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Effect of liquid drop model parameters on nuclear liquid-gas phase transition
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The phenomenon of liquid-gas phase transition occurring in heavy-ion collisions at intermediate energies is
a subject of contemporary interest. In statistical models of fragmentation, the liquid drop model is generally
used to calculate the ground-state binding energies of the fragments. It is well known that the surface and
symmetry energy of the hot fragments at the low-density freeze-out can be considerably modified. In addition
to this, the level-density parameter also has a wide variation. The effect of variation of these parameters is
studied on fragmentation observables which are related to the nuclear liquid-gas phase transition. The canonical
thermodynamical model which has been very successful in describing the phenomenon of fragmentation is used
for the study. The shift in transition temperature owing to the variation in liquid drop model parameters has been
examined.
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I. INTRODUCTION

The liquid-gas phase transition at intermediate energy nu-
clear reactions is a well studied phenomenon [1–8]. Different
theoretical models, both statistical and dynamical, have con-
firmed the transition from the liquid to the gaseous phase as
the excited nuclear system fragments [2,4–9]. This transition
is observed in the temperature range of 5 to 6 MeV. The
Bethe-Weizsacker mass formula, which is commonly referred
to as the liquid drop model [10,11], has successfully explained
different ground-state properties of the nucleus and is widely
used to calculate the binding energy of medium-to-heavy mass
nuclei at zero temperature and normal nuclear density. This
has been successfully implemented in statistical models, such
as the canonical thermodynamical model (CTM) [12], the
statistical multifragmentation model (SMM) [3], and others
in order to throw light on the nuclear multifragmentation
process. Excellent fits of experimental masses with a high
level of accuracy for ground-state masses at normal density
are available [13–15]. The process of nuclear multifragmen-
tation, however, occurs at subsaturation density and at higher
excitation energies. The density and temperature dependence
of the surface and symmetry energy is not incorporated in
the simple binding energy formula used in the liquid drop
model, and hence, different observables calculated using this
in the statistical models might not be fully reliable. The
density and/or temperature dependence of the nuclear surface
and symmetry energy also plays an important role in areas
of astrophysical interest, such as the study of supernova
explosions and the properties of neutron stars, etc. It also has
significant influence in deciding the structure of neutron-rich
and neutron-deficient nuclei which can be and are formed in
fragmentation reactions. In this paper, we would focus on
observables, such as mass distribution and total multiplicity,
which are related to the nuclear liquid-gas phase transition.
The pertinent question one can ask is that how is the phe-
nomenon of phase transition dependent on the liquid drop

model parameters which dictates the fragmentation pattern.
Is the transition temperature sensitive to the parameters of the
liquid drop model? These questions motivated us to reexamine
the nuclear phase-transition process in the framework of the
liquid drop model.

One of the important term determining the path of frag-
mentation is the surface tension or the surface energy co-
efficient. The competition between the surface term and the
excitation energy term of the fragments ultimately dictates the
fragmentation pattern, or, in other words, the liquid-gas phase
transition. The surface term for obvious reasons favors larger
fragments whereas the other term promotes breaking up into
smaller pieces. This establishes the direct connection of the
liquid drop model parameters with the phenomenon of phase
transition and motivates us to examine in details the effect of
these parameters on the latter. The effect of the surface and
asymmetry term of the liquid drop model on isotopic scaling
and mean neutron-to-proton ratios has been studied in detail
in the framework of the SMM [16,17]. But the effect of the
same on the nuclear liquid-gas phase transition has not been
examined so far, and this paper was motivated by that. The
effect of the temperature dependence of the surface term is
also examined in order to study its influence if any on the
phase transition. This paper is expected to throw light on
the relative importance of the liquid drop model parameters
whereas characterizing the liquid-gas phase transition. The
results from this paper can lead to a more refined calculation
of those parameters of the liquid drop model term which
dominates in deciding the phase transition in order to have
detailed knowledge about the nature of the transition and
its characteristics. One can have more sophisticated models
for determining the temperature and density dependence of
these relevant terms. In addition to this, the effect of the
variation of the level-density parameter which governs the
excitation energy term (from the Fermi-gas model [18] has
also been examined with respect to nuclear liquid-gas phase
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transition. In the results presented in this paper, we have used
the temperature derivative of multiplicity [19–23] in order to
pinpoint the transition temperature as total multiplicity can be
easily measured both theoretically as well as experimentally.
The multiplicity derivative has already been established both
theoretically [19,20,22] and experimentally [23] as a convinc-
ing signature of nuclear liquid-gas phase transition. In the next
section, we give a brief description of our model followed by
the Results section and finally the Summary.

II. MODEL DESCRIPTION

We have used the CTM [12] in order to study the frag-
mentation of nuclei. In such models of nuclear disassembly,
it is assumed that statistical equilibrium is attained at the
freeze-out stage, and the population of different channels of
disintegration is solely decided by statistical weights in the
available phase space. The calculation is performed for a
fixed system size, freeze-out volume, and temperature. In a
canonical model [12], the partitioning is performed such that
all partitions have the correct A0, Z0 (equivalently N0, Z0). The
canonical partition function is given by

QN0,Z0 =
∑ ∏ ω

nN,Z

N,Z

nN,Z !
, (1)

where the sum is over all possible channels of breakup
(the number of such channels is enormous) satisfying N0 =∑

N × nN,Z and Z0 = ∑
Z × nN,Z ; ωN,Z is the partition func-

tion of the composite with N neutrons and Z protons and nNZ

is its multiplicity. The partition function QN0,Z0 is calculated
using a recursion relation [24]. From Eq. (1), the average
number of composites with N neutrons and Z protons is given
by

〈nN,Z〉 = ωN,Z
QN0−N,Z0−Z

QN0,Z0

. (2)

The partition function of a composite having N neutrons
and Z protons is a product of two parts: One is due to the
translational motion, and the other is the intrinsic partition
function of the composite,

ωN,Z = V

h3
(2πmT )3/2A3/2zN,Z (int), (3)

where V is the volume available for translational motion. Note
that V will be less than Vf , the volume to which the system
has expanded at breakup (freeze-out volume). We use V =
Vf − V0, where V0 is the normal volume of nucleus with Z0

protons and N0 neutrons. In this paper, the freeze-out volume
is kept constant at 6V0. For nuclei in isolation, the internal
partition function is given by zN,Z (int) = exp[−βF (N, Z )]
where F = E − T S. For mass number A � 5, we use the
liquid drop formula for calculating the binding energy, and
the contribution for excited states is taken from the Fermi-gas
model.

We now list the properties of the composites used in
this paper. The proton and the neutron are fundamental
building blocks, thus z1,0(int) = z0,1(int) = 2, where 2 takes
care of the spin degeneracy. For deuteron, triton 3He and
4He, we use zN,Z (int) = (2sN,Z + 1) exp[−βEN,Z (gr)] where

β = 1/T, EN,Z (gr) is the ground-state energy of the composite
and (2sN,Z + 1) is the experimental spin degeneracy of the
ground state. Excited states for these very-low-mass nuclei are
not included. For mass number A � 5, we use the liquid drop
formula. For nuclei in isolation, this reads

zN,Z (int) = exp
1

T

[
W0A − as(T )A2/3 − a∗

c

Z2

A1/3

−Csym
(N − Z )2

A
+ T 2A

ε0

]
. (4)

The expression includes the volume energy (W0 =
15.8 MeV), the temperature-dependent surface energy
[as(T ) = as0{(T 2

c − T 2)/(T 2
c + T 2)}5/4 with as0 = 18.0

and Tc = 18.0 MeV], the Coulomb energy (a∗
c = 0.31ac

with ac = 0.72 MeV and the Wigner-Seitz correction factor
0.31 [3]), and the symmetry energy (Csym = 23.5 MeV).
The term T 2A

ε0
(ε0 = 16.0 MeV) represents contribution

from excited states since the composites are at a nonzero
temperature. The different coefficients in the liquid drop
model and the Fermi-gas model are fixed empirically, and
hence, there is some uncertainty in their magnitude. In our
calculation, we will try to examine how the variation of
these different parameters can affect the liquid-gas phase
transition, more specifically, the transition temperature. We
have investigated the effect of the surface energy coefficient
σ (T ), the symmetry energy coefficient Csym, and the factor
ε0 which is connected to the level-density parameter a by
a = A/ε0. This will help us to conclude about the sensitivity
of these parameters in determining the nuclear liquid-gas
phase transition. We have tested the effect on the transition
temperature of conversion from the liquid to the gas phase
and have used the multiplicity derivative dM/dT (M being
the total multiplicity) with respect to temperature T as the
observable. In a recent work [20], we have shown that the
peak of the multiplicity derivative and that of the specific heat
occur at the same temperature which has been identified as
the transition temperature.

III. RESULTS

We consider the disintegration of a system of mass number
A0 = 67 and proton number Z0 = 32 which is expected to be
formed from the central collision of 58Ni with 9Be without
considering preequilibrium emission. The surface energy term
of the liquid drop model is expected to have a significant role
in deciding the phase transition. In order to examine this,
we have first calculated the derivative of total multiplicity
as a function of temperature for three different values of the
surface energy coefficient keeping all other parameters fixed.
This is displayed in Fig. 1 which shows that the peak in the
distribution shifts to the right as one increases the surface
energy coefficient. This is quite justified as the surface term
will try to hold the nucleus together, and hence, its increase
implies more energy (or temperature) is required for the phase
transition from liquid to gas. This explains the shift in transi-
tion temperature to the right, and the magnitude of the shift
is about 2 MeV for a change in surface coefficient from 15 to
21 MeV. This is quite a significant shift and is expected to
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FIG. 1. Dependence of the multiplicity derivative on the surface
energy coefficient (as0).

affect the transition in a profound manner. This interesting
aspect further motivated us to probe deeper into it and cal-
culate the mass distribution at these different values of the
surface coefficient at a fixed temperature. Mass distribution
is a well-studied observable which has been experimentally
measured in different laboratories across the world and can
clearly distinguish between different phases. This is shown
in Fig. 2(a) and aptly confirms our conclusion that at higher
values of the surface energy coefficient the system is in a co-
existence phase and the mass distribution resembles a typical
“U” shape as it should be. With the decrease in the value of
as, the system slowly converts to the gaseous phase resulting
in the disappearance of the peak on the liquid (right) side.
In fact, surface energy plays a role equivalent to excitation
energy (or temperature) in dictating the nuclear liquid-gas
phase transition as will be evident from Figs. 2(a) and 2(b).
Next, Fig. 2(b) shows the change in mass distribution for a
fixed surface energy coefficient as we change the temperature
or the excitation energy. The change in mass distribution of the
fragments as we change the temperature (keeping the surface
energy fixed) is exactly similar to the change as we change

FIG. 2. Mass distribution (a) for three surface energies at a fixed
temperature and (b) at three different temperatures for a fixed surface
energy.

FIG. 3. Variation of the multiplicity derivative with tempera-
ture for temperature-dependent and temperature-independent (violet
dashed line) surface energy coefficients.

the surface energy (keeping the temperature fixed). A small
change in the surface energy coefficient leads to some major
changes in the mass distribution as is evident from Fig. 2(a).
This explains the magnitude of the shift of transition temper-
ature as observed in Fig. 1. The exact equivalence of these
two figures throws light on the equivalent roles of surface
energy and temperature in dictating the phase transition of
the nuclear system. The effect of the increase in excitation
energy or temperature is equivalent to that of the decrease in
the surface energy coefficient.

Having established the importance of the surface energy
coefficient, it seems mandatory to probe further deep into it
and investigate the effect of its temperature dependence on
the liquid-gas phase transition as the fragments are excited.
First, we would like to show the effect with and without
the temperature dependence, and the effect of this on the
transition temperature is displayed in Fig. 3. There is a pro-
nounced shift of about 1 MeV in the transition temperature,
and without using the temperature-dependence term, the peak
shifts to the right implying that the system requires more
energy for the transition. This establishes the importance of
the temperature-dependent term and, hence, further inspired
us to look for the appropriate nature of the temperature-
dependent term for finite nuclei in the relevant temperature
range. Since the surface energy term is crucial in fixing the
phase-transition parameters, hence, proper evaluation of its
temperature dependence is extremely important in order to
have better knowledge about the transition temperature.

In the literature, there has been a certain debate about
the nature of temperature dependence, but the standard pre-
scription in use is the form g[T, Tc]α1 where Tc is the crit-
ical temperature for finite nuclei and g(T, Tc) = [T 2

c − T 2]/
[T 2

c − T 2]. Although the functional form has been agreed
upon to be like this, there has been some argument as far as the
value of α1 is concerned. This can assume different values de-
pending on whether it is semi-infinite nuclear matter or finite
nuclei and the relevant temperature range. The overall varia-
tion ranges from 1.05 to 1.45 [25] depending on the applica-
tion. We have investigated the effect of the variation of this on
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FIG. 4. Dependence of the multiplicity derivative on (a) α1 and
(b) critical temperature.

transition temperature once again using the multiplicity
derivative as the signal. It is seen from Fig. 4(a) that this
parameter has an insignificant effect on the phase transition
and, hence, one can continue using the value of 1.25 which has
been the usual practice in the CTM [12]. In this connection,
we have also studied the effect of variation of the critical
temperature Tc on the nuclear liquid-gas phase transition, and
the results are shown in Fig. 4(b). We have used three values
of Tc keeping α1 fixed, and the results show that there is a
small dependence on the value of Tc; the transition temper-
ature shifts slightly to the right as the critical temperature is
increased, but the shift is small.

The study of the density and temperature of nuclear sym-
metry energy is a contemporary topic of research in the
domain of nuclear physics as well as nuclear astrophysics
[26–29]. The exact value of this coefficient in the liquid
drop model is highly debatable, and wide variation has been
found in the literature as far as applications in finite nuclei
at finite temperature and subsaturation density is concerned.
This motivated us to check its impact on phase-transition
observables. Values ranging from 15 to 30 have been used
by different researchers, and hence, we have checked them
accordingly. It is seen from Fig. 5 that the asymmetry part
has very less or almost no effect on the process of phase
transition and, hence, one can safely use the value of 23.5
for this parameter as is used in the liquid drop model. We
have used different isotopes with varying degrees of neutron
richness ranging from A0 = 67 to 90 in order to confirm our
result, and the figures establish that the conclusion remains the
same for very asymmetric systems far from stability.

The effect of the level-density parameter in the excitation
energy term is also investigated. This parameter ε0 which is
related to the level-density parameter a (a = A/ε0) is widely
used in heavy-ion collisions. It can vary from 8 to 16, and

FIG. 5. Dependence of the multiplicity derivative on symmetry
energy coefficient (asym) for four fragmenting sources of the same
atomic number Z0 = 32 but different mass numbers (a) A0 = 67,
(b) 73, (c) 77, and (d) 90. For each case, calculation is performed
for asym = 15 MeV (black dashed line), 23.5 MeV (red solid line),
and 30 MeV (blue dotted line).

hence, we found it appropriate to examine its effect on phase-
transition properties. Here, also we have used the observ-
able of the multiplicity derivative which has been recently
established as a measurable signature for phase transition. It
is evident from the calculation and, hence, Fig. 6 that this
parameter has an almost negligible effect on phase transition,
and we can continue to use the value of 16 without having
much effect on the study of nuclear liquid-gas phase transi-
tion. One can use a sophisticated formula for this, but there
is a negligible change for a wide range of the level-density
parameters. There is absolutely no shift in the transition tem-
perature with variation in the level-density parameter; only the
magnitude of the multiplicity derivative changes slightly as is
seen from the figure. Similar results, such as this, have also
been observed when specific heat was used as an observable
instead of the multiplicity derivative, which further confirms
our conclusions. Those results are not shown here for the
sake of brevity. More sophisticated formulas [30] for the

FIG. 6. Dependence of the multiplicity derivative on the level-
density parameter.
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level-density parameter are available in the literature for eval-
uation of the level-density parameter which are extensively
used in the fission studies. These include the surface term with
deformation dependence which is not of much significance
in the case of multifragmentation of excited nuclei since the
fragments are assumed to be spherical.

IV. SUMMARY

We have examined the effect of the different parameters
used in the liquid drop model and that in the Fermi-gas model
on the characteristics of nuclear liquid-gas phase transition.
More specifically, the surface energy coefficient along with its
temperature dependence was investigated. The results show

that the surface term has a huge impact on the transition
temperature, and a small variation can lead to a considerable
change. On the contrary, neither the symmetry energy nor the
level-density parameter has any significant role in dictating
the parameters of the phase transition. This paper thus estab-
lishes that it is the surface energy term of the liquid drop
model which needs to be determined with more precision
using a microscopic calculation for better understanding of
the phase-transition process.
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