + gδ
�δ · �τ ) + γμ(gωωμ + gρ�ρμ · �τ )}ψ

− eψ̄
1 + τ3

2
γμAμψ − U (σ, ωμ,�δ, �ρμ). (2)

The nonlinear interactions include various self or/and cross
couplings of meson fields,

U (σ, ωμ,�δ, �ρμ) = 1
3 g2σ

3 + 1
4 g3σ

4 + 1
4 c0(ωμωμ)2

+ 1
2 Saσ

2�δ2 + 1
2 Sbω

μωμ
�δ2

+ 1
2 Taσ

2�ρμ�ρμ + 1
2 Tbω

μωμ�ρμ�ρμ

+ . . . . (3)

Typically, some of the terms are substitutable and not all of
them appear in a model. The self-interactions of σ meson as
well as that of ω meson are crucial. The former are essential
to reduce the incompressibility of symmetric nuclear matter
[50], while the latter softens the equation of state (EoS)
in the high-density region [51]. On the contrary, the cross
couplings involving isovector mesons �δ and �ρμ are usually
omitted, partially because their effects are quantitatively small
when the magnitudes of the coupling constants are the same
order as direct coupling terms, especially in the vicinity of
the saturation density. However, strong ωμ-�ρμ coupling will
soften the EoS prominently [52]. Similarly, the couplings
between σ -�δ and ωμ-�δ mesons may be helpful to reveal the
isospin dependence of the effective nuclear interaction. The
equation of motion of the nucleon or the meson field φi can be

obtained from the Euler-Lagrangian equation

∂μ

∂L
∂ (∂μφi)

− ∂L
∂φi

= 0. (4)

The Dirac equation for the nucleon is

[γμ(i∂μ − V μ) − M∗]ψ = 0, (5)

where the effective mass and the vector potential are

M∗ = M + gσ σ + gδ
�δ · �τ ,

V μ = gωωμ + gρ�ρμ · �τ + e
1 + τ3

2
Aμ. (6)

The Klein-Gordon equations for meson fields read

( − 
 + m2
σ

)
σ = −gσ ψ̄ψ − ∂U

∂σ
,

( − 
 + m2
ω

)
ωμ = gωψ̄γ μψ + ∂U

∂ωμ

,

( − 
 + m2
δ

)�δ = −gδψ̄�τψ − ∂U

∂�δ ,

( − 
 + m2
ρ

)�ρμ = gρψ̄�τγ μψ + ∂U

∂�ρμ

. (7)

The Hamiltonian density can be derived from the energy-
momentum tensor as

H = T 00 = ∂L
∂φ̇i

φ̇i − L. (8)

For nuclear systems such as the infinite nuclear matter as well
as the even-even nuclei, the contributions of space compo-
nents of the vector mesons vanish. In addition, if there is no
isospin mixing, the remaining components of the meson fields
contributing to the energy are ω0, ρ0

3 , and δ3. For simplicity,
in the following we use the simplification δ → δ3, ω → ω0,
ρ → ρ0

3 , and the nonlinear interaction U (σ, ωμ,�δ, �ρμ) is sim-
plified as U (σ, ω, δ, ρ). The scalar, vector, scalar-isovector,
vector-isovector densities are, correspondingly,

ρs = 〈ψ̄ψ〉, ρv = 〈ψ̄γ 0ψ〉,
ρst = 〈ψ̄τ3ψ〉, ρvt = 〈ψ̄τ3γ

0ψ〉,
(9)

where the brackets represent taking the expectation val-
ues. Then the total energy E = 〈∫ Hd3r〉 can be simply
denoted as

E = 〈α · p〉 + 1

2

∑
φ

〈
gφρφφ − ∂U

∂φ
φ

〉
+ 〈U 〉, (10)

with φ = {σ, ω0, δ3, ρ
0
3 } and ρφ = {ρs, ρv, ρst , ρvt }. 〈α · p〉

represents the kinetic term, where α = γ 0γ . The charge radius
is calculated from the proton distributions by accounting the
finite-size effects of proton [53]

rc =
√

〈r̂〉2
p + 0.64 (fm). (11)

For asymmetric nuclear matter, the binding energy can be
expressed as

E (ρ, α) = E (ρ, 0) + Esym(ρ)α2 + O(α4), (12)
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where α ≡ (ρn − ρp)/ρ is the asymmetry coefficient, or the
neutron excess ratio. Esym is the symmetry energy, which can
be expanded near the saturation density ρ0:

Esym(ρ) = Esym(ρ0) + Lsym

3

(
ρ − ρ0

ρ0

)
+ Ksym

18

(
ρ − ρ0

ρ0

)2

.

(13)

The slope and curvature parameters of symmetry energy are
defined as

Lsym ≡ 3ρ0
∂Esym

∂ρ

∣∣∣∣
ρ=ρ0

, Ksym ≡ 9ρ2
0

∂2Esym

∂ρ2

∣∣∣∣
ρ=ρ0

. (14)

In this investigation, the random phase approximation
(RPA) is used to calculate the low lying excitation properties.
This method is very useful for small amplitude oscillations
and are intensely used in nuclear researches [54–58], and
many specific techniques have been developed [59–62]. The
low-lying excitation is approximated by the coherent transi-
tions of one-particle one-hole (1p1h) pairs,

|ν〉 =
∑

ph

(
X ν

pha†
pah − Y ν

pha†
hap

)|0〉. (15)

X ν
ph and Y ν

ph are the matrix elements of the transition density,
which can be obtained by solving the RPA equation [63](

A B
B∗ A∗

)(
X
Y

)
= ω

(
1 0
0 −1

)(
X
Y

)
, (16)

where the matrix elements of A and B are

Aphp′h′ = 〈[a†
hap, [Ĥ , a†

p′ah′ ]]〉,
Bphp′h′ = −〈[a†

hap, [Ĥ , a†
h′ap′ ]]〉. (17)

Again, the angle brackets represent taking the expectation
values in the mean field ground state. Taking the electric
dipole operator Ê1μ as an example, the reduced transition
probability from the RPA ground state |0〉 to an excited state
|ν〉 is given by

B(Ê1; 0 → ν) = |〈ν||Ê1||0〉|2

=
∣∣∣∑

ph

(
X ν

ph + Y ν
ph

)〈p||Ê1||h〉
∣∣∣2

. (18)

In order to get a continuous strength distribution, the transi-
tion probabilities of discrete RPA states ων are folded via a
Lorentzian function

dB(Ê1; ω)

dω
= 1

π

∑
ν

B(Ê1; 0 → ν)
�/2

(ω − ων )2 + (�/2)2
.

(19)

The kth moment of the electric dipole operator is defined by
[63]

mk ≡
∑

ν

ωk
νB(Ê1; 0 → ν). (20)

III. χ2 MINIMIZATION OF THE MODEL PARAMETERS

The model parameters are calibrated using the bulk prop-
erties of the infinite nuclear matter as well as finite nuclei

TABLE I. The third column contains the experimental/empirical
values of finite nuclei data and the bulk properties of the nuclear
matter, in brackets are the weights used in the fitting according to the
definition (22).

Nucl. expt./emp. This work FSUGold NL3

Eb/A (MeV) 40Ca −8.551(14.35) −8.550 −8.54 −8.54
48Ca −8.666(11.47) −8.653 −8.58 −8.64
208Pb −7.867(14.08) −7.866 −7.89 −7.88

rc (fm) 40Ca 3.478(7.51) 3.437 3.42 3.46
48Ca 3.477(7.46) 3.453 3.45 3.46
208Pb 5.501(8.35) 5.522 5.52 5.51

ρ0 (fm−3) 0.153(2.30) 0.146 0.148 0.148
E/A (MeV) −16(2.99) −16.19 −16.28 −16.24
K0 (MeV) 250(2.30) 259 230 271
Esym (MeV) 33(2.30) 36.1 32.6 37.4

χ 2 (%) – 1.102 0.785 2.134

data. In the vicinity of the saturation density and with mild
neutron excess, the nuclei data are excellent benchmarks to
constrain the theoretical models. The fitting data contain the
averaged nucleon masses [64] and the charge radii [65] of
some double-closed nuclei, i.e., 40Ca, 48Ca, and 208Pb. As for
the bulk properties, we follow Ref. [66], namely, taking the
empirical values and the errors of the saturation density, the
averaged binding energy, the incompressibility and the sym-
metry energy as ρ0 = 0.153(10%), E/A = −16(5%), K0 =
250(10%), Esym = 33(10%). Least-squares fitting proceeds as
follows. First, the scaled least square χ2 is defined as

χ2 = 1

n

n∑
i

w2
i

(
Ofit.

i

Oexp.
i

− 1

)2

, (21)

where the weight factor wi of the ith observable is defined via
the uncertainty of the corresponding experimental measure-
ment or empirical values

wi ≡ ln
Oexp.

i


Oexp.
i

. (22)

The reason for including a logarithm function in the definition
of the weight factor is that the masses of the finite nuclei
are always measured very precisely, as are the charge radii.
Therefore, using experimental errors directly will make the
constraints from the finite data extremely strong, and make
that from the empirical values irrelevant. The nonlinear least
squares problem is solved with Levenberg-Marquardt algo-
rithm [67] and we will get a parameter set.

In order to refine the fit of finite nuclei data, the nonlin-
ear least-squares minimization is performed one more time
without including the data from the bulk properties of nuclear
matter. Of course, in this way some deviations from empirical
values of bulk properties are emerged. In that case, one needs
to start from the beginning, and several repeats are necessary
to reach the desired parameter set. Under the definition (21)
we compared the productions of our parameter set with NL3
[68] and FSUGold [52] in Table I. The performances of our
parameter set in finite nuclei and in the nuclear matter at
the saturation density are as good as NL3 and FSUGold.
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TABLE II. Comparison of our parameter set with the famous
nonlinear meson coupling models FSUGold and NL3.

This work FSUGold NL3

mσ (MeV) 510.6780 491.5000 508.1941
g2 (fm−1) −4.5067 −4.2770 −10.4307
g3 32.2796 49.8515 −28.8851
c0 −241.1305 −418.39
gσ 10.6656 10.5924 10.2169
gω 13.8116 14.3020 12.8675
gδ 4.2014
gρ 5.3190 5.8837 4.4744
Tb −1699.4

The calibrated values of our parameter set, named as NLX8,
are listed in Table II, as well as that of NL3 and FSUGold.
Compared with FSUGold, the self-couplings of ω meson
is weakened in the new fitted parameter set. The isospin
dependence is described by ρ meson solely in NL3. In our
model as well as FSUGold, the coupling constants of nucleon
and ρ meson are larger than NL3, which means stronger
symmetry energies. The mechanics of softening the symmetry
energy is different in FSUGold and our model. The former is
via the strong coupling between ρ meson and ω meson, while
in the latter the softening is provided by the scalar-isovector
δ meson.

IV. RESULTS AND DISCUSSIONS

A. Experimental and astrophysical constraints on the EoS

The only way one can compress nuclear matter to high
density in a laboratory environment is by nuclear collisions.
The EoS-sensitive observables have been deduced via ana-
lyzing the compression and expansion dynamics of the flow
in energetic nuclear collisions [69]. This puts valuable con-
straints on the symmetric nuclear matter, which is illustrated
in Fig. 1(a) as the area filled by crossed lines. In the pure
neutron matter, additional pressure arises due to the existence
of the repulsive symmetry energy. Therefore, the constraints
on the pure neutron matter should account the pressures from
asymmetry terms, namely Pasy ∼ ρ2dEsym/dρ. By assuming
strong and weak density dependence on the symmetry energy
[70], the constraints on the pure neutron matter are obtained,
as the area filled by 45◦ lines and the area filled by blank
space in Fig. 1(b), respectively. The nuclear collision ex-
periment seems to rule out the model NL3, which produces
too much pressure both in the symmetric nuclear matter and
in the pure neutron matter. Indeed, it is difficult for RMF
models containing only self-couplings of σ meson to achieve
good agreements in both symmetric nuclei and neutron-rich
nuclei, without violating the constraints obtained by nuclear
collisions. On the contrary, the parameter set FSUGold (ab-
breviated as FSU in Fig. 1 and following figures), which
contains an additional self-coupling of ω meson produces
less pressure. For the same reason, although our parame-
ter set predicts a large compressibility (K0 = 259 MeV) at
the saturation density, the high-density behavior is largely
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FIG. 1. (a) The pressures of the symmetric nuclear matter and
(b) the pure neutron matter as functions of the scaled density
ρ/ρ0, where ρ0 ∼ 2.7 × 1014g/cm3 ≈ 0.16 fm−3. The area filled
with crossed lines in (a) corresponds to the region of pressures
consistent with the experimental flow data. The areas filled with 45◦

lines and blank space in (b) correspond to constraints on the EoS
after inclusion a stiff and a soft symmetry energy term, respectively.

improved and is consistent with the experimental flow data.
The major differences of NL3, FSUGold, and our parameter
set are the stiffness of the EoS of the symmetric matter in
high-density area and the stiffness of the symmetry energy.
In simple terms, the NL3 set predicts a stiff EoS for the
symmetric nuclear matter and a stiff symmetry energy. On the
contrary, the FSUGold set predicts a soft EoS for the symmet-
ric nuclear matter at high density and a soft symmetry energy.
Meanwhile, our parameter set predicts a soft EoS for sym-
metric nuclear matter but a stiff symmetry energy. In Fig. 1,
we also draw the EoSs of DD-ME2 [71] and DD-MEδ [72],
which are density-dependent meson-exchange models. They
have flexible density-dependent couplings and usually predict
softer symmetry energies than nonlinear RMF models.

In addition to the experimental data from nuclear colli-
sions, our current knowledge about the matter in high-density
condition mostly comes from the astrophysical observations.
The EoS of the infinite nuclear matter is crucial to determine
a lot of astrophysical phenomena, such as the radius and the
mass of the neutron star (NS). In fact, once the EoS is given,
solving the Tolman-Oppenheimer-Volkoff (TOV) equation
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FIG. 2. The mass-radius relations predicted by several RMF
parameter sets. Filled areas represent two neutron stars whose masses
are precisely determined.

[73,74]

dP

dr
= −Gm

r2
ρ

(
1 + P

ρ

)(
1 + 4πr3P

m

)(
1 − 2Gm

r

)−1

,

dm

dr
= 4πr2ρ, (23)

we will get the mass and pressure distributions in a neutron
star. Indeed, the maximum NS mass is mainly determined by
the high-density behavior of the EoS, while the radius of a
NS depends on how the crust is modeled [75]. For simplicity,
in this work we use the BPS EoS [76] when the density is
less than 0.08 fm−3. The stiff parameter sets, which predict
large pressure, such as NL3 and DD-ME2, produce larger NS
maximum masses. On the contrary, the soft parameter sets
DD-MEδ and FSUGold, especially the latter, produce a rather
small NS maximum mass, as illustrated in Fig. 2. The maxi-
mum NS mass predicted by FSUGold is about 1.72 M� [52],
where M� represents the solar mass. However, more massive
NS have been precisely identified, e.g., PSR J0348+0432 with
mass of 2.01 ± 0.04 M� [77] and PSR J1614-2230 with mass
of 1.97 ± 0.04 M� [78]. They should be considered as the low
bound of the theoretical prediction of the maximum NS mass.
The new fitted parameter set is consistent with the constraint.

We found that the NS’s radius is large in NL3 and our
model, which produce stiff symmetry energies in high-density
region. Meanwhile, the parameter sets with soft symmetry
energies, such as FSUGold, DD-MEδ, and DD-ME2, pre-
dict small radii for NSs. Recently, important processes have
been made in determining the radii of NSs, especially the
binary neutron star merger event detected by LIGO-Virgo
Collaboration [79] puts meaningful constraints on the tidal
deformability, and leads to an upper limit about 13.76 km for a
1.4 M� NS [80]. But it does not necessarily rule out NL3 and
our parameter set, because there are still many uncertainties
remaining. In the core of massive NSs, hyperon mixtures
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r sk
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20
8
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Hahzoon
Tarbert
Tamii
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FSU
DD−ME2
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FIG. 3. Neutron skin thicknesses of 48Ca and 208Pb, predicted
by several parameter sets. The filled areas are some constraints on
the neutron skin thicknesses of 48Ca (filled with 30◦ and 60◦ lines)
and 208Pb (filled with 90◦, 120◦, and 150◦ lines). The dashed line
represents a linear fit of the theoretical predictions.

[81,82], and quark matter [83,84] are speculated to emerge.
The simple extrapolation of the nuclear models to the compact
matter environment may be questionable. Fortunately, we
notice that the radius of NS and the neutron skin thickness is
closely related, the larger the neutron skin of the nucleus the
larger the radius of the NS [85]. So scrutinizing the neutron
skin thickness may provide more suitable insights to this
question.

B. Neutron skin thickness

Unlike the proton density distribution that can be precisely
measured via electron scattering, the direct measurement of
the neutron density in a nucleus is difficult. Therefore, the
evaluations of neutron skin thickness are typically indirect
and model dependent. For example, theoretical analyses show
that a strong correlation exists between the electric dipole
polarizability αD and the neutron skin thickness [86,87].
Based on it, the experimental measured electric dipole po-
larizabilities lead to a neutron skin thickness 0.156+0.025

−0.021 fm
for 208Pb [88] and 0.14–0.20 fm for 48Ca [89]. Recently,
alternative methods have been introduced and new results are
carried out. Mahzoon et al. deduced a neutron skin of 0.249 ±
0.023 fm in 48Ca from a nonlocal dispersive optical-model
analysis [90]. The extraction of a neutron skin thickness from
coherent pion photoproduction cross-section measurement,
gives a value 0.15 ± 0.03+0.01

−0.03 fm in 208Pb [91]. The measure-
ment of the neutron skin thickness of 208Pb through parity
violation (electroweak probe) in electron scattering gives a
model-independent value 0.33+0.16

−0.18 fm, proposed by PREX
Collaboration [92]. The various estimations are illustrated in
Fig. 3 with lines in different directions. It is incompatible
that for 48Ca, the estimation by Birkhan et al. (30◦ lines) is
significantly smaller than that by Hahzoon et al. (60◦ lines).
As for 208Pb, although the estimations by Tarbert et al. (90◦
lines) and Tamii et al. (120◦ lines) overlap with lead radius
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experiment (PREX) proposal (150◦ lines), they are evidently
smaller that the center value of PREX result 0.33 fm. In the
same figure, we also depict the predictions by several RMF
models, among which the No δ means removing the coupling
of δ meson from our parameter set. The parameter set of this
work predicts large neutron skin thicknesses both in 48Ca and
208Pb, which is similar to NL3. Because they all stand for
a stiff symmetry energy. Just as expected, removal of the δ

meson will make the neutron skin thickness even larger. On
the other hand, the parameter sets predicting soft symmetry
energies, like FSUGold, DD-ME2, and DD-MEδ, predict
small neutron skin thicknesses. Hence it is still obscure that
whether the neutron skin thickness is large or small. In fact,
the authors of Ref. [93] tested theoretical models with various
laboratory and observational data, and found it is premature
to rule out models with large neutron skins. Nevertheless, it is
clear to see that in RMF models the neutron skin of 48Ca is
proportional to that of 208Pb, and a robust correlation exists:

r208
skin = 1.981 × r48

skin − 0.174 (fm), (24)

with a goodness of fit R2 = 0.986. So besides pinning down
the symmetry energy, determining both of the neutron thick-
nesses has a crucial meaning: to check to what extent the
relativistic mean field treatments reflect the physical nuclear
scenario. We expect more accurate results of the follow-up
calcium radius experiment (CREX) and PREX-II experiment
[94] by Jefferson Laboratory will make decisive conclusions
on these problems.

C. Pygmy dipole resonance and neutron-proton
effective mass splitting

In previous sections, we have verified the new calibrated
parameter set with finite nuclear data and constraints from ex-
perimental measurements and astrophysical observations. In
this section we will use it to investigate the low-lying response
of a nucleus to external electric perturbations and focus on the
effects caused by the scalar-isovector meson δ. The electric
dipole excitations of 48Ca and 208Pb are calculated using the
random phase approximation method, which are induced by
the electric (isovector) dipole operator [95]

Ê1μ = e
∑

i

(
N − Z

2A
− t i

3

)
riY1μ. (25)

It is well known that the theoretical evaluations of the electric
dipole energy weighted sum rules (EWSR) are overestimated
than the classical Thomas-Reiche-Kuhn (TRK) sum rules
[95], due to the density-dependence and velocity-relating
terms [30,87,96]. Therefore, in order to reconcile the exper-
imental transition strengths, the calculated ones are divided
by a factor 1.5 in Fig. 4. Meanwhile, the Lorentz smooth
parameter is � = 2 MeV. The wide structures of GDR can
be easily identified and good agreements with experimental
results [88,89] are achieved both in 48Ca and 208Pb cases.
As for PDR, we notice the experimental investigation [97]
reported a value about 8.4 MeV for 48Ca. However, in our cal-
culations no corresponding resonance structures are found. On
the contrary, significant low-lying excitations are confirmed in
208Pb around the neutron emission energy.
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FIG. 4. The transition strength distribution of the electric dipole
resonance in (a) 48Ca and (b) 208Pb, the smear width is � = 2 MeV.
The inset represents the transition strengths of the isoscalar (IS)
electric dipole operator. The theoretical results are scaled, see text
for details.

In order to quantify the positions of the resonance peaks,
we calculate the centroid energies of the distributions, which
is defined as Ec = m1/m0. The strengths of PDR are integrated
below the neutron emission threshold of 208Pb to avoid the
contribution from the low energy tail of GDR. To be specific,
the centroid energy of PDR is calculated in the region 0 ∼
8 MeV, and 8 ∼ 30 MeV for GDR. We also calculate the
centroid energies of the whole distributions in the range 0 ∼
40 MeV, labeled as Total. Strengths with excitation energies
larger than 40 MeV contribute little to the results. The centroid
energies are summarized in Table III. Excellent agreement
between RPA calculated centroid energy and experimental
result is achieved in GDR of 48Ca, which are 18.74 MeV and
18.9(2) MeV [89], respectively. In 208Pb, the positions of GDR
peak and PDR peak, i.e., 13.18 MeV and 7.43 MeV, are also

TABLE III. The centroid energies (in MeV) of GDR and PDR in
48Ca and 208Pb, compared with experimental measurements.

48Ca 208Pb

PDR GDR Total PDR GDR Total

Full δ – 18.74 19.04 7.43 13.18 12.81
Half δ – 19.36 19.90 7.15 14.03 13.43
No δ – 19.57 20.20 7.08 14.32 13.60
expt. 8.4 18.9(2) – 7.37 13.3(1) –
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quite close to the experimental values 13.3(1) MeV [98] and
7.37 MeV [99].

PDR is different in many ways to GDR. Unlike the GDR,
which is caused by the relative oscillation between neutrons
and protons, PDR involves only the excess neutrons outside
of the isospin saturated core. To identify the isospin character
of the low-lying excitations, we also calculated the electric
isoscalar (IS) dipole strength in 208Pb. The corresponding
operator is [100]

E IS
1μ = e

∑
i

(
r2

i − 5

3
〈r2〉

)
riY1μ. (26)

As illustrated in the inset of Fig. 4(b), the low-lying excitation
strengths are also aroused by the isoscalar probe, which
centers at almost the same position as the isovector dipole
excitations, i.e., the PDR. The explicit value of the centroid
energy, if one integrates in the energy region 0 ∼ 8 MeV, is
7.41 MeV. The peak of the low-lying isoscalar electric dipole
strength moves to 7.05 MeV if we switch off the interaction
of δ meson. The coincidence of the peak positions of the
low-lying isoscalar dipole resonance and PDR, as well as the
similar shift of each peak in the absence of δ meson, are strong
hints to the isoscalar predominance of the pygmy dipole
resonance. This result is consistent with previous researches
[39–41].

PDR is not as collective as GDR [31] and is highly sensitive
to the structure of the neutron single-particle levels near the
Fermi surface. Our calculation suggests the PDR of 208Pb is
mainly induced by the excitations of the neutrons in orbitals
near the Fermi surface, such as 3p1/2, 3p3/2, and 2 f5/2. In the
framework of random phase approximation method, excita-
tions of a nucleus are described by coherent 1p1h transitions.
In a particular excitation state ν, the contribution from a 1p1h
pair (p,h) with energy εph = εp − εh can be measured by the
coefficient

Cν
ph ≡ ∣∣X ν

ph

∣∣2 − ∣∣Y ν
ph

∣∣2
, (27)

which is normalized as
∑

ph Cν
ph = 1. Typically, in PDR re-

gion excitations are mainly caused by only a few 1p1h transi-
tions. In Table IV we list the details of the dominant excited
states in PDR, including the excited energies, transition prob-
abilities, and 1p1h configurations. The block labeled as Full δ

contains the results of our parameter set. The excitation state
with energy 7.42 MeV is mainly caused by the transition of
neutron pairs 3p1/2 → 3d3/2 and 3p3/2 → 3d5/2, which takes
62.4% and 10.1% of the whole contribution, respectively.
Other configuration pairs only take very small fractions. Simi-
larly, the excited state at 7.54 MeV is also dominated by a few
1p1h transitions, namely, 74.8% by 3p3/2 → 3d5/2 and 12.1%
by 3p1/2 → 3d3/2. These results reveal the low-collectivity
nature of PDR.

The δ meson, by its scalar-isovector nature, will make
neutron single-particle levels lower and make proton levels
higher. The shift of the single-particle levels via changing δ

meson field is opposite to that caused by ρ meson. In order
to focus on the effects caused by δ meson, we reduce the
coupling constant gδ and check how the spectrum changes. In
the case Half δ we reduce the coupling constant of δ meson

TABLE IV. The excited states that dominate in the pygmy dipole
resonance of 208Pb when δ meson is included (Full δ), reduced by half
(Half δ), and excluded (No δ). The first and second columns contain
the excited energies and transition probabilities of RPA states. For a
particular state ν, the third column contains the 1p1h configurations
(with energy εph in the fourth column and ratio Cph in the fifth
column, N is a shorthand for neutron) that contribute most to the
excited state ν.

ων Bν Conf. εph Cph

(MeV) (e2fm2) (MeV) (%)

Full δ

7.42 0.972 [N] 3p1/2 → 3d3/2 7.52 62.4
[N] 3p3/2 → 3d5/2 7.63 10.1

7.54 0.406 [N] 3p3/2 → 3d5/2 7.63 74.8
[N] 3p1/2 → 3d3/2 7.52 12.1

Half δ

7.02 0.776 [N] 3p3/2 → 3d5/2 7.08 83.9
7.92 0.571 [N] 2 f5/2 → 2g7/2 8.14 44.2

[N] 2 f7/2 → 2g9/2 8.34 40.9

No δ

6.86 0.869 [N] 3p3/2 → 3d5/2 6.89 83.6
7.82 0.475 [N] 2 f5/2 → 3d3/2 7.92 65.7

[N] 2 f5/2 → 2g7/2 8.00 21.7

by half; and in the case No δ, we set it to 0. It should be
mentioned that the interactions relating to δ meson must be
adjusted in ground-state calculations and RPA calculations
simultaneously. Otherwise, inconsistence is introduced and
the low-lying states will be contaminated by translational
spurious states [31,57]. When the coupling strength of δ

meson is reduced, the energy gaps of 1p1h pairs that important
to PDR is shrunk. For example, the energy of 1p1h transition
3p3/2 → 3d5/2 changes from 7.63–7.08 MeV when the gδ

is reduced by half, and to 6.89 MeV when the δ meson is
totally removed. The energies of 1p1h pairs that contribute
most to PDR decrease with the reducing of δ meson coupling.
Accordingly, the centroid energy of PDR decreases from 7.43
MeV (Full δ) to 7.15 MeV (Half δ) and 7.08 MeV (No δ).
There is a clear tendency that the centroid energy of PDR
in 208Pb is lowered as the gaps are shrunk. On the contrary,
the shift of GDR peak is opposite to PDR. The GDR is
highly collective and the mechanism of the shift may be very
different.

The δ meson, transmitting the nuclear force in the scalar-
isovector channel, is sensitive to nuclear isospin asymmetry
properties. As we have mentioned in previous sections, the
inclusion of the scalar-isovector meson δ reduces the sym-
metry energy. On the contrary, removing δ meson from our
calibrated parameter set makes the symmetry energy stiffer, as
depicted in Fig. 5(a). The symmetry energy at the saturation
density Esym will increase by 23% when the δ meson is totally
removed. Accordingly, the slope parameter of the symmetry
energy Lsym will increase by 16% while the curvature param-
eter Ksym will decrease by about 80%. Meanwhile, our cal-
culation shows when the coupling strength between nucleon
and δ meson is reduced, the centroid energy of the whole
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FIG. 5. (a) The symmetry energy predicted by our parameter set,
in the cases of Full δ (solid line), Half δ (dashed line), and No δ

(dotted line); (b) The relationships between the symmetry energy
Esym (solid line), the slope parameter Lsym (dashed line), and the
curvature parameter Ksym (dotted line) at the saturation density and
the centroid of the whole electric dipole strength ETotal

c in 208Pb, when
the coupling of δ meson is reduced (δ↓). The quantities labeled with
0 represent the results in the Full δ case.

isovector electric dipole strength in 208Pb will shift as large as
6%. From Fig. 5(b) we can see, the relationships between the
symmetry energy as well as its slope and curvature parameters
and the total centroid position (ETotal

c ) of the electric dipole
excitations, by changing the δ meson solely, is slowly varying
and smooth. Although deviations from linear correlations
are significant, a positive correlation between the symmetry
energy and the centroid of the electric dipole resonance can
be established in the scalar-isovector channel.

In RMF models without the δ meson, the effective mass, as
defined in (6), is the same for neutron and proton. Neutron-
proton mass splitting is an effect peculiar to the δ meson.
The interaction in the scalar-isovector channel dissimilate the
Lorentz transformation properties of neutrons and protons.
Whereas the total effective mass is roughly unchanged. Ac-
tually, all the RMF models we mentioned above, i.e., NL3,
FSUGold, DD-ME2, DD-MEδ, as well as our parameter set,
have similar nucleon effective masses, which are about 0.6
times of the bare nucleon masses. In the framework of the
relativistic mean field theory, the parameter set with a too large
or too small effective nucleon mass always fails to reproduce
the finite nuclear data, such as masses and radii. Neither
could it give proper descriptions to the nucleus excitation
properties, such as low-lying resonances. In the relativistic
mean field theory, the splitting of neutron-proton effective
mass is negative (m∗

n < m∗
p) [101], and is determined by the

coupling between nucleon and δ meson,


m∗ = m∗
p − m∗

n = 2gδ · δ. (28)

As we have learned from Table III, the coupling strength
between nucleon and meson in the scalar-isovector channel
affects the positions of GDR and PDR. In order to investigate
the relationship between the neutron-proton mass splitting and
the electric dipole resonance for further details, the coupling
constant of δ meson is changed from 0 to gδ with a step
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FIG. 6. The relationship between the neutron-proton effective
mass splitting and the difference of the centroid energies of GDR and
PDR in 208Pb. The effective masses are evaluated at the saturation
density ρ0. The circles, squares, and diamonds denote the results in
asymmetric matter with different neutron excess ratios. The lines are
linear fits.

1
8 gδ . We found the difference of GDR and PDR centroid
energies in 208Pb decreases linearly with the neutron-proton
effective mass splitting at the saturation density. It should be
noticed that in 208Pb, the neutron excess ratio (N − Z )/A ≈
0.21. However, it is just an average value as the neutron and
proton density distributions in a nucleus are not uniform. The
asymmetry ratio may vary inside the nucleus or at the surface.
Fortunately, as illustrated in Fig. 6, the linear correlation
is robust and is valid for asymmetric matter with different
neutron excess ratios (α ≡ (ρn − ρp)/ρB). The overall fit of
the relative offset of GDR and PDR peaks 
Ec, the neutron-
proton mass splitting 
m∗ and the neutron excess ratio α

reads


Ec = −0.0397 × 
m∗

α
+ 7.244 (MeV). (29)

The formula (29) implies that the two electric dipole
resonance structures, namely PDR and GDR, are not totally
independent. Although different in formation, collectivity and
isospin character, GDR and PDR are correlated by the isospin
dependence of the asymmetric nuclear matter. The correlation
maybe can provide us a new approach to determine the
neutron-proton mass splitting.

V. CONCLUSIONS

The parameter set NLX8, which contains the nonlinear
σ meson and ω meson self-couplings as well as the scalar-
isovector meson δ, is carefully calibrated with finite nuclei
data in this work. The parameter set is further constrained
by terrestrial experimental measurements and astrophysical
observations. As a model with nonlinear meson-exchange
couplings, the EoS in high-density area is significantly im-
proved and a sufficient NS maximum mass is guaranteed.
The δ meson will soften the symmetry energy and reduce
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the neutron skin thickness. With the carefully calibrated
parameter set, we studied the electric dipole resonance in 48Ca
and 208Pb. Good agreements with experimental measurements
are achieved in both cases. The predominant isoscalar nature
of PDR is confirmed by comparing PDR with the low-lying
isoscalar electric dipole excitations. Our calculations show
that in addition to affecting the symmetry energy and its den-
sity behavior, the strength of δ meson coupling also impacts
the features of the electric dipole excitations significantly.
The value of the symmetry energy and the centroid energy
of the electric dipole resonance are positively correlated in the
scalar-isovector channel. We found that by including the δ me-
son, the neutron single-particle levels near the Fermi surface
are lowered. The energy gaps of 1p1h pairs that important to

PDR are broadened. Due to the low collectivity nature, the
pygmy dipole resonance is pushed higher. When the coupling
strength of δ meson varies, the shifts of GDR peaks and PDR
peaks are opposite. However, the relative offsets of GDR and
PDR are predictable, which are closely correlated with the
neutron-proton effective mass splitting, α · 
Ec ∼ 
m∗. This
may be helpful for understanding the behavior of the isospin
dependence in asymmetric nuclear matter.
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[71] G. A. Lalazissis, T. Nikšić, D. Vretenar, and P. Ring, Phys.

Rev. C 71, 024312 (2005).
[72] X. Roca-Maza, X. Viñas, M. Centelles, P. Ring, and P. Schuck,

Phys. Rev. C 84, 054309 (2011).
[73] R. C. Tolman, Phys. Rev. 55, 364 (1939).
[74] J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 374

(1939).
[75] M. Fortin, C. Providência, A. R. Raduta, F. Gulminelli, J. L.

Zdunik, P. Haensel, and M. Bejger, Phys. Rev. C 94, 035804
(2016).

[76] G. Baym, C. Pethick, and P. Sutherland, Astrophys. J. 170, 299
(1971).

[77] J. Antoniadis, P. C. C. Freire, N. Wex, T. M. Tauris, R. S.
Lynch, M. H. van Kerkwijk, M. Kramer, C. Bassa, V. S.
Dhillon, T. Driebe, J. W. T. Hessels, V. M. Kaspi, V. I.
Kondratiev, N. Langer, T. R. Marsh, M. A. McLaughlin, T. T.
Pennucci, S. M. Ransom, I. H. Stairs, J. van Leeuwen, J. P. W.
Verbiest, and D. G. Whelan, Science 340, 1233232 (2013).

[78] P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E. Roberts,
and J. W. T. Hessels, Nature 467, 1081 (2010).

[79] B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo
Collaboration), Phys. Rev. Lett. 119, 161101 (2017).

[80] F. J. Fattoyev, J. Piekarewicz, and C. J. Horowitz, Phys. Rev.
Lett. 120, 172702 (2018).

[81] N. K. Glendenning and S. A. Moszkowski, Phys. Rev. Lett. 67,
2414 (1991).

[82] N. K. Glendenning, Phys. Lett. B 114, 392 (1982).
[83] H. Heiselberg, C. J. Pethick, and E. F. Staubo, Phys. Rev. Lett.

70, 1355 (1993).
[84] A. Akmal, V. R. Pandharipande, and D. G. Ravenhall, Phys.

Rev. C 58, 1804 (1998).
[85] C. J. Horowitz and J. Piekarewicz, Phys. Rev. C 64, 062802

(2001).
[86] P.-G. Reinhard and W. Nazarewicz, Phys. Rev. C 81, 051303

(2010).
[87] J. Piekarewicz, Phys. Rev. C 83, 034319 (2011).
[88] A. Tamii, I. Poltoratska, P. von Neumann-Cosel, Y. Fujita, T.

Adachi, C. A. Bertulani, J. Carter, M. Dozono, H. Fujita, K.
Fujita, K. Hatanaka, D. Ishikawa, M. Itoh, T. Kawabata, Y.

054604-10

https://doi.org/10.1103/PhysRevC.85.024601
https://doi.org/10.1103/PhysRevC.85.024601
https://doi.org/10.1103/PhysRevC.85.024601
https://doi.org/10.1103/PhysRevC.85.024601
https://doi.org/10.1103/PhysRevC.94.014313
https://doi.org/10.1103/PhysRevC.94.014313
https://doi.org/10.1103/PhysRevC.94.014313
https://doi.org/10.1103/PhysRevC.94.014313
https://doi.org/10.1103/PhysRevC.85.034322
https://doi.org/10.1103/PhysRevC.85.034322
https://doi.org/10.1103/PhysRevC.85.034322
https://doi.org/10.1103/PhysRevC.85.034322
https://doi.org/10.1103/PhysRevC.80.034302
https://doi.org/10.1103/PhysRevC.80.034302
https://doi.org/10.1103/PhysRevC.80.034302
https://doi.org/10.1103/PhysRevC.80.034302
https://doi.org/10.1103/PhysRevLett.103.032502
https://doi.org/10.1103/PhysRevLett.103.032502
https://doi.org/10.1103/PhysRevLett.103.032502
https://doi.org/10.1103/PhysRevLett.103.032502
https://doi.org/10.1103/PhysRevC.89.041601
https://doi.org/10.1103/PhysRevC.89.041601
https://doi.org/10.1103/PhysRevC.89.041601
https://doi.org/10.1103/PhysRevC.89.041601
https://doi.org/10.1103/PhysRevLett.100.232501
https://doi.org/10.1103/PhysRevLett.100.232501
https://doi.org/10.1103/PhysRevLett.100.232501
https://doi.org/10.1103/PhysRevLett.100.232501
https://doi.org/10.1103/PhysRevLett.102.092502
https://doi.org/10.1103/PhysRevLett.102.092502
https://doi.org/10.1103/PhysRevLett.102.092502
https://doi.org/10.1103/PhysRevLett.102.092502
https://doi.org/10.1103/PhysRevLett.111.242503
https://doi.org/10.1103/PhysRevLett.111.242503
https://doi.org/10.1103/PhysRevLett.111.242503
https://doi.org/10.1103/PhysRevLett.111.242503
https://doi.org/10.1103/PhysRevLett.116.132501
https://doi.org/10.1103/PhysRevLett.116.132501
https://doi.org/10.1103/PhysRevLett.116.132501
https://doi.org/10.1103/PhysRevLett.116.132501
https://doi.org/10.1016/j.physletb.2016.02.042
https://doi.org/10.1016/j.physletb.2016.02.042
https://doi.org/10.1016/j.physletb.2016.02.042
https://doi.org/10.1016/j.physletb.2016.02.042
https://doi.org/10.1016/0375-9474(83)90616-4
https://doi.org/10.1016/0375-9474(83)90616-4
https://doi.org/10.1016/0375-9474(83)90616-4
https://doi.org/10.1016/0375-9474(83)90616-4
https://doi.org/10.1016/0375-9474(94)90923-7
https://doi.org/10.1016/0375-9474(94)90923-7
https://doi.org/10.1016/0375-9474(94)90923-7
https://doi.org/10.1016/0375-9474(94)90923-7
https://doi.org/10.1103/PhysRevLett.95.122501
https://doi.org/10.1103/PhysRevLett.95.122501
https://doi.org/10.1103/PhysRevLett.95.122501
https://doi.org/10.1103/PhysRevLett.95.122501
https://doi.org/10.1016/S0010-4655(97)00022-2
https://doi.org/10.1016/S0010-4655(97)00022-2
https://doi.org/10.1016/S0010-4655(97)00022-2
https://doi.org/10.1016/S0010-4655(97)00022-2
https://doi.org/10.1103/PhysRevC.55.2385
https://doi.org/10.1103/PhysRevC.55.2385
https://doi.org/10.1103/PhysRevC.55.2385
https://doi.org/10.1103/PhysRevC.55.2385
https://doi.org/10.1016/S0370-2693(00)00827-3
https://doi.org/10.1016/S0370-2693(00)00827-3
https://doi.org/10.1016/S0370-2693(00)00827-3
https://doi.org/10.1016/S0370-2693(00)00827-3
https://doi.org/10.1016/S0375-9474(01)00986-1
https://doi.org/10.1016/S0375-9474(01)00986-1
https://doi.org/10.1016/S0375-9474(01)00986-1
https://doi.org/10.1016/S0375-9474(01)00986-1
https://doi.org/10.1103/PhysRevC.77.034317
https://doi.org/10.1103/PhysRevC.77.034317
https://doi.org/10.1103/PhysRevC.77.034317
https://doi.org/10.1103/PhysRevC.77.034317
https://doi.org/10.1103/PhysRevC.82.034326
https://doi.org/10.1103/PhysRevC.82.034326
https://doi.org/10.1103/PhysRevC.82.034326
https://doi.org/10.1103/PhysRevC.82.034326
https://doi.org/10.1103/PhysRevC.76.024318
https://doi.org/10.1103/PhysRevC.76.024318
https://doi.org/10.1103/PhysRevC.76.024318
https://doi.org/10.1103/PhysRevC.76.024318
https://doi.org/10.1103/PhysRevC.87.054310
https://doi.org/10.1103/PhysRevC.87.054310
https://doi.org/10.1103/PhysRevC.87.054310
https://doi.org/10.1103/PhysRevC.87.054310
https://doi.org/10.1103/PhysRevC.92.051302
https://doi.org/10.1103/PhysRevC.92.051302
https://doi.org/10.1103/PhysRevC.92.051302
https://doi.org/10.1103/PhysRevC.92.051302
https://doi.org/10.1103/PhysRevC.96.024614
https://doi.org/10.1103/PhysRevC.96.024614
https://doi.org/10.1103/PhysRevC.96.024614
https://doi.org/10.1103/PhysRevC.96.024614
https://doi.org/10.1016/j.nuclphysa.2003.11.003
https://doi.org/10.1016/j.nuclphysa.2003.11.003
https://doi.org/10.1016/j.nuclphysa.2003.11.003
https://doi.org/10.1016/j.nuclphysa.2003.11.003
https://doi.org/10.1016/j.adt.2011.12.006
https://doi.org/10.1016/j.adt.2011.12.006
https://doi.org/10.1016/j.adt.2011.12.006
https://doi.org/10.1016/j.adt.2011.12.006
https://doi.org/10.1016/j.physletb.2008.11.070
https://doi.org/10.1016/j.physletb.2008.11.070
https://doi.org/10.1016/j.physletb.2008.11.070
https://doi.org/10.1016/j.physletb.2008.11.070
https://doi.org/10.1137/0111030
https://doi.org/10.1137/0111030
https://doi.org/10.1137/0111030
https://doi.org/10.1137/0111030
https://doi.org/10.1103/PhysRevC.55.540
https://doi.org/10.1103/PhysRevC.55.540
https://doi.org/10.1103/PhysRevC.55.540
https://doi.org/10.1103/PhysRevC.55.540
https://doi.org/10.1126/science.1078070
https://doi.org/10.1126/science.1078070
https://doi.org/10.1126/science.1078070
https://doi.org/10.1126/science.1078070
https://doi.org/10.1103/PhysRevC.45.844
https://doi.org/10.1103/PhysRevC.45.844
https://doi.org/10.1103/PhysRevC.45.844
https://doi.org/10.1103/PhysRevC.45.844
https://doi.org/10.1103/PhysRevC.71.024312
https://doi.org/10.1103/PhysRevC.71.024312
https://doi.org/10.1103/PhysRevC.71.024312
https://doi.org/10.1103/PhysRevC.71.024312
https://doi.org/10.1103/PhysRevC.84.054309
https://doi.org/10.1103/PhysRevC.84.054309
https://doi.org/10.1103/PhysRevC.84.054309
https://doi.org/10.1103/PhysRevC.84.054309
https://doi.org/10.1103/PhysRev.55.364
https://doi.org/10.1103/PhysRev.55.364
https://doi.org/10.1103/PhysRev.55.364
https://doi.org/10.1103/PhysRev.55.364
https://doi.org/10.1103/PhysRev.55.374
https://doi.org/10.1103/PhysRev.55.374
https://doi.org/10.1103/PhysRev.55.374
https://doi.org/10.1103/PhysRev.55.374
https://doi.org/10.1103/PhysRevC.94.035804
https://doi.org/10.1103/PhysRevC.94.035804
https://doi.org/10.1103/PhysRevC.94.035804
https://doi.org/10.1103/PhysRevC.94.035804
https://doi.org/10.1086/151216
https://doi.org/10.1086/151216
https://doi.org/10.1086/151216
https://doi.org/10.1086/151216
https://doi.org/10.1126/science.1233232
https://doi.org/10.1126/science.1233232
https://doi.org/10.1126/science.1233232
https://doi.org/10.1126/science.1233232
https://doi.org/10.1038/nature09466
https://doi.org/10.1038/nature09466
https://doi.org/10.1038/nature09466
https://doi.org/10.1038/nature09466
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.120.172702
https://doi.org/10.1103/PhysRevLett.120.172702
https://doi.org/10.1103/PhysRevLett.120.172702
https://doi.org/10.1103/PhysRevLett.120.172702
https://doi.org/10.1103/PhysRevLett.67.2414
https://doi.org/10.1103/PhysRevLett.67.2414
https://doi.org/10.1103/PhysRevLett.67.2414
https://doi.org/10.1103/PhysRevLett.67.2414
https://doi.org/10.1016/0370-2693(82)90078-8
https://doi.org/10.1016/0370-2693(82)90078-8
https://doi.org/10.1016/0370-2693(82)90078-8
https://doi.org/10.1016/0370-2693(82)90078-8
https://doi.org/10.1103/PhysRevLett.70.1355
https://doi.org/10.1103/PhysRevLett.70.1355
https://doi.org/10.1103/PhysRevLett.70.1355
https://doi.org/10.1103/PhysRevLett.70.1355
https://doi.org/10.1103/PhysRevC.58.1804
https://doi.org/10.1103/PhysRevC.58.1804
https://doi.org/10.1103/PhysRevC.58.1804
https://doi.org/10.1103/PhysRevC.58.1804
https://doi.org/10.1103/PhysRevC.64.062802
https://doi.org/10.1103/PhysRevC.64.062802
https://doi.org/10.1103/PhysRevC.64.062802
https://doi.org/10.1103/PhysRevC.64.062802
https://doi.org/10.1103/PhysRevC.81.051303
https://doi.org/10.1103/PhysRevC.81.051303
https://doi.org/10.1103/PhysRevC.81.051303
https://doi.org/10.1103/PhysRevC.81.051303
https://doi.org/10.1103/PhysRevC.83.034319
https://doi.org/10.1103/PhysRevC.83.034319
https://doi.org/10.1103/PhysRevC.83.034319
https://doi.org/10.1103/PhysRevC.83.034319


NEUTRON-PROTON MASS SPLITTING AND PYGMY … PHYSICAL REVIEW C 99, 054604 (2019)

Kalmykov, A. M. Krumbholz, E. Litvinova, H. Matsubara,
K. Nakanishi, R. Neveling, H. Okamura, H. J. Ong, B.
Özel-Tashenov, V. Y. Ponomarev, A. Richter, B. Rubio, H.
Sakaguchi, Y. Sakemi, Y. Sasamoto, Y. Shimbara, Y. Shimizu,
F. D. Smit, T. Suzuki, Y. Tameshige, J. Wambach, R. Yamada,
M. Yosoi, and J. Zenihiro, Phys. Rev. Lett. 107, 062502
(2011).

[89] J. Birkhan, M. Miorelli, S. Bacca, S. Bassauer, C. A.
Bertulani, G. Hagen, H. Matsubara, P. von Neumann-Cosel,
T. Papenbrock, N. Pietralla, V. Y. Ponomarev, A. Richter, A.
Schwenk, and A. Tamii, Phys. Rev. Lett. 118, 252501 (2017).

[90] M. H. Mahzoon, M. C. Atkinson, R. J. Charity, and W. H.
Dickhoff, Phys. Rev. Lett. 119, 222503 (2017).

[91] C. M. Tarbert, D. P. Watts, D. I. Glazier, P. Aguar, J. Ahrens,
J. R. M. Annand, H. J. Arends, R. Beck, V. Bekrenev, B.
Boillat, A. Braghieri, D. Branford, W. J. Briscoe, J. Brudvik, S.
Cherepnya, R. Codling, E. J. Downie, K. Foehl, P. Grabmayr,
R. Gregor, E. Heid, D. Hornidge, O. Jahn, V. L. Kashevarov,
A. Knezevic, R. Kondratiev, M. Korolija, M. Kotulla, D.
Krambrich, B. Krusche, M. Lang, V. Lisin, K. Livingston, S.
Lugert, I. J. D. MacGregor, D. M. Manley, M. Martinez, J. C.
McGeorge, D. Mekterovic, V. Metag, B. M. K. Nefkens, A.
Nikolaev, R. Novotny, R. O. Owens, P. Pedroni, A. Polonski,
S. N. Prakhov, J. W. Price, G. Rosner, M. Rost, T. Rostomyan,
S. Schadmand, S. Schumann, D. Sober, A. Starostin, I. Supek,
A. Thomas, M. Unverzagt, T. Walcher, L. Zana, and F. Zehr
(Crystal Ball at MAMI and A2 Collaboration), Phys. Rev. Lett.
112, 242502 (2014).

[92] S. Abrahamyan, Z. Ahmed, H. Albataineh, K. Aniol,
D. S. Armstrong, W. Armstrong, T. Averett, B. Babineau,
A. Barbieri, V. Bellini, R. Beminiwattha, J. Benesch, F.
Benmokhtar, T. Bielarski, W. Boeglin, A. Camsonne, M.
Canan, P. Carter, G. D. Cates, C. Chen, J.-P. Chen, O.
Hen, F. Cusanno, M. M. Dalton, R. De Leo, K. de Jager,
W. Deconinck, P. Decowski, X. Deng, A. Deur, D. Dutta,
A. Etile, D. Flay, G. B. Franklin, M. Friend, S. Frullani,
E. Fuchey, F. Garibaldi, E. Gasser, R. Gilman, A. Giusa,
A. Glamazdin, J. Gomez, J. Grames, C. Gu, O. Hansen, J.
Hansknecht, D. W. Higinbotham, R. S. Holmes, T. Holmstrom,
C. J. Horowitz, J. Hoskins, J. Huang, C. E. Hyde, F. Itard,
C.-M. Jen, E. Jensen, G. Jin, S. Johnston, A. Kelleher, K.

Kliakhandler, P. M. King, S. Kowalski, K. S. Kumar, J.
Leacock, J. Leckey, J. H. Lee, J. J. LeRose, R. Lindgren,
N. Liyanage, N. Lubinsky, J. Mammei, F. Mammoliti, D. J.
Margaziotis, P. Markowitz, A. McCreary, D. McNulty, L.
Mercado, Z.-E. Meziani, R. W. Michaels, M. Mihovilovic,
N. Muangma, C. Muñoz Camacho, S. Nanda, V. Nelyubin,
N. Nuruzzaman, Y. Oh, A. Palmer, D. Parno, K. D. Paschke,
S. K. Phillips, B. Poelker, R. Pomatsalyuk, M. Posik, A. J. R.
Puckett, B. Quinn, A. Rakhman, P. E. Reimer, S. Riordan,
P. Rogan, G. Ron, G. Russo, K. Saenboonruang, A. Saha,
B. Sawatzky, A. Shahinyan, R. Silwal, S. Sirca, K. Slifer,
P. Solvignon, P. A. Souder, M. L. Sperduto, R. Subedi, R.
Suleiman, V. Sulkosky, C. M. Sutera, W. A. Tobias, W. Troth,
G. M. Urciuoli, B. Waidyawansa, D. Wang, J. Wexler, R.
Wilson, B. Wojtsekhowski, X. Yan, H. Yao, Y. Ye, Z. Ye, V.
Yim, L. Zana, X. Zhan, J. Zhang, Y. Zhang, X. Zheng, and
P. Zhu (PREX Collaboration), Phys. Rev. Lett. 108, 112502
(2012).

[93] F. J. Fattoyev and J. Piekarewicz, Phys. Rev. Lett. 111, 162501
(2013).

[94] R. Michaels, arXiv:1510.04592v2.
[95] B. R. Mottelson and A. N. Bohr, Nuclear Structure 2 Volume

Set (World Scientific, Singapore, 1998).
[96] M. N. Harakeh and A. van der Woude, Giant Resonances:

Fundamental High-Frequency Modes of Nuclear Excitation
(Oxford University Press, Oxford, 2001).

[97] T. Hartmann, M. Babilon, S. Kamerdzhiev, E. Litvinova, D.
Savran, S. Volz, and A. Zilges, Phys. Rev. Lett. 93, 192501
(2004).

[98] J. Ritman, F.-D. Berg, W. Kühn, V. Metag, R. Novotny,
M. Notheisen, P. Paul, M. Pfeiffer, O. Schwalb, H. Löhner,
L. Venema, A. Gobbi, N. Herrmann, K. D. Hildenbrand, J.
Mösner, R. S. Simon, K. Teh, J. P. Wessels, and T. Wienold,
Phys. Rev. Lett. 70, 533 (1993).

[99] N. Ryezayeva, T. Hartmann, Y. Kalmykov, H. Lenske,
P. von Neumann-Cosel, V. Y. Ponomarev, A. Richter, A.
Shevchenko, S. Volz, and J. Wambach, Phys. Rev. Lett. 89,
272502 (2002).

[100] N. V. Giai and H. Sagawa, Nucl. Phys. A 371, 1 (1981).
[101] E. N. E. van Dalen, C. Fuchs, and A. Faessler, Phys. Rev. Lett.

95, 022302 (2005).

054604-11

https://doi.org/10.1103/PhysRevLett.107.062502
https://doi.org/10.1103/PhysRevLett.107.062502
https://doi.org/10.1103/PhysRevLett.107.062502
https://doi.org/10.1103/PhysRevLett.107.062502
https://doi.org/10.1103/PhysRevLett.118.252501
https://doi.org/10.1103/PhysRevLett.118.252501
https://doi.org/10.1103/PhysRevLett.118.252501
https://doi.org/10.1103/PhysRevLett.118.252501
https://doi.org/10.1103/PhysRevLett.119.222503
https://doi.org/10.1103/PhysRevLett.119.222503
https://doi.org/10.1103/PhysRevLett.119.222503
https://doi.org/10.1103/PhysRevLett.119.222503
https://doi.org/10.1103/PhysRevLett.112.242502
https://doi.org/10.1103/PhysRevLett.112.242502
https://doi.org/10.1103/PhysRevLett.112.242502
https://doi.org/10.1103/PhysRevLett.112.242502
https://doi.org/10.1103/PhysRevLett.108.112502
https://doi.org/10.1103/PhysRevLett.108.112502
https://doi.org/10.1103/PhysRevLett.108.112502
https://doi.org/10.1103/PhysRevLett.108.112502
https://doi.org/10.1103/PhysRevLett.111.162501
https://doi.org/10.1103/PhysRevLett.111.162501
https://doi.org/10.1103/PhysRevLett.111.162501
https://doi.org/10.1103/PhysRevLett.111.162501
http://arxiv.org/abs/arXiv:1510.04592v2
https://doi.org/10.1103/PhysRevLett.93.192501
https://doi.org/10.1103/PhysRevLett.93.192501
https://doi.org/10.1103/PhysRevLett.93.192501
https://doi.org/10.1103/PhysRevLett.93.192501
https://doi.org/10.1103/PhysRevLett.70.533
https://doi.org/10.1103/PhysRevLett.70.533
https://doi.org/10.1103/PhysRevLett.70.533
https://doi.org/10.1103/PhysRevLett.70.533
https://doi.org/10.1103/PhysRevLett.89.272502
https://doi.org/10.1103/PhysRevLett.89.272502
https://doi.org/10.1103/PhysRevLett.89.272502
https://doi.org/10.1103/PhysRevLett.89.272502
https://doi.org/10.1016/0375-9474(81)90741-7
https://doi.org/10.1016/0375-9474(81)90741-7
https://doi.org/10.1016/0375-9474(81)90741-7
https://doi.org/10.1016/0375-9474(81)90741-7
https://doi.org/10.1103/PhysRevLett.95.022302
https://doi.org/10.1103/PhysRevLett.95.022302
https://doi.org/10.1103/PhysRevLett.95.022302
https://doi.org/10.1103/PhysRevLett.95.022302

