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Quadrupole collectivity and shell closure in neutron-rich nuclei near N = 126
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‘We present a comprehensive study on the low-lying states of neutron-rich Er, Yb, Hf, and W isotopes across the
N = 126 shell with a multireference covariant density functional theory. Beyond-mean-field effects from shape
mixing and symmetry restoration on the observables that are relevant for understanding quadrupole collectivity
and underlying shell structure are investigated. The general features of low-lying states in closed-shell nuclei are
retained in these four isotopes around N = 126, even though the shell gap is overall quenched by about 30% with
the beyond-mean-field effects. These effects are consistent with the previous generator-coordinate calculations
based on Gogny forces, but much smaller than that predicted by the collective Hamiltonian calculation. It implies
that the beyond-mean-field effects on the r-process abundances before the third peak at A ~ 195 might be more
moderate than that reported by Arcones and Bertsch [Phys. Rev. Lett. 108, 151101 (2012)].
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I. INTRODUCTION

The knowledge of neutron-rich nuclei far away from the
B-stability line is essential to understanding nucleosynthesis
and the origin of heavy nuclei in the Universe. About half of
the elements with mass number A > 60 are produced within
the rapid neutron-capture process (r-process) [1-3]. Under
astrophysical environments with extreme neutron densities,
neutron captures are much faster than B decays, and the r-
process path runs through nuclei with large neutron excess.
Along the path, presence of shell closure and large shell gap
determines where the material accumulates. For example, the
peaks around A = 80, 130, and 195 in the r-process abun-
dances are mainly attributed to the neutron N = 50, 82, and
126 shell closures, respectively. Previous studies have shown
that quenching of the N = 82 shell gap has a substantial
influence on the predicted abundances [4,5], even though there
is controversy on whether or not it should be quenched [6-9].
Experimental studies of the neutron-rich nuclei across the
N = 126 shell are more challenging because the production
of these nuclei from the reactions of nuclear fusion, fission,
and fragmentation is very low. Therefore, knowledge on the
N =126 shell gap in neutron-rich nuclei relies heavily on
nuclear model predictions.

Nuclear density functional theory (DFT) starting from a
universal energy functional with about a dozen parameters
fitted to a set of nuclear properties provides currently the
only microscopic tool to study neutron-rich nuclei across the
N = 126 shell. The information on the shell structure can be
learned either from nucleon separation energies or from the
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systematics in low-energy spectroscopic quantities. A strong
shell quenching in an even-even nucleus is usually signaled
by a moderate change in two-nucleon separation energies
and by an enhancement in low-lying collective excitations.
On the mean-field level, the predicted two-neutron separation
energies with different energy functionals differ from each
other by a factor of about 2 for the neutron-rich nuclei around
N =126 [10-16]. This discrepancy contributes largely to
the uncertainty in the predicted r-process abundances before
the third peak at A ~ 195. In the recent decade, beyond-
mean-field (BMF) effects from symmetry restoration and
configuration mixing on the predicted nuclear masses and
nucleon separation energies have been investigated within
the framework of the generator coordinate method (GCM)
with either Skyrme or Gogny energy functionals [17-21].
Generally speaking, the inclusion of the BMF effects leads to
a quenching of the shell gap and is shown to improve the de-
scription of two-nucleon separation energies in known nuclei
around shell closure. A similar quenching is also predicted for
the N = 126 shell gap in the neutron-rich region [20,21].

The covariant formulation of DFT (CDFT) has achieved a
comparable success in many aspects of applications to nuclear
physics [22-24]. In particular, the spin-orbit interaction of
nucleons emerges automatically in the relativistic framework.
This feature is important for understanding nuclear shell
structure in neutron-rich nuclei. Considering these facts, it is
interesting to revisit the low-lying states of neutron-rich nuclei
across the N = 126 shell within this framework, shedding
light on the N = 126 shell gap from different perspectives.
With the CDFT, the BMF effects associated with rotational
motion and quadrupole shape vibrational motion for 575
even-even nuclei with proton numbers ranging from Z =
8 to Z =108 have been evaluated using either cranking
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approximation [25] or five-dimensional collective Hamilto-
nian (SDCH) [26]. It was shown that both the masses and
two-neutron separation energies are significantly improved.
A more accurate evaluation of the BMF effects on these
quantities requires more computationally expensive calcula-
tions using quantum-number projected GCM. With recent
extensions to the multireference framework [27-29], it is
feasible to carry out such kind of studies. In this work, we
are focused on the low-lying states of neutron-rich Er, Yb, Hf,
and W isotopes with neutron numbers 122 < N < 138. We
compare our results with the predictions by other models on
either the mean-field or beyond-mean-field level.

The paper is arranged as follows. In Sec. II, a brief in-
troduction to the theoretical framework is presented. This
includes both the CDFT and its extension to multi-reference
version with projection and GCM. The numerical details are
given in Sec. III. Results are analyzed in Sec. IV. Finally, a
summary and outline are provided in Sec. V.

II. THEORETICAL FRAMEWORK
A. Covariant density functional theory

Starting from a nonlinear point-coupling effective La-
grangian and taking mean-field approximation, one finds the
energy of nuclear systems as a function of local densities and
currents [30,31]
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where Y (r) is a Dirac spinor for the single-nucleon wave
function. The coupling constants «;, B;, v;, and §; are free
parameters. ji is the current of protons and A, represents the
electromagnetic field. The four types of densities or currents:
isoscalar-scalar (S), isovector-scalar (7'S), isoscalar-vector
(V), and isovector-vector (7'V') are defined as

ps(r) = V() (r), (2a)
k

prs(r) =Y i)ty (), (2b)
k

JE) =Dy g ), (20)
k

Iy ) =) ey ). (2d)
k

The summation in Eqgs. (2a)—(2d) runs over all occupied
states in the Fermi sea with nonzero occupation probability
v?, which is determined with the BCS approximation.

The single-nucleon wave function 1 (r) is determined by
the following Dirac equation:

{a-p+Vor)+ Blm+ SON(r) = ey,  (3)

where the scalar and vector potentials
S(r) = Xs(r) + 13 X75(r) , (4a)
VEr) = 2y (r) + 1325, (1) (4b)

contain nucleon isoscalar-scalar, isovector-scalar, isoscalar-
vector, and isovector-vector self-energies as follows:

X5 = asps + Bsps + vsps + SsAps (5a)

Yrs = arsprs + drsAprs , (5b)
1—-1

B = ay 4 (") + Sy Aj — eAF—— (5¢)

iy = arviry +8rvAjry. (5d)

For even-even nuclei, only the zero component of the
vector potentials is nonzero in Eq. (3). Besides, in order
to generate a set of mean-field solutions with different in-
trinsic deformation, a quadratic constraint term on the mass
quadrupole moment is added onto the energy in the variational
calculation,

) A
— | Ervr + ) Cou(Qa) —g2u)° | =0, (6)
Sk o

which generates a constrained potential term to Eq. (3). The
C,,, is a stiffness parameter and (Q»,,) denotes the expectation
value of the mass quadrupole moment operator

o) = | 2 2 LY 7
(Q) = 16n<z —X —y)—E cBcosy, (Ta)
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For the sake of simplicity, we constrain the parameter y
to be either 180° or 0°, which corresponds to the nucleus with
either oblate or prolate deformation, keeping the z axis always
being the symmetric axis. With this simplification, only a one-
dimensional angular momentum projection will be needed to
restore rotational symmetry. The deformation parameter 8 is
calculated by 8 = ﬁ(@zo), where Ry = 1.2A4'/3 (fm), and A
is the mass number.

B. Beyond-mean-field approximation with generator
coordinate method

The collective wave function of low-lying states is con-
structed as a linear combination of particle-number and
angular-momentum projected mean-field wave functions

|wM) = Zf’(ﬁ)PAQK oPNPPID(B)), (®)
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where the intrinsic shape of the mean-field wave function
is restricted to having an axial symmetry. The « labels the
different collective states for a given angular momentum J.
The PV, P?, and P}, are projection operators onto good
quantum numbers, i.e., neutron number N, proton number Z,
and angular momentum J, respectively. The weight functions
f7(B) are determined by minimizing the energy of the collec-
tive state with respect to the weight function. This leads to the
Hill-Wheeler-Griffin (HWG) equation [32-34]

SHB.BY—EJN'B.BOILB)=0. 9
m

where the norm kernel N/ (B, B') and the Hamiltonian kernel
H’ (B, B) are defined as

O'(B, B') = (@(B)|OP PV P?|0(B)), (10)

with O =1 and O = H, respectively. The solution of the
Eq. (9) provides the weight functions f7(B) and the energy
spectrum, as well as other information needed for calculating
the electric multipole transition strengths. This framework
is called multireference covariant density functional theory
(MR-CDFT). More details on the framework could be found
in Ref. [29].

The electric quadrupole transition strength B(E2) from the
initial state (J;, o;) to the final state (Jr, oy) is calculated as
follows:

B(E2;J;, i — Jr, o)
2

1 e o
= T+ ;fa/ B)WIr. B110aI1i. BLLB)|

(1)
with the reduced transition matrix element
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where QzM = er?Yyy is the electric quadrupole moment op-
erator. Meanwhile, we can also calculate the spectroscopic
quadrupole moment for each state

, 16
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Since the B(E2) values and spectroscopic quadrupole mo-
ments Q°Pe¢(J7) are calculated in the full configuration space,
there is no need to introduce effective charge, and e simply
corresponds to the bare value of the proton charge.

III. NUMERICAL DETAILS

Parity, time-reversal invariance, and axial symmetry are
assumed. The Dirac equation (3) is solved by expanding the
Dirac spinor in terms of a three-dimensional harmonic oscil-
lator basis in Cartesian coordinate with 14 major shells which
are found to be sufficient for the nuclei under consideration.
The relativistic energy density functional PC-PK1 [31] is
employed in the calculations. Pairing correlations between
nucleons are treated with the BCS approximation using a
density-independent § force with a smooth cutoff factor [35].
The Gauss-Legendre quadrature is used for the integrals over
the Euler angle 6 in the calculations of the projected kernels.
The number of mesh points in the interval 6 € [0, ] for the
6 is chosen as Ny = 14. The number of mesh points for the
gauge angles in Fomenko’s expansion [36] for the particle-
number projection is Ny = 9. The Pfaffian method [37] has
been implemented to calculate the norm overlap in the
kernels.

IV. RESULTS AND DISCUSSIONS
A. Analysis of quadrupole collectivity

Figure 1 displays the energy surfaces for the even-even
neutron-rich Er, Yb, Hf, and W isotopes from both mean-
field and beyond-mean-field calculations. It shows evidently
the development of quadrupole collectivity globally with the
increase of neutron number from N = 126. The quadrupole
deformation parameter B at each global energy minimum
is displayed in Fig. 2 as a function of neutron number.
Along each isotopic chain, the equilibrium quadrupole shape
undergoes a transition from oblate shape to a prolate one
while across the neutron number N = 126 with spherical
shape. The angular-momentum projection brings an addi-
tional energy to the weakly deformed configurations and
thus changes somewhat the location of the energy minimum
in the nuclei around N = 126. For those weakly deformed
nuclei and the transitional nuclei, the concept of nuclear
shape is ill defined because a large shape mixing effect is
expected there. After mixing differently shaped configura-
tions, one ends up with a more correlated wave function
for the nuclear ground state. The low-lying excited states
associated with rotational and vibrational collective excita-
tions are also obtained. The properties of these low-lying
states are used to provide information on the underlying shell
structure.

Figure 3 displays the averaged deformation parameter B,
for the first two 0 and 21 states, which is defined as

Bia=>_ Blel(B)
B

2
)

(14)

where the collective wave function g’,(B) is related to the
mixing weight [34]

g (B) =Y IN'12(B. B/ 11 (B (15)
I3
The evolution trend in the averaged quadrupole deforma-

tions of the first 0T and 2% states presents a clear picture of
smooth shape transition with the increase of neutron number
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FIG. 1. Energies of mean-field states (MF, left), particle-number projected states (N &Z, middle), and those with additional projection onto
angular momentum (J = 0, right) for (a)—(c) '*°72%Er, (d)—(f) 1>72%Yb, (g)-(i) **2!°Hf, and (j)-(1) **"21>W isotopes as a function of the
intrinsic mass quadrupole deformation. The energies of '°0~2%Er, 192-208yp, 194-2101f and 196212\ jsotopes are shifted by —4, —3, —2, and
—2 MeV between two neighboring isotopes, respectively. The global energy minima are indicated by black dots.

away from N = 126. The second 0" and 2" states are more
complicated, the averaged quadrupole deformations of which
exhibit different behaviors before and after N = 134. Since
all four isotopes share similar features, we only plot the
collective wave functions for '*°~2%°Er in Fig. 4. It is seen
that the second 0" and 2% states can be well approximated
as spherical vibrational excitation states in the isotopes with
N < 134. Beyond N = 134, this structure is progressively
destroyed by the increasing quadrupole deformation. The very
sharp discontinuity around N = 134 in the 0 states might
be interpreted as a signature of the spherical-to-prolate shape
phase transition [38].

Figure 5 displays the excitation energy of the 2] state,
transition strength B(E?2; Ofr — 21+), the ratio of excitation
energies Ry, = E(4])/E(2]), spectroscopic quadrupole mo-
ment QP°¢(2]"), and neutron-proton decoupling factor n as a
function of neutron number. The neutron-proton decoupling

factor is defined as [39,40]
_ M,/M,

N/Z (16)

n
where M, and M, are the quadrupole transition matrix ele-
ments of neutrons and protons from ground state to 2/ state,
respectively. A pronounced peak is found in the excitation
energy of the 2 state at N = 126, which is consistent with the
findings based on the Gogny force [21], even though the value
~2.5 MeV predicted in the present work is evidently smaller
than their value ~4.5 MeV. All five observables indicate the
weakly quadrupole collectivity for the nuclei around N =
126, which is consistent with the features of low-lying states
in shell-closed nuclei. With the increase of neutron number,
quadrupole collectivity is progressively developed with the
predominate shape changing from a spherical and weakly
deformed one to a prolate one when the neutron number is
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FIG. 2. Quadrupole deformation parameter S of ground state
obtained by MF, PNP (N&Z), and PNAMP (J = 0) calculations
using PC-PK1 force, as a function of neutron number for '*°~2%Er,
192-208yp, 194-210h¢ o 196-212yy jsotopes.

increased beyond N =~ 134. The neutron-proton decoupling
factor n has a minimum at N = 126. In other words, the
quadrupole correlation contributed from neutrons is much
weaker than that from protons, indicating the magicity of the
neutron number N = 126.

B. Analysis of the N = 126 shell closure

We use two-neutron separation energies S, and their
differentials  AS»,(Z,N)=E(Z,N —2)+ E(Z,N +2) —
2E(Z, N), obtained from the masses of even-even nuclei, as
a signature and measure of the underlying shell structure.
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FIG. 3. Averaged deformation parameter B;, for the first two
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196-212yy jsotopes as a function of neutron number, respectively.
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FIG. 4. Collective wave functions [cf. Eq. (15)] of the 07, 05,
27, and 27 states in '*°"?%Er.

Figure 6 displays our predicted S, and AS,, in Er isotopes
(labeled as RMF[PC-PK1(Tri.)]) as a function of neutron
number across N = 82 and 126, in comparison with available
data. Besides, we perform a survey on separation energies
obtained from other predictions, including the following:

(i) Macroscopic-microscopic (MM) mass models:
the finite-range droplet model (FRDM) [41], the
Weizsidcker-Skyrme mass model (WS4) [42], and the
Duflo-Zuker mass model (DZ28) [43].

(i) Hartree-Fock-Bogoliubov (HFB) models with nonrel-
ativistic Skyrme energy density functionals SV-min
[44], UNEDF1 [45], HFB-17 [46], SLy4 [47], SkM*
[48], SkP [49], and Gogny force D1S [50].

(iii) The relativistic mean-field (RMF) model [13]
with TMA [51], and relativistic Hartree-Bogoliubov
(RHB) model [15,52-54] with DD-ME2 [55], DD-
PC1 [56], NL3* [57], DD-MES§ [58], and spherical
relativistic continuum Hartree-Bogoliubov (RCHB)
model [16] with PC-PK1 [31].

Most of these mass tables are compiled in Ref. [59]. Before
comparing the results by these models, some points should
be kept in mind. First of all, the parameters in the mass
models (including HFB-17) are usually adjusted with all or
most available data on nuclear masses. Therefore, the mass
models generally show a better performance in the nuclei with
data. They are not guaranteed to have the same performance
on in-sample and out-of-sample nuclei. Second, even for
the results from the calculations based on universal energy
functionals, different types of approximation are used. For the
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0*¢(27), and (e) neutron-proton decoupling factor n for Er, Yb, Hf,
and W isotopes as a function of neutron number from the MR-CDFT
calculations using PC-PK1. See text for details.

results labeled with “HFB” or “RHB/RCHB”, pairing corre-
lation between nucleons is treated with a general Bogoliubov
transformation. Otherwise, the BCS approximation is used.
Besides, for the results by energy functionals, axial symmetry
is assumed if not specified. Last but not least, different energy
functionals are fitted based on somewhat different protocols. It
also introduces diversities into the predictions for neutron-rich
nuclei.

The results by the nonrelativistic models are plotted in
Figs. 6(a), and 6(c), and for relativistic models in 6(b), and
6(d). From the figure, one can see the following:

(i) All the models predict an abrupt drop in S,, and a
deep peak in ASy, at the magic numbers N = 82 and
N = 126.

(i) The discrepancy between the model predictions and
available data for S,, and AS,, is generally within 1.0
MeV, except for the nuclei around the shell closure
N = 82.

(iii) The Sy, of the nuclei with N = 82 (N = 84) is gener-
ally overestimated (underestimated) by all the energy
functionals. It brings an error up to ~3 MeV into the
predicted ASy,, in particular by the Skyrme SLy4,
Gogny D18, and all the considered relativistic energy
functionals except for TMA.

(iv) A very interesting finding is the steady increase in
the S, starting from N ~ 114 up to N = 126 pre-
dicted by most of the calculations. The results of
PC-PK1 with and without taking into account static
deformation effects are significantly different from
each other. Without the deformation effect, the S,, is
decreasing monotonically with neutron number from
N =82 to N = 126 as shown in the results labeled
with RCHB[PC-PK1(Sph.)]. It implies that the defor-
mation effect is responsible for the steady increase in
the two-neutron separation energies before N = 126.

The above analysis is extended to Yb, Hf, and W isotopes
and a similar phenomenon to that found in Er isotopes is
observed, i.e., a large uncertainty exists in the predicted S,,
and AS,, by different models for the four isotopes around
N = 126. The predicted AS,, varies from —2.0 to —8.0 MeV.

Figure 7 displays the predicted AS,y at N = 126 from
different models as a function of proton number from Z = 60
to Z = 74. It is shown that the MM models predict a somewhat
increase in the AS,, with the decrease of proton number.
In contrast, the predicted AS,, is quenching with the de-
crease of proton number by the nonrelativistic Skyrme energy
functionals (except for the HFB-17, SLy4, and SkM*) and
the relativistic ones (except for the DD-MEGS, DD-PC1, and
TMA). The evolution trend by the TMA is obviously opposite
to that by other relativistic functionals. It might be due to
its mass-number-dependent coupling strengths. Moreover, we
note that different from other relativistic energy functionals
that are usually optimized to a bunch of spherical nuclei in
different mass regions, the DD-PC1 was optimized locally to
64 axially deformed nuclei in the mass regions 150 < A <
180 and 230 < A < 250. The use of different fitting protocols
may contribute partially to the divergence in the predictions.

Subsequently, we examine the contribution of the BMF
dynamic correlation energies to the predicted two-neutron
separation energies. The dynamic correlation energy can be

decomposed into three parts: the energy EENF from particle-

number projection, the energy EAMP from angular-momentum
projection and the energy Eg(%vl from shape mixing,
Dyn PNP AMP GCM
ECorr = ECorr + ECorr + ECorr . (17)
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We take '*Er as an example to illustrate each contribu-
tion. The results are shown in Fig. 8. It is seen that about
2.07 MeV is gained in the energy from the particle-number
projection, which shifts down the entire potential energy sur-
face systematically. The projection onto angular momentum
J = 0 brings additionally about 1.71 MeV contribution to
the energy. The energy gained from shape mixing is around
0.98 MeV. We carry out the same analysis for '°~20°Er,
192208y, 194=210Hf  and '%°=212W. The results are displayed
in Fig. 9 as a function of neutron number. It is shown that
the total dynamic correlation energy ranges between x3.5
and ~5.5 MeV, with the minimum located at N = 126. For
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FIG. 7. AS,y obtained from different calculations as a function
of proton number.

comparison, we also evaluate the dynamic correlation energy
using the cranking prescription [25,46,61,62]

crank
E dyn — Lot

{btanh(c|B.l) + d|Bale ' P=#7} | (18)
where the values of parameters b, ¢, d, [, and ,30 are chosen
as 0.80, 10, 2.6, 10, and 0.10 according to Ref. [62]. The E,
represents the rotational correction to the energy

19)

where the moment of inertia Z is calculated by the Inglis-
Belyaev formula and J corresponds to the angular-momentum
operator. As expected, the phenomenological formula (18)
underestimates systematically the dynamic correlation energy,
in particular for the nuclei around N = 126. It means that
the cranking prescription cannot be used for the purpose of
studying dynamic correlation effects on the neutron separation
energies of nuclei around shell closure.

Since the amount of dynamic correlation energy varies
from nucleus to nucleus, it affects the predicted two-nucleon
separation energy. The previous studies for stable nuclei
have demonstrated that the two-neutron separation energies
are overall improved after taking into account the dynamic
correlation energies [17,19,20,25,26,39]. In Fig. 10, we show
how the dynamic correlation energy evaluated at different
levels changes the two-neutron separation energies in the
four isotopes. In the mean-field results, an increase in the
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FIG. 8. (a) Energy surface of mean-field states (MF), particle-
number projected states (N&Z), and those with an additional pro-
jection onto angular momentum J = 0 for "**Er by the relativistic
PC-PK1. The global energy minimum of each energy surface is
marked with square, triangle, and diamond symbols, respectively.
The ground state by the GCM calculation is indicated with a red dot.
(b) Energy gained from particle-number projection (dashed green
line) and that from angular-momentum projection (solid blue line)
as functions of the quadrupole deformation f.

two-neutron separation energy with neutron number ranging
from N = 128 to N = 134 is attributed to the deformation
effect, which was discussed in Ref. [21]. With the inclu-
sion of dynamic correlations from particle-number projection
and angular-momentum projection, the amount of energy
dropping in S, from N = 126 to N = 128 is dramatically
decreased. This effect becomes moderate after taking into
account shape mixing in the GCM calculation, in which
case, the variation of the two-neutron separation energy with
neutron number is much smoother.

We extend the above analysis to the entire Er isotopes.
The separation energies S, together with their differentials
AS,, are shown in Fig. 11. The BMF effects quench the
variation of S, with neutron number, in particular around
N = 82 and N = 126. In the region with available data around
N = 82, one can see that these effects reduce significantly the
discrepancy between theoretical results and data.

Figure 12 shows the predicted differential AS,, of two-
neutron separation energy at N = 126 as a function of proton
number, in comparison with the results from the calculations
using the Gogny force DIM [21]. The N = 126 shell gap is
quenched when the BMF correlations are included. It is shown
that angular-momentum projection decreases the AS, by
about 1.3 MeV in both cases. This value is further decreased
by ~1.0 MeV with the particle-number projection. Besides,
we note that the AS,, by AMP+GCM with DIM is almost
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FIG. 9. Correlation energies E-; ., E¢.., EG., » and EcY for
190-206F 192208y, 194=210hf 4pg 196-212yy isotopes as a function
of neutron number. The results ES™* calculated using the cranking

prescription (18) are also given for comparison.

a constant (about 5.8 MeV) with the decrease of proton
number from Z = 74 to Z = 68, while that by the PC-PK1
is decreasing evidently from ~5.0 (6.0) MeV to =4.7 (5.7)
MeV. The origin of this difference is not clear yet, but
might be related to the different isospin-dependent spin-orbit
potential.

Figure 13 summarizes the two-neutron separation energy
and its differential at N = 126 predicted by different models.
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FIG. 10. Two-neutron separation energy from the MR-CDFT
calculations with different approximations, including the pure mean-
field calculation (MF), with particle-number projection only (PNP),
and projections onto both particle number and angular momen-
tum J = 0 [PNAMP(J = 0)], as well as the quantum-number pro-
jected GCM calculation (PNAMP+GCM), for 1%0-206Ey, 192208y},
194=210f and '96-212W isotopes as a function of neutron number.
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Generally, the predicted absolute value of AS,, by the MM
models (FRDM, WS4, and DZ28) is overall smaller than those
by the energy functional calculations (except for the Skyrme
force SkP [49]). On the mean-field level, the Gogny force

75 I e

——————— -D---—--------.D
I
70 %::::-- ______ -A ------------ .A ------------ .A
o A N=126 |
—a— AMP+GCM(D1M)

g7&<£'ij

-0- RMF(PC-PK1)
—=— AMP+GCM(PC-PK1)
—— PNAMP+GCM(PC-PK1)

o
o

Shell gap (MeV)
o o
o o
IIIIIIIIIIIIIIIIIIIIIIIIIIIII

45 ] 1 ] 1 ] 1 ]
68 70 72 74

Proton number

FIG. 12. Absolute value of the differential AS,, at neutron num-
ber N = 126 from different calculations as a function of proton num-
ber. The results by the Gogny force D1M are taken from Ref. [21].
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FIG. 13. Two-neutron separation energies (upper) and their dif-
ferentials (lower) at neutron number N = 126 in Er, Yb, Hf, and W
isotopes predicted by different models.

D1S and relativistic energy functionals DD-ME2 and PC-PK1
predict the largest values for the N = 126 shell gap. For
the PC-PK1, the BMF effects reduce the AS,, to be around
—5.0 MeV, quenching the shell gap by ~30%.

To assess the possible impact of ~30% shell quenching
at N = 126 by the PC-PKI1 on the r-process abundances in
a qualitative way, we compare the BMF effects on the Sy,
and AS,, from our calculation with that from the SDCH
calculation based on the Gogny DIS force [50] in Table I.
The latter has been adopted into the 7-process calculations by
Arcones and Bertsch. It was found that the BMF effects on
the masses reduce significantly the trough in the abundances
before the third peak at A ~ 195 [63], which are similar to
the shell quenching effects on the r-process [4,64]. One can
see from Table I that the BMF effects by the SDCH based on
DIS decrease the S,, and AS5, in a much more pronounced
way than that by the GCM based on PC-PK1. The quenching

TABLE I. Two-neutron separation energy S,, and its differential
AS,, at N = 126 from both mean-field and BMF calculations based
on either relativistic PC-PK1 or Gogny D1S. The BMF results of
DI1S were evaluated with the SDCH from Ref. [50]. See text for
details.

z S5, (MeV) ASs, (MeV)
PC-PK1 DIS PC-PK1 DIS
RMF GCM HFB 5DCH RMF GCM HFB 5DCH
68 946 850 842 581 —691 —470 —6.89 —3.07
70 1031 928 924 664 —7.11 —475 —6.87 —3.00

72 11.13 10.09
74 1192 10.94

10.10  7.48
11.02 8.31

=725 —4.87 —6.90 —2.90
—732 —499 -7.02 -2.72
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effect at N = 126 shell gap in the former is larger than the
latter by about a factor of 2. It indicates a much more moderate
influence on the r-process abundances from the BMF effects
by the GCM calculation using PC-PK1 than that illustrated
in Ref. [63]. Of course, a dedicated r-process calculation
with the entire mass table by the PC-PK1 is required before
drawing a solid conclusion.

V. SUMMARY

We have presented a comprehensive study of neutron-
rich Er, Yb, Hf, and W isotopes across the N = 126 shell
with the MR-CDFT. With the techniques of quantum-number
projections and GCM, we have calculated the observables
of low-lying states using the PC-PK1 parametrization of the
relativistic point-coupling Lagrangian density. Our results
have shown that the quadrupole collectivity is progressively
developed in all four isotopes with the increase of neutron
number beyond N = 126. It corresponds to a transition from
a spherical shape to a prolate deformed one. The general fea-
tures of the low-lying states in closed-shell nuclei, i.e., a sharp
peak of ZT excitation energies and a pronounced neutron-
proton decoupling, have been found in the isotopes around
N = 126, indicating the robustness of the N = 126 shell gap.

Besides, we have studied the impact of BMF effects on
the predicted nuclear masses, two-neutron separation energies
and their differentials. The BMF effects quench the variation

of the two-neutron separation energies with neutron number
and lead to a reduction in the predicted shell gaps. For the
N = 126 shell gap, this quenching effect is ~30% in all four
isotopes, consistent with that found in the GCM calculation
based on the Gogny forces [20,21], but much smaller than that
in the 5SDCH calculation [50]. It implies that the BMF effect
on the r-process through nuclear masses will be more mod-
erate than that found in Ref. [63], in which the BMF effects
are evaluated with the SDCH calculation [50]. A quantitative
investigation of these effects on the r-process abundances
is required before drawing a solid conclusion. This kind of
investigation asks for a global mass-table calculation with the
MR-CDFT. Work along this direction is in progress.
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