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Background: Microscopic calculations of the electromagnetic response of light and medium-mass nuclei are
now feasible thanks to the availability of realistic nuclear interactions with accurate saturation and spectroscopic
properties, and the development of large-scale computing methods for many-body physics.
Purpose: To compute isovector dipole electromagnetic (E1) response and related quantities, i.e., integrated
dipole cross section and polarizability, and compare with data from photoabsorption and Coulomb excitation
experiments. To investigate the evolution pattern of the E1 response towards the neutron drip line with
calculations of neutron-rich nuclei within a given isotopic chain.
Methods: The single-particle propagator is obtained by solving the Dyson equation, where the self-energy
includes correlations nonperturbatively through the algebraic diagrammatic construction (ADC) method. The
particle-hole (ph) polarization propagator is treated in the dressed random phase approximation (DRPA), based
on an effective correlated propagator that includes some 2p2h effects but keeps the same computation scaling as
the standard Hartree-Fock propagator.
Results: The E1 responses for 14,16,22,24O, 36,40,48,52,54,70Ca, and 68Ni have been computed: The presence of a
soft dipole mode of excitation for neutron-rich nuclei is found, and there is a fair reproduction of the low-energy
part of the experimental excitation spectrum. This is reflected in a good agreement with the empirical dipole
polarizability values. The impact of different approximations to the correlated propagator used as input in the E1
response calculation is assessed.
Conclusion: For a realistic interaction that accurately reproduces masses and radii, an effective propagator of the
mean-field type computed by the self-consistent Green’s function provides a good description of the empirical
E1 response, especially in the low-energy part of the excitation spectrum and around the giant dipole resonance.
The high-energy part of the spectrum improves and displays an enhancement of the strength when quasiparticle
fragmentation is added to the reference propagator. However, this fragmentation (without a proper restoration of
dynamical self-consistency) spoils the predictions of the energy centroid of the giant dipole resonance.
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I. INTRODUCTION

The electromagnetic field is an efficient tool to investigate
the many-body structure of nuclei. The small value of the
fine structure constant allows the electromagnetic probe to
be treated perturbatively. This simplicity is also reflected
in the factorization of the interaction vertex in the electro-
magnetic and the nuclear density currents, the latter keep-
ing the information on the structure of the initial and final
nuclear states [1,2]. Real or virtual photons with different
multipolarities can excite bound and resonant nuclear states,
probing in this way different internal degrees of freedom of
nuclei. For instance, the isovector electromagnetic dipole (E1)
field produces the corresponding response, described at the
macroscopic level as an out of phase collective oscillation of
protons and neutrons [3]. This phenomenon, referred to as the
giant dipole resonance (GDR), is one of the cornerstones of
the nuclear electromagnetic spectroscopy.

With the discovery of the halo nuclei in the eighties [4],
the study of the E1 modes of excitation focused on the low-
energy range above the one-nucleon emission threshold: The
enhanced E1 response, as soft dipole mode or as pygmy
dipole resonance (PDR), is in fact one of the signatures of

the neutron-halo and neutron-skin nuclei, respectively [5]. In
general, the dipole response is sensitive to the unbalance of
neutron and proton numbers in nuclei, and provides a reaction
channel that could be used to constrain the isovector depen-
dence of the nuclear interaction: For instance, models con-
strained to reproduce the experimental dipole polarizabilities
of nuclei are used to predict the corresponding neutron skin
thickness [6]. In fact, several nuclear quantities related to both
infinite nuclear matter and finite nuclei are correlated to the
E1 response and the dipole polarizability: symmetry energy,
neutron-skin thickness, charge radii, and matter distribution
[7–11]. The relation to the equation of state of the neutron-rich
matter, which is the macroscopic fermionic system modeling
the inner crust of the neutron stars, ties the dipole response
of nuclei to the macroscopic structure of astrophysical objects
[12,13].

The computation of the E1 excitation spectrum based on
a microscopic description of the nuclei was achieved first
by phenomenological models in the random phase approxi-
mation (RPA) and quasiparticle RPA, in both the relativistic
and nonrelativistic frameworks and with and without the
effect of the continuum included (see the topical reviews
of Refs. [11,14–16]). Moreover, several phenomenological
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approaches going beyond the simple summation of the ring
diagrams in the polarization propagator have been formulated:
extensions of the RPA with more complex excitation operators
[17–19] also at finite temperature [20], the particle-vibration
coupling methods such as the nuclear field theory [21] and the
quasiparticle-phonon model [22], the time-dependent density-
functional description of the nuclear dynamics [23,24], and
the extended theory of finite Fermi systems [25].

The theoretical approaches starting from realistic nuclear
interactions, both conventional and based on chiral effective
field theories, are mainly focused to light nuclei, as reviewed
in Refs. [26,27]. Recently, the scope of the ab initio many-
body methods capable of describing the nuclear excited spec-
tra was extended to nuclei with mass number A > 16. In
particular, a series of applications was put forward within the
coupled cluster approach combined with the Lorentz integral
transform (CC-LIT) method, with the computation of the E1
response of several nuclei, from 4He to 48Ca [28,29].

Preliminary calculations of the isovector E1 response
and dipole polarizability have also been performed using
the self-consistent Green’s function (SCGF) approach
[30]. Building on this first application, we present in this
work extensive calculations of the E1 response and related
quantities of medium-mass nuclei, within a formalism in
which the particle-hole propagator is treated at the RPA level.
Note that the SCGF formalism is based on expressing the
self-energy and particle-hole interaction kernels in terms of
skeleton diagrams and fully dressed propagator, rather than
mean-field reference states. The self-consistency requirement
is a useful feature because it is related to the dynamical
fulfillment of conservation laws, however, it is not achieved
by the dressed RPA (DRPA) many-body truncation used
in the present study. In this work, we exploit the accurate
saturation properties of a well-established chiral two-nucleon
(2N) plus three-nucleon (3N) interaction, NNLOsat [31]. This
chiral interaction is particularly suitable for the computation
of quantities related to the nuclear matter distribution and size
of the nuclei, because it contains carbon and oxygen radii in
the pool of fit observables, and reproduces accurately radii up
to the calcium isotopes [13,32].

Section II sets out a short review of the SCGF formalism
and the basic equations of the DRPA, with Sec. II B focused
on the isovector dipole nuclear response. After having dis-
cussed in Sec. III A the convergence of our calculations with
respect to the size and the features of the model space, we
present in the rest of Sec. III the results for the E1 photoab-
sorption cross sections and polarizabilites for several nuclei,
from 14O to 68Ni. For the closed-subshell nuclei considered
below, it is well established that the Dyson formulation of
SCGF provides accurate results even when the pairing effect
is not included explicitly [33,34]. Different choices of the
effective propagators for the DRPA are discussed in Sec. IV.
Finally, we draw our conclusions in Sec. V.

II. SCGF FORMALISM AND E1 NUCLEAR RESPONSE

Within the SCGF formalism [35–37] the single-particle
and the polarization propagators are obtained as the

solution of the Dyson and Bethe-Salpeter equations, respec-
tively. The polarization propagator gives direct access to the
nuclear response of an external operator. Hence, it provides
the spectroscopic (overlap functions) and dynamic (energies)
information required to compute the nuclear isovector electric
dipole response we are interested in.

The spectral information is especially apparent in the
Lehmann representation of these propagators. Given the
many-body Schrödinger eigenvalue problem for the A- and
A ± 1-nucleon systems,

Ĥ
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where the poles give the excitation energies of the A ± 1
system with respect to the ground-state energy EA

0 ,
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and the transition amplitudes for the addition and removal of
a nucleon are 〈

�A+1
n

∣∣a†
α

∣∣�A
0

〉 ≡ X n
α , (5)〈

�A−1
k

∣∣aα

∣∣�A
0

〉 ≡ Yk
α. (6)

The full expansion of the propagator (2) in terms of the
uncorrelated propagator g(0)

αβ (ω) is resummed through the
Dyson equation,

gαβ (ω) = g(0)
αβ (ω) +

∑
γ δ

g(0)
αγ (ω)
�

γδ (ω)gδβ (ω), (7)

which is a nonlinear equation that iterates the irreducible
self-energy 
�

γδ (ω). The effects of the medium on the particle
propagation are encoded in the self-energy with an organiza-
tion scheme, the algebraic diagrammatic construction (ADC),
in which the resummation of ring (particle-hole) and ladder
(particle-particle and hole-hole) diagrams is performed to all
orders [37,38].

The Lehmann representation of the polarization propagator
is

�γδ,αβ (ω) =
∑
nπ �=0

〈
�A

0

∣∣a†
δaγ

∣∣�A
nπ

〉〈
�A

nπ

∣∣a†
αaβ

∣∣�A
0

〉
h̄ω − (

EA
nπ

− EA
0

) + iη

−
∑
nπ �=0

〈
�A

0

∣∣a†
αaβ

∣∣�A
nπ

〉〈
�A

nπ

∣∣a†
δaγ

∣∣�A
0

〉
h̄ω + (

EA
nπ

− EA
0

) − iη
, (8)

where nπ labels the excited states of the A system. In
the following, we will use the shorthand notation for the

054327-2



NUCLEAR ELECTROMAGNETIC DIPOLE RESPONSE … PHYSICAL REVIEW C 99, 054327 (2019)

FIG. 1. Expansion of the polarization propagator �(ω) at the
RPA level. Double fermionic lines denote the fully correlated prop-
agators (or OpRS ones) employed in the DRPA. The expansion
truncated at the first row would correspond to the Tamm-Dancoff
approximation (TDA).

poles,

επ
nπ

≡ EA
nπ

− EA
0 , (9)

and the residues,

Znπ

αβ ≡ 〈
�A

nπ

∣∣a†
αaβ

∣∣�A
0

〉
. (10)

These are, respectively, the energies and particle-hole matrix
elements between excited states of the A-nucleon system and
its ground state.

The polarization propagator is the solution of the Bethe-
Salpeter equation,

�γδ,αβ (ω) = �
f
γ δ,αβ (ω) +

∑
μρνσ

�
f
γ δ,μρ (ω)

× K (ph)
μρ,νσ (ω)�νσ,αβ (ω), (11)

where � f (ω) is the free polarization propagator, and the
ph irreducible interaction K (ph) plays for the particle-hole
propagator a similar role as that of the self-energy in Eq. (7)
for the single-particle propagator.

The RPA to Eq. (11) results from approximating the K (ph)

kernel to first order, i.e., by using only the bare interaction
vertex. In standard applications, the associated unperturbed
reference propagator is the Hartree-Fock one as required by
the Baym-Kadanoff self-consistency approach [39,40]. The
RPA can be extended by using the fully correlated single-
particle propagator instead of the Hartree-Fock one, yielding
the DRPA discussed in the next section.

A. Dressed RPA and reduced propagator

The basic idea of the DRPA is to take into account
the fragmentation of the fully correlated propagators in the
construction of the free polarization propagator, � f (ω), as
depicted in Fig. 1. The DRPA equation can be cast in the usual
matrix form, (

A B
−B∗ −A∗

)(
X
Y

)
= E

(
X
Y

)
, (12)

with the RPA eigenvectors related to the polarization ampli-
tudes in the following way:
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The submatrices A and B in Eq. (12) are

An1k2,n3k4 = (
ε+

n1
− ε−

k2

)
δn1n3δk2k4

+
∑
αβγ δ
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Bn1k2,n3k4 =
∑
αβγ δ
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α Yk2

β VαγβδX n3
γ Yk4

δ . (16)

A study of the 16O excitation energy spectrum in Ref. [41]
has shown that the main effects of the fragmentation of the
propagator are the screening of the nuclear interaction, with
low-lying states pushed at higher energies, and a redistribution
of the strength among ph and 2p2h phonons considered
therein.

Note that the reference single-particle propagator for the
construction of the DRPA matrices, Eqs. (15) and (16), should
be the fully correlated propagator. However, the use of dressed
propagators increases significantly the requirement in com-
puting resources: The propagator for a typical medium-mass
nucleus within a harmonic oscillator model space of 14 major
shells contains more than 105 poles, which would lead to ph
matrices in Eq. (12) which are dense and have dimensions of
the order of 1010. To overcome this limitation, an effective
way to include the correlations of the fully dressed propagator
was introduced in Ref. [42], with the concept of the optimized
reference state (OpRS) propagator, which we employ as the
reference of our (D)RPA computations. As explained below,
the OpRS propagator includes the relevant many-body corre-
lations while keeping manageable the computational task at
hand. Thus, it is adopted as the optimal choice for the refer-
ence propagator. The effective OpRS one-body propagator,

gOpRS
αβ (ω) =

∑
n �∈F

(
ψn

α

)∗
ψn

β

ω − ε
OpRS
n + iη

+
∑
k∈F

ψk
α

(
ψk

β

)∗

ω − ε
OpRS
k − iη

,

(17)

is obtained by mapping the fully correlated propagator to a
simpler one that has a reduced number of poles, for instance,
one with the same number of poles as the independent particle
model (or mean-field) propagator. The effects of the correla-
tions are embedded in the OpRS propagator by requiring that
the set of single-particle energies and amplitudes reproduces
the first 2κ moments of the poles of gαβ (ω),

M p
αβ =

∑
n

(X n
α

)∗ X n
β

[EF − ε+
n ]p

+
∑

k

Yk
α

(Yk
β

)∗

[EF − ε−
k ]p

, (18)
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with EF being the Fermi energy. This means that εOpRS and
ψn/k

α are chosen to fulfill the relations,

M p,OpRS
αβ = M p

αβ, p = 0, 1, 2, . . . , 2κ − 1, (19)

with integer κ � 1.
When the moments of Eq. (18) are retained only up to

p = 0 and 1, one obtains an effective OpRS propagator with
the same number of poles as the mean-field propagator, corre-
sponding to the single-particle occupancy of the lowest con-
figuration in the independent particle picture. This effective
propagator is denoted as gOpRS

MF (ω). This is of course the most
crude approximation of the dressed propagator: including
higher moments, i.e., for p > 1, allows for the fragmentation
of the single-particle strength. The fragmentation becomes
denser as higher moments are retained and the propagator
eventually approaches the fully correlated one.

A feature of Eq. (18) is that both particle and hole spectral
distributions are mixed together in the same moments. The
denominator gives more weight in the sum to those poles
closed to EF , hence reproducing at best the correlation effects
near the Fermi energy. Alternatively, one can consider sepa-
rate moments for the particle and hole distributions using the
following definitions:

M̃ p
αβ =

∑
n

(X n
α

)∗ X n
β (ε+

n )p,

Ñ p
αβ =

∑
k

Yk
α

(Yk
β

)∗
(ε−

k )p, (20)

for p = 0, 1, 2, . . ., which yield an OpRS propagator, denoted
in the following as g̃OpRS

p=0,1,2,.... Equation (20) leads to a larger

number of poles in g̃OpRS
p (ω) as compared to Eq. (18) but they

constrain the particle and hole strengths separately, hereby
ensuring that the density profile, total particle number, one-
body expectation values, and the energy Koltun sum rule of
the original propagator are reproduced exactly already for
p � 1.

It is important to remark that the gOpRS
αβ (ω) propagator,

according to the order p of the moments included in the
reduction procedure, contains effectively 2p1h intermediate
state configurations originating from the ADC treatment of
the self-energy in the Dyson equation. More specifically,
the ADC is implemented by resumming at infinite order the
self-energy diagram topologies at third order, yielding the
ADC(3) scheme [38]. For this reason, each particle-hole pair
of fermionic lines in the free polarization propagator � f (ω)
can contain in turn 1p − 2h1p, 1h − 2p1h, and 2p1h − 2h1p
intermediate configurations, but in the form of two non-
interacting sets of fermionic lines. For instance, both the
diagrams in Fig. 2 represent the propagation of a ph pair
that includes virtual 2p2h intermediate state configurations,
but only the diagram on the left implicitly contributes to
the DRPA because it is composed by a 2p1h self-energy
noninteracting with the corresponding hole line. The diagram
on the right side depicts a particle-hole interaction mediated
by a phonon (a bubble). These bubble diagrams are required
to achieve a complete description of 2p2h configurations
[17,43,44], however, they are not included at the DRPA level.

FIG. 2. Example of diagrams contributing to the ph polarization
propagator �(ω) with 2p2h intermediate configurations. (Left) Non-
interacting 1h + 2p1h terms that contribute to DRPA through the
dressing of the reference propagator. (Right) Interaction among the
ph pair mediated by a phonon exchange.

The importance of these terms is also understood by noting
that the DRPA could be seen as a hybrid approach because
it improves the description of the single-nucleon dynamics
by accounting for the fragmentation of its spectral functions,
but it continues to approximate the interaction kernel K (ph)

at first order. This breaks self-consistency according to the
Baym-Kadanoff approach [39,40] so that the fulfillment of
fundamental conservation laws is no longer guaranteed. Im-
proving the kernel accordingly, for the ADC(3) polarization,
would require a very large number of additional diagrams
that also include the bubble exchange of Fig. 2 and other
similar terms. These improvements will be the object of future
work. In the present work we will mostly investigate unto
which point the fragmentation introduced by DRPA allows
one to improve the response at large energies, above the giant
resonance region.

B. Isovector dipole nuclear response

The observables of interest for our purposes are the in-
tegrated photoabsorption and Coulomb excitation cross sec-
tions, which are computed as

σ (E ) = 4π2αER(E ), (21)

and the dipole polarizability,

αD = 2α

∫
dE

R(E )

E
, (22)

which is the total E1 strength weighted with the inverse of the
energy.

Both Eqs. (21) and (22) include the fine-structure constant
α, and depend on the response R(E ) of a nucleus of Z protons
and N neutrons to an isovector dipole electromagnetic field,
with Jπ T = 1−1 quantum numbers,

Q̂T =1
1m = N

N + Z

Z∑
p=1

rpY1m − Z

N + Z

N∑
n=1

rnY1m, (23)

which is corrected for the center-of-mass displacement, and
uses the elementary charge e=1. The nuclear response con-
tains the matrix element of the field of Eq. (23) with respect
to the correlated excited and ground states,〈

�A
n

∣∣Q̂T =1
1m

∣∣�A
0

〉 =
∑
αβ

〈α|Q̂T =1
1m |β〉Zn

αβ, (24)
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which is expressed in terms of the single-particle matrix
element of the isovector dipole operator and the particle-
hole spectroscopic amplitudes of Eq. (10). To obtain these
amplitudes, we have to solve for the polarization propagator
�(ω) in the DRPA discussed in Sec. II A. The corresponding
E1 nuclear response is given then by

R(E ) = − 1

π

∑
αβ

γ δ

〈γ |Q̂T =1
1m |δ〉∗ Im �γδ,αβ (E ) 〈α|Q̂T =1

1m |β〉

=
∑
nπ

∣∣〈�A
nπ

∣∣Q̂T =1
1m

∣∣�A
0

〉∣∣2
δ
(
επ

nπ
− E

)
. (25)

In our discussions below, we will fold the response with a
Lorentzian of width � to smooth the energy dependence,

R� (E ) =
∑
nπ

∣∣〈�A
nπ

∣∣Q̂T =1
1m

∣∣�A
0

〉∣∣2 �/2π(
επ

nπ
− E

)2 + �2/4
. (26)

III. RESULTS

To calculate the E1 response of a nuclear system to the
isovector dipole operator of Eq. (23), we proceed according
to the following steps:

(1) The correlated single-particle propagator for the nu-
cleus of interest is obtained from the Dyson Eq. (7),
with the self-energy expanded up to ADC(3) in the
2N and 3N interactions, that is, by including nonper-
turbatively correlations extracted from all Feynman
diagrams topologies up third order (see Ref. [37,38]
for details). The contributions from 3N forces are
included as 2N effective interaction, hence neglecting
interaction irreducible 3N terms [38,45].

(2) The reduction of the single-particle propagator de-
scribed in Sec. II A is performed and the corresponding
effective gOpRS

αβ (ω) is obtained.
(3) The quasihole and quasiparticle states of the OpRS

propagator are used to build the ph basis spanning
the RPA matrices, which are diagonalized to find the
solutions of the DRPA Eq. (12).

(4) The spectroscopic amplitudes obtained from the con-
vergent solution of the Bethe-Salpeter equation are
plugged into Eqs. (24)–(26) to compute the E1 re-
sponse.

The procedure outlined above was applied to calculate the
E1 photoabsorption cross section and dipole polarizability for
light and medium-mass nuclei, from 14O to 68Ni.

The microscopic Hamiltonian used to compute all the
E1 responses in this work is the chiral nuclear interaction
NNLOsat [31]. The matrix elements of this interaction are
computed in Jacobi coordinates and then transformed to a
harmonic oscillator (HO) laboratory frame by keeping all
matrix elements with N1 + N2 + N3 � 16, where Ni = 2ni +
�i is the major oscillator quantum number of nucleon i [46].
For our purposes, it is crucial that the spectra of light and
medium mass nuclei are computed with a saturating nuclear
Hamiltonian so that both binding energies and radii are repro-
duced correctly. Given the established correlation among the
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FIG. 3. Integrated isovector E1 photoabsorption cross section of
16O as a function of the excitation energy EX , computed from the
NNLOsat chiral Hamiltonian. The three curves correspond to h̄ω=18
(solid line), 20 (dashed line), and 22 (dotted line) MeV, for Nmax=13
and Lorentzian width �= 3.0 MeV.

matter density distribution and the dipole response in nuclei
[7], the NNLOsat interaction is appropriate for the computa-
tion of the E1 response in a microscopic nuclear many-body
method.

Concerning the mapping of the fully correlated propagator
to the OpRS propagator explained in Sec. II A, we have
explored different choices in Sec. IV: The mean-field type
gOpRS

MF (ω) corresponding to the moments of Eq. (18) for p = 0
and 1, and two g̃OpRS

p (ω) propagators for p � 1 or 3 with the
moments defined in Eq. (20).

A. Convergence with respect to the model space
and the many-body truncation

In this section, we discuss the convergence of our calcu-
lations with respect to the size of the HO model space. We
explore different truncations in terms of the number of major
shells, Nmax+1, and the HO frequency h̄ω, considering 16O as
a test case. Convergence should also be gauged with respect
to the many-body truncation of the single-particle reference
propagator, gOpRS(ω), by starting from the HF approximation
and moving to the ADC scheme at second and third order.
It should be clear that, throughout this work, the Bethe-
Salpeter equation (11) remains approximated to include only
explicit ph (RPA) configurations. We also discuss the impact
of different choices of the Lorentzian width used to fold the
dipole response in Eq. (26).

Figure 3 shows the dependence of the photoabsorption
cross section of 16O on the HO frequency h̄ω using a model
space truncated at Nmax=13. The low-energy part of the
excitation spectrum up to the position of the giant dipole
resonance (∼23.5 MeV) is well converged: This is reflected in
the values of the dipole polarizability αD, displayed in Table I.
The latter quantity is an inverse energy weighted sum rule [see
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TABLE I. 16O isovector dipole polarizability αD from Eq. (22)
for different values of the oscillator parameters Nmax and h̄ω.

�������Nmax

h̄ω
18 MeV 20 MeV 22 MeV

11 0.4997 fm3 0.4946 fm3 0.4882 fm3

13 0.5026 fm3 0.4996 fm3 0.4959 fm3

Eq. (22)] and it is sensitive to the lower part of the spectrum.
The relative differences between polarizabilities calculated
with different nearby values of h̄ω is ∼1.5%.

The photoabsorption cross section for Nmax=11 and 13 are
shown in Fig. 4. Also in this case the part of the excitation
spectrum below the GDR peak is well converged, as con-
firmed by the two corresponding values of αD in the third
column of Table I that differ by ∼1%.

The convergence with respect to the inclusion of corre-
lations in the reference propagator is displayed in Fig. 5.
Here, g(ω) is computed with different many-body trunca-
tions in Eq. (7) and always reduced to a gOpRS

MF (ω) before
solving the (D)RPA equations. The comparison between the
response calculated from the uncorrelated HF propagator, and
the curves obtained from the correlated propagators at the
ADC(2) and ADC(3) levels is instructive: As the structure
of the propagator becomes richer, the total strength of the
response increases, and the position of the GDR is shifted
significantly to higher energy. The stronger effect is seen with
the ADC(2), when the lowest order correlations beyond the
mean field are introduced in the single-particle propagator.
The impact of the ADC(3) is smaller than for the ADC(2)
and indicates a saturation of the correlation effects; however,
it is decisive for the comparison with the experimental cross
section, which we discuss later.

The convolution of the excitation spectrum with a
Lorentzian as in Eq. (26) mimics the continuum effect, by
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FIG. 4. Same as in Fig. 3 for the HO parameters Nmax=11 (solid
line) and 13 (dashed line) at fixed h̄ω = 20 MeV.
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FIG. 5. Same as in Fig. 3 but for different many-body truncations
of the Dyson propagator, g(ω), and fixed HO parameters Nmax=13
and h̄ω = 20 MeV. The RPA phonons are built from the uncorrelated
HF propagator (dotted line), and from the correlated ones computed
using the ADC(2) (dashed line) and ADC(3) (solid lines) truncation
schemes.

giving a width to the discrete peaks of the response. In
principle, provided that all the many-body correlations are
included with sufficient precision, the profile of the convo-
luted spectrum should be insensitive to the chosen width �,
for a reasonable range of values. The three curves in the upper
panel of Fig. 6 show that the position of the GDR peak is
not affected by different choices of the width. However, the
overall width associated with the resonance depends signifi-
cantly on �. For all the spectra shown in the present work, we
consistently choose �= 3 MeV, corresponding to the value
that reproduces the experimental width of the GDR in 16O
[see Fig. 7(b)]. From the lower panel of Fig. 6, one can see
that this value roughly corresponds to the mean separation
among the (discrete) dominant RPA eigenstates in the region
between 2 and 35 MeV and therefore it is likely to best
describe the experimental width of the giant resonance. Still,
the dependence on � remains strong at the ph-RPA level of
the many-body truncation.

B. 14,16,22,24O

Figure 7 shows the isovector E1 photoabsorption cross
sections for closed-subshell oxygen isotopes and using the
ADC(3) version of the reference DRPA propagator. The po-
sitions of the GDR peak for the four isotopes lie within the
range ∼19–24 MeV. The experimental GDR for 16O is well
reproduced in Fig. 7(b), when the spectrum is convoluted
with a Lorentzian of � = 3 MeV which reproduces the ex-
perimental width of the resonance for this measurement. The
agreement with the data from Ahrens et al. [47] deteriorates in
the high-energy part of the spectrum. The missing computed
strength at large energies is from correlations beyond the ph
configurations, that cannot be captured by the simple RPA.
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MeV.

Table II compares our results for dipole polarizability αD to
the experiment and to the predictions from the CC-LIT many-
body method. The CC-LIT value for 16O was obtained with
advanced many-body truncations, including 3p3h excitations
in both the ground state and the excited states [29]. The 15%
disagreement between the SCGF value and the experiment
in 16O results from the RPA missing both the low-energy
strength around 10–15 MeV and strength at large energies
above the GDR.

For the neutron-rich isotopes 22O and 24O in Figs. 7(c) and
7(d), respectively, part of the dipole strength is redistributed
at lower energies: The presence of a soft dipole mode at
∼10 MeV can be related to the concept of PDR. In particular,
the cross section for 22O shows a peak of small strength
compatible with the resonance measured at 9.36(± 0.45) MeV
by Leistenschneider et al. [48]. This implies an enhancement

TABLE II. 16O and 22O isovector dipole polarizabilities αD from
Eq. (22) compared to the CC-LIT calculations of Refs. [28,29]
and to those extracted from the experimental spectra [47,48]. The
22O αD values are obtained by integrating over the entire energy range
(upper values) or up to 3 MeV above the continuum threshold (lower
values).

Nucleus SCGF CC-LIT Exp

16O 0.4996 fm3 0.528(21) fm3 0.585(9) fm3

22O 0.724 fm3 0.86(4) fm3 0.43(4) fm3

22O (Ex < 3 MeV) 0.05 fm3 0.05(1) fm3 0.07(2) fm3

of the dipole polarizability, as expected for neutron-rich nuclei
and confirmed by the theoretical calculations displayed in
Table II. The experimental spectrum in Ref. [48] is affected
by significant uncertainties in the GDR region, because of the
presence of other reaction channels not excluded in the mea-
surement. For this reason, we follow the analysis of Ref. [28]
and compute the dipole polarizabilities also in a restricted
energy range. Table II shows the results obtained including
excitations up to 3 MeV above the continuum threshold: In our
discrete response, this range includes two peaks accounting
for a fraction of αD = 0.05 fm3, in agreement with both the
experiment and CC-LIT results.

C. 36,40,48,52,54,70Ca

We have performed calculations of the dipole response
and polarizability for six calcium isotopes, from the neutron-
deficient 36Ca to the neutron-rich 70Ca. The resulting photoab-
sorption cross sections are displayed in Fig. 8. Similarly to
oxygen isotopes, we see that the position of the GDR peak
decreases smoothly with the mass number A, in accordance
with the slow A− 1

3 empirical trend. For both 40Ca and 48Ca in
Figs. 8(b) and 8(c), respectively, the profile of the experimen-
tal GDR is well reproduced by our calculation, whereas the
high-energy tail of the spectra misses some strength, which is
in line to what we have seen for 16O.

For 40Ca, the experimental data are available from Ahrens
et al. [47,51], with the corresponding dipole polarizability
displayed in Table III, where the CC-LIT results [29,50]
are also shown. The experimental value αD = 1.87(3) fm3

obtained in Ref. [50] by combining data from Refs. [47,51], is
slightly underestimated by the SCGF value and overestimated
by the more refined CC-LIT calculation.

The experimental determination of the 48Ca polarizability
was undertaken recently, in connection with the study of its
neutron skin and the correlation with the charge radius [50].
The RPA result with self-consistent Green’s functions is in
better agreement with experiment than the CC-LIT calcu-
lation. The latter includes 3p3h excitations for the ground
state and doublets for the excited states, complemented by
a consistent treatment of the similarity transformed dipole
operator [29]. A comparable extension of the SCGF many-
body method, going beyond the RPA, would be required to
verify the pattern of convergence of these observables with
respect to the many-body truncations in our calculations.
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FIG. 7. Isovector E1 photoabsorption cross sections of 14,16,22,24O computed with the NNLOsat interaction and the SCGF many-body
method. The reference gOpRS

MF (ω) propagator is computed using an ADC(3) self-energy. The curves are obtained by folding the discrete spectra
with Lorentzian widths � = 3.0 MeV. Experimental data for 16O in (b) are from Ahrens et al. [47] (red squares) and from Ishkhanov et al. [49]
(green circles); experimental data for 22O in (c) are from Leistenschneider et al. [48].

D. 68Ni

The isovector dipole response in the neutron-rich 68Ni was
recently measured and the corresponding dipole polarizability
extracted by Rossi et al. [52]. The experimental data are
shown in Fig. 9 and compared with the computed SCGF
curve. The few experimental points at ∼9.5 MeV and around
∼17 MeV excitation energies are interpreted as pygmy and
giant dipole resonances, respectively. We refer to Table IV

TABLE III. 40Ca and 48Ca isovector dipole polarizabilities αD of
Eq. (22) compared with those calculated with the CC-LIT method in
Refs. [28,29,50] and those extracted from the experimental spectra
of Refs. [47,51] for 40Ca and of Ref. [50] for 48Ca.

Nucleus SCGF CC-LIT Expt.

40Ca 1.79 fm3 2.23(3) fm3 1.87(3) fm3

48Ca 2.06 fm3 2.25(8) fm3 2.07(22) fm3

for a comparison with the closest peaks in the computed
discrete RPA spectrum, which is also displayed in Fig. 9. In
particular, the computed strength at low energy is fragmented
in two principal peaks at 10.68 MeV and 10.92 MeV, located
at higher energy than the experimental PDR. For the GDR,
Table IV reports the centroid calculated from the DRPA
response around the main peak after the Lorentzian folding.

The αD computed by integrating the DRPA spectrum is
in agreement with the experiment, also reported in Table IV.
The 3.88(31) fm3 value is obtained by including corrections
from a theoretical extrapolation of the low-energy and high-
energy parts of the spectrum [6], which were not accessible
in the experiment of Rossi et al. [52]. Both the discrete peaks
and the convoluted response in Fig. 9 confirm that the com-
puted spectrum is somehow shifted towards higher energy as
compared to the experimental excitation energies. The
strength of the PDR is also underestimated.

The lack of strength in the low-energy part of the spectrum
could point to insufficient constraints on the isospin-violating
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FIG. 8. Same as Fig. 7 but for 36,40,48,52,54,70Ca. Experimental data for 40Ca in (b) are from Ahrens et al. [47]; experimental data for 48Ca
in (c) are from Birkhan et al. [50] (green circles) and from Ahrens et al. [47] rescaled according to Ref. [50].

contact terms of the NNLOsat interaction, giving a too soft
symmetry energy. This is also found in calculations of the
infinite nucleonic matter within the microscopic Brueckner-
Hartree-Fock [53] and SCGF [54] approaches. However, the

limitations of the many-body truncation in the present RPA
scheme prevents us from drawing firm conclusions on the
interaction. The correlation between the slope of the symme-
try energy and the strength relative to the PDR in 68Ni was
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FIG. 9. Isovector dipole response for 68Ni computed using a
gOpRS

MF (ω) reference from Dyson-ADC(3). The lower (upper) panel
shows the discrete (convoluted) spectrum obtained from DRPA. The
convolution uses a Lorentzian width � = 3.0 MeV. Experimental
data are from Rossi et al. [52].

verified by using different RPA phenomenological models
[55]. When varying the truncation of the model space in our
simulations, from small spaces up to convergence, we find that

TABLE IV. Experimental excitation energies of PDR and GDR,
and dipole polarizability in 68Ni from Rossi et al. [52], compared
with those calculated with the SCGF method at ADC(3)-DRPA level
(see text for details).

SCGF Exp

EPDR (MeV) 10.68 9.55(17)
10.92

EGDR (MeV) 18.1 17.1(2)

αD (fm3) 3.60 3.40(23)
3.88(31)
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FIG. 10. Photoabsorption cross sections of 16O computed with
g̃OpRS

p�1 (ω). The computed DRPA spectrum is convoluted with a
Lorentzian width of � = 3.0 MeV. Experimental data are from
Ahrens et al. [47] (red squares) and from Ishkhanov et al. [49] (green
circles).

the polarizability of this nucleus is strongly correlated to its
radius.

IV. DIFFERENT REDUCTION OF THE
DRESSED PROPAGATOR

The procedure for reducing the fully dressed propagator
into a simpler OpRS one is not unique. Different definitions
of the constraining moments can be used, as in Eqs. (18) and
(20). Moreover, propagators gOpRS

αβ (ω) with different numbers
of quasiparticle and quasihole poles are possible according to
the number of moments considered. In general, the strategy
of constraining the lower moments through Eq. (19) is very
effective and it works similarly to Krylov subspace projection
techniques to induce a fast convergence of the spectroscopic
response spectrum [56]. As a result, several fundamental
observables and physical quantities that are encoded in the
fully dressed propagator are retained already when a few
moments are conserved. Nevertheless, even with large-scale
computational technique it is normally possible to handle only
the smallest OpRs propagators. It is therefore interesting to
investigate by how much this truncation affects the DRPA
computed quantities. Even more interesting is the need to
ascertain the effect of fragmentation, beyond the gOpRS

MF (ω): As
discussed in Sec. II A, the fragmented strength in the solution
of Eq. (7) results from admixtures of 2p1h and 2h1p states.
These can couple in the DRPA equations to generate the redis-
tribution of strength at high energies without explicitly includ-
ing configurations beyond ph. While the above information is
washed out of a mean-field propagator, some fragmentation
is already present even in the lowest g̃OpRS

p=0,1,2,...(ω) reference
propagators when the moments (20) are constrained.

To investigate these effects, we compare the photoabsorp-
tion cross section of 16O predicted from the mean-field type
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FIG. 11. Same as Fig. 10 but with g̃OpRS
p�3 (ω).

reference gOpRS
MF (ω), which is shown in Fig. 7(b), to the DRPA

responses resulting from g̃OpRS
p�1 (ω) and g̃OpRS

p�3 (ω), displayed,
respectively, in Figs. 10 and 11. As expected, the denser
spectroscopic fragmentation results in an enhancement of
the large energy tail in the excitation spectra. This is better
illustrated in Fig. 12 where we collected the dipole strength
in 5-MeV bins for energies above the GDR. The strength for
the g̃OpRS

p�1 (ω) and g̃OpRS
p�3 (ω) becomes important in this energy

region compared to the effective propagator of the mean-field
type. Section II A also pointed out that the DRPA implies
missing diagrams and Pauli violations already among 2p2h
intermediate states. This issue does not appear to have strong
implications in the high energy tail, where several particle and
hole fragments are mixed and distributed over a large energy
range. However, we find that the centroid energy of the GDR
changes notably when introducing more fragmentation. This
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FIG. 12. Integrated E1 strength of 16O for 5-MeV energy bins
in the region of the spectrum above the GDR. The different shaded
areas correspond to the mean-field gOpRS

MF (ω) [shown in Fig. 7(b)], the
g̃OpRS

p�1 (ω) (Fig. 10) and the g̃OpRS
p�3 (ω) (Fig. 11).

indicates that full DRPA is better reliable at large energies but
becomes unstable in the giant resonance region. To overcome
this limitation, one should implement an extension of the RPA
as in Ref. [41], where the polarization diagrams accounting
for the coupling with two-phonon contributions are explicitly
included.

Finally, we have found that the dipole polarizability αD

computed with the different OpRS propagators differ by less
than 5%.

V. CONCLUSIONS

The results discussed in Secs. III and IV show that the
SCGF formalism is capable of grasping the main features of
the E1 response for the computed nuclei. In particular, the
low-energy part of the excitation spectrum up to the GDR
is very well reproduced for 16,22O and 40,48Ca, and compares
well with the dipole polarizability values, which involve an
integration over the whole experimental spectrum. For the
68Ni, the energies of both PDR and GDR are slightly overesti-
mated, and we compute a lower strength than the experiment,
especially in the PDR.

Despite the fact that the employed ph-RPA for the two-
body propagator is quite rudimentary, the agreement with
the experimental data is comparable to the findings of the
higher many-body truncation such as from Ref. [29]. This
fact should be substantiated by a thorough assessment of
the SCGF theoretical errors, for which we still miss—at this
stage—direct information regarding many-body truncations
beyond the explicit ph intermediate states. Nonetheless, the
results confirm the good saturation properties of the NNLOsat

interaction as the crucial mechanism at play in the dipole
response, while the missing PDR strength in 68Ni could be
a hint that the isospin dependence of the interaction is not suf-
ficiently constrained [53]. In general, we can conclude that the
present DRPA to the Bethe-Salpeter equation performs fairly
well for the observables related to the E1 response, where
the nuclear correlations included in higher-order diagrams
of the polarization propagator could be not so significant.
However, the treatment of the polarization propagator beyond
the RPA is expected to be important for higher multipolarities
of the electromagnetic response and for the weak processes,
requiring an extension of the present implementation.

The procedure for reducing the fully correlated single-
particle propagator to a simpler reference state (referred to as
OpRS) was tested, and we have concluded that the integrated
spectrum has a mild dependence, with a 5% difference in
the dipole polarizability values for different choices of the
gOpRS(ω). On the contrary, the dependence of the GDR cen-
troid and of the response profile in the higher-energy part
of the spectrum points to the limitations of the DRPA, in
particular to the incomplete description of interactions among
2p2h and 3p3h intermediate state configurations.

The isotopes studied so far are closed-subshell nuclei,
because the present implementation for the computation of
the E1 response is limited to the particle-number conserving
version of the SCGF approach. To compute the E1 response
for open-shell nuclei, an extension of the Gorkov formalism
[57] to include the two-body propagator is required. The first
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step of this extension will be equivalent to a microscopic
quasiparticle dressed RPA approach.

ACKNOWLEDGMENTS

The authors thank P. Navrátil for providing the interaction
matrix elements of the NNLOsat interaction. Useful discus-
sions with S. Bacca, R. F. Garcia Ruiz, and M. Miorelli

are also acknowledged. This research is supported by the
United Kingdom Science and Technology Facilities Coun-
cil (STFC) under Grants No. ST/P005314/1 and No.
ST/L005816/1. Calculations were performed performed us-
ing the DiRAC Data Intensive service at Leicester (funded by
the UK BEIS via STFC capital Grants No. ST/K000373/1
and No. ST/R002363/1 and STFC DiRAC Operations Grant
No. ST/R001014/1).

[1] S. Boffi, C. Giusti, F. d. Pacati, and M. Radici, Electromagnetic
Response of Atomic Nuclei, Oxford Studies in Nuclear Physics
Vol. 20 (Clarendon Press, Oxford, 1996).

[2] M. N. Harakeh and A. van der Woude, Giant Resonances:
Fundamental High-Frequency Modes of Nuclear Excitation,
Oxford Studies in Nuclear Physics Vol. 24 (Clarendon Press,
Oxford, 2001).

[3] M. Goldhaber and E. Teller, Phys. Rev. 74, 1046 (1948).
[4] I. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida, N.

Yoshikawa, K. Sugimoto, O. Yamakawa, T. Kobayashi, and
N. Takahashi, Phys. Rev. Lett. 55, 2676 (1985).

[5] T. Aumann and T. Nakamura, Phys. Scr. T152, 014012 (2013).
[6] X. Roca-Maza, X. Viñas, M. Centelles, B. K. Agrawal, G. Colò,

N. Paar, J. Piekarewicz, and D. Vretenar, Phys. Rev. C 92,
064304 (2015).

[7] J. Piekarewicz, Phys. Rev. C 73, 044325 (2006).
[8] J. Piekarewicz, Phys. Rev. C 83, 034319 (2011).
[9] P.-G. Reinhard and W. Nazarewicz, Phys. Rev. C 81, 051303(R)

(2010).
[10] X. Roca-Maza, M. Brenna, G. Colò, M. Centelles, X. Viñas,

B. K. Agrawal, N. Paar, D. Vretenar, and J. Piekarewicz,
Phys. Rev. C 88, 024316 (2013).

[11] X. Roca-Maza and N. Paar, Prog. Part. Nucl. Phys. 101, 96
(2018).

[12] N. Paar, C. C. Moustakidis, T. Marketin, D. Vretenar, and G. A.
Lalazissis, Phys. Rev. C 90, 011304(R) (2014).

[13] G. Hagen, A. Ekström, C. Forssén, G. R. Jansen, W.
Nazarewicz, T. Papenbrock, K. A. Wendt, S. Bacca, N. Barnea,
B. Carlsson, C. Drischler, K. Hebeler, M. Hjorth-Jensen, M.
Miorelli, G. Orlandini, A. Schwenk, and J. Simonis, Nat. Phys.
12, 186 (2016).

[14] N. Paar, D. Vretenar, E. Khan, and G. Colò, Rep. Prog. Phys.
70, 691 (2007).

[15] M. Martini, S. Péru, S. Hilaire, S. Goriely, and F. Lechaftois,
Phys. Rev. C 94, 014304 (2016).

[16] G. Co’, V. De Donno, M. Anguiano, and A. M. Lallena, Eur.
Phys. J. A 52, 145 (2016).

[17] M. Brand, K. Allaart, and W. Dickhoff, Nucl. Phys. A 509, 1
(1990).

[18] D. Gambacurta and M. Grasso, Eur. Phys. J. A 52, 198 (2016).
[19] P. Schuck and M. Tohyama, Phys. Rev. B 93, 165117 (2016).
[20] E. Litvinova and H. Wibowo, Phys. Rev. Lett. 121, 082501

(2018).
[21] R. A. Broglia, P. F. Bortignon, F. Barranco, E. Vigezzi, A. Idini,

and G. Potel, Phys. Scr. 91, 063012 (2016).
[22] C. Bertulani and V. Ponomarev, Phys. Rep. 321, 139 (1999).
[23] T. Nakatsukasa, K. Matsuyanagi, M. Matsuo, and K. Yabana,

Rev. Mod. Phys. 88, 045004 (2016).

[24] D. Lacroix, S. Ayik, and P. Chomaz, Prog. Part. Nucl. Phys. 52,
497 (2004).

[25] S. Kamerdzhiev, J. Speth, and G. Tertychny, Phys. Rep. 393, 1
(2004).

[26] J. Carlson and R. Schiavilla, Rev. Mod. Phys. 70, 743
(1998).

[27] S. Bacca and S. Pastore, J. Phys. G: Nucl. Part. Phys. 41, 123002
(2014).

[28] M. Miorelli, S. Bacca, N. Barnea, G. Hagen, G. R. Jansen, G.
Orlandini, and T. Papenbrock, Phys. Rev. C 94, 034317 (2016).

[29] M. Miorelli, S. Bacca, G. Hagen, and T. Papenbrock, Phys. Rev.
C 98, 014324 (2018).

[30] C. Barbieri, F. Raimondi, and C. McIlroy, J. Phys.: Conf. Ser.
966, 012015 (2018).

[31] A. Ekström, G. R. Jansen, K. A. Wendt, G. Hagen, T.
Papenbrock, B. D. Carlsson, C. Forssén, M. Hjorth-Jensen,
P. Navrátil, and W. Nazarewicz, Phys. Rev. C 91, 051301(R)
(2015).

[32] V. Lapoux, V. Somà, C. Barbieri, H. Hergert, J. D. Holt, and
S. R. Stroberg, Phys. Rev. Lett. 117, 052501 (2016).

[33] V. Somà, A. Cipollone, C. Barbieri, P. Navrátil, and T. Duguet,
Phys. Rev. C 89, 061301(R) (2014).

[34] A. Cipollone, C. Barbieri, and P. Navrátil, Phys. Rev. C 92,
014306 (2015).

[35] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-
Particle Systems (McGraw-Hill, Boston, 1971).

[36] W. Dickhoff and D. Van Neck, Many-body Theory Exposed!:
Propagator Description of Quantum Mechanics in Many-body
Systems, EBSCO ebook academic collection (World Scientific,
Singapore, 2005).

[37] C. Barbieri and A. Carbone, in An Advanced Course in Com-
putational Nuclear Physics: Bridging the Scales from Quarks
to Neutron Stars, edited by M. Hjorth-Jensen, M. P. Lombardo,
and U. van Kolck, Lecture Notes in Physics Vol. 936 (Springer,
Berlin, 2017), pp. 571–644.

[38] F. Raimondi and C. Barbieri, Phys. Rev. C 97, 054308 (2018).
[39] G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287 (1961).
[40] G. Baym, Phys. Rev. 127, 1391 (1962).
[41] C. Barbieri and W. H. Dickhoff, Phys. Rev. C 68, 014311

(2003).
[42] C. Barbieri and M. Hjorth-Jensen, Phys. Rev. C 79, 064313

(2009).
[43] J. Schirmer, Phys. Rev. A 26, 2395 (1982).
[44] A. B. Trofimov, G. Stelter, and J. Schirmer, J. Chem. Phys. 111,

9982 (1999).
[45] A. Carbone, A. Cipollone, C. Barbieri, A. Rios, and A. Polls,

Phys. Rev. C 88, 054326 (2013).
[46] P. Navrátil, Few-Body Syst. 41, 117 (2007).

054327-12

https://doi.org/10.1103/PhysRev.74.1046
https://doi.org/10.1103/PhysRev.74.1046
https://doi.org/10.1103/PhysRev.74.1046
https://doi.org/10.1103/PhysRev.74.1046
https://doi.org/10.1103/PhysRevLett.55.2676
https://doi.org/10.1103/PhysRevLett.55.2676
https://doi.org/10.1103/PhysRevLett.55.2676
https://doi.org/10.1103/PhysRevLett.55.2676
https://doi.org/10.1088/0031-8949/2013/T152/014012
https://doi.org/10.1088/0031-8949/2013/T152/014012
https://doi.org/10.1088/0031-8949/2013/T152/014012
https://doi.org/10.1088/0031-8949/2013/T152/014012
https://doi.org/10.1103/PhysRevC.92.064304
https://doi.org/10.1103/PhysRevC.92.064304
https://doi.org/10.1103/PhysRevC.92.064304
https://doi.org/10.1103/PhysRevC.92.064304
https://doi.org/10.1103/PhysRevC.73.044325
https://doi.org/10.1103/PhysRevC.73.044325
https://doi.org/10.1103/PhysRevC.73.044325
https://doi.org/10.1103/PhysRevC.73.044325
https://doi.org/10.1103/PhysRevC.83.034319
https://doi.org/10.1103/PhysRevC.83.034319
https://doi.org/10.1103/PhysRevC.83.034319
https://doi.org/10.1103/PhysRevC.83.034319
https://doi.org/10.1103/PhysRevC.81.051303
https://doi.org/10.1103/PhysRevC.81.051303
https://doi.org/10.1103/PhysRevC.81.051303
https://doi.org/10.1103/PhysRevC.81.051303
https://doi.org/10.1103/PhysRevC.88.024316
https://doi.org/10.1103/PhysRevC.88.024316
https://doi.org/10.1103/PhysRevC.88.024316
https://doi.org/10.1103/PhysRevC.88.024316
https://doi.org/10.1016/j.ppnp.2018.04.001
https://doi.org/10.1016/j.ppnp.2018.04.001
https://doi.org/10.1016/j.ppnp.2018.04.001
https://doi.org/10.1016/j.ppnp.2018.04.001
https://doi.org/10.1103/PhysRevC.90.011304
https://doi.org/10.1103/PhysRevC.90.011304
https://doi.org/10.1103/PhysRevC.90.011304
https://doi.org/10.1103/PhysRevC.90.011304
https://doi.org/10.1038/nphys3529
https://doi.org/10.1038/nphys3529
https://doi.org/10.1038/nphys3529
https://doi.org/10.1038/nphys3529
https://doi.org/10.1088/0034-4885/70/5/R02
https://doi.org/10.1088/0034-4885/70/5/R02
https://doi.org/10.1088/0034-4885/70/5/R02
https://doi.org/10.1088/0034-4885/70/5/R02
https://doi.org/10.1103/PhysRevC.94.014304
https://doi.org/10.1103/PhysRevC.94.014304
https://doi.org/10.1103/PhysRevC.94.014304
https://doi.org/10.1103/PhysRevC.94.014304
https://doi.org/10.1140/epja/i2016-16145-7
https://doi.org/10.1140/epja/i2016-16145-7
https://doi.org/10.1140/epja/i2016-16145-7
https://doi.org/10.1140/epja/i2016-16145-7
https://doi.org/10.1016/0375-9474(90)90374-U
https://doi.org/10.1016/0375-9474(90)90374-U
https://doi.org/10.1016/0375-9474(90)90374-U
https://doi.org/10.1016/0375-9474(90)90374-U
https://doi.org/10.1140/epja/i2016-16198-6
https://doi.org/10.1140/epja/i2016-16198-6
https://doi.org/10.1140/epja/i2016-16198-6
https://doi.org/10.1140/epja/i2016-16198-6
https://doi.org/10.1103/PhysRevB.93.165117
https://doi.org/10.1103/PhysRevB.93.165117
https://doi.org/10.1103/PhysRevB.93.165117
https://doi.org/10.1103/PhysRevB.93.165117
https://doi.org/10.1103/PhysRevLett.121.082501
https://doi.org/10.1103/PhysRevLett.121.082501
https://doi.org/10.1103/PhysRevLett.121.082501
https://doi.org/10.1103/PhysRevLett.121.082501
https://doi.org/10.1088/0031-8949/91/6/063012
https://doi.org/10.1088/0031-8949/91/6/063012
https://doi.org/10.1088/0031-8949/91/6/063012
https://doi.org/10.1088/0031-8949/91/6/063012
https://doi.org/10.1016/S0370-1573(99)00038-1
https://doi.org/10.1016/S0370-1573(99)00038-1
https://doi.org/10.1016/S0370-1573(99)00038-1
https://doi.org/10.1016/S0370-1573(99)00038-1
https://doi.org/10.1103/RevModPhys.88.045004
https://doi.org/10.1103/RevModPhys.88.045004
https://doi.org/10.1103/RevModPhys.88.045004
https://doi.org/10.1103/RevModPhys.88.045004
https://doi.org/10.1016/j.ppnp.2004.02.002
https://doi.org/10.1016/j.ppnp.2004.02.002
https://doi.org/10.1016/j.ppnp.2004.02.002
https://doi.org/10.1016/j.ppnp.2004.02.002
https://doi.org/10.1016/j.physrep.2003.11.001
https://doi.org/10.1016/j.physrep.2003.11.001
https://doi.org/10.1016/j.physrep.2003.11.001
https://doi.org/10.1016/j.physrep.2003.11.001
https://doi.org/10.1103/RevModPhys.70.743
https://doi.org/10.1103/RevModPhys.70.743
https://doi.org/10.1103/RevModPhys.70.743
https://doi.org/10.1103/RevModPhys.70.743
https://doi.org/10.1088/0954-3899/41/12/123002
https://doi.org/10.1088/0954-3899/41/12/123002
https://doi.org/10.1088/0954-3899/41/12/123002
https://doi.org/10.1088/0954-3899/41/12/123002
https://doi.org/10.1103/PhysRevC.94.034317
https://doi.org/10.1103/PhysRevC.94.034317
https://doi.org/10.1103/PhysRevC.94.034317
https://doi.org/10.1103/PhysRevC.94.034317
https://doi.org/10.1103/PhysRevC.98.014324
https://doi.org/10.1103/PhysRevC.98.014324
https://doi.org/10.1103/PhysRevC.98.014324
https://doi.org/10.1103/PhysRevC.98.014324
https://doi.org/10.1088/1742-6596/966/1/012015
https://doi.org/10.1088/1742-6596/966/1/012015
https://doi.org/10.1088/1742-6596/966/1/012015
https://doi.org/10.1088/1742-6596/966/1/012015
https://doi.org/10.1103/PhysRevC.91.051301
https://doi.org/10.1103/PhysRevC.91.051301
https://doi.org/10.1103/PhysRevC.91.051301
https://doi.org/10.1103/PhysRevC.91.051301
https://doi.org/10.1103/PhysRevLett.117.052501
https://doi.org/10.1103/PhysRevLett.117.052501
https://doi.org/10.1103/PhysRevLett.117.052501
https://doi.org/10.1103/PhysRevLett.117.052501
https://doi.org/10.1103/PhysRevC.89.061301
https://doi.org/10.1103/PhysRevC.89.061301
https://doi.org/10.1103/PhysRevC.89.061301
https://doi.org/10.1103/PhysRevC.89.061301
https://doi.org/10.1103/PhysRevC.92.014306
https://doi.org/10.1103/PhysRevC.92.014306
https://doi.org/10.1103/PhysRevC.92.014306
https://doi.org/10.1103/PhysRevC.92.014306
https://doi.org/10.1103/PhysRevC.97.054308
https://doi.org/10.1103/PhysRevC.97.054308
https://doi.org/10.1103/PhysRevC.97.054308
https://doi.org/10.1103/PhysRevC.97.054308
https://doi.org/10.1103/PhysRev.124.287
https://doi.org/10.1103/PhysRev.124.287
https://doi.org/10.1103/PhysRev.124.287
https://doi.org/10.1103/PhysRev.124.287
https://doi.org/10.1103/PhysRev.127.1391
https://doi.org/10.1103/PhysRev.127.1391
https://doi.org/10.1103/PhysRev.127.1391
https://doi.org/10.1103/PhysRev.127.1391
https://doi.org/10.1103/PhysRevC.68.014311
https://doi.org/10.1103/PhysRevC.68.014311
https://doi.org/10.1103/PhysRevC.68.014311
https://doi.org/10.1103/PhysRevC.68.014311
https://doi.org/10.1103/PhysRevC.79.064313
https://doi.org/10.1103/PhysRevC.79.064313
https://doi.org/10.1103/PhysRevC.79.064313
https://doi.org/10.1103/PhysRevC.79.064313
https://doi.org/10.1103/PhysRevA.26.2395
https://doi.org/10.1103/PhysRevA.26.2395
https://doi.org/10.1103/PhysRevA.26.2395
https://doi.org/10.1103/PhysRevA.26.2395
https://doi.org/10.1063/1.480352
https://doi.org/10.1063/1.480352
https://doi.org/10.1063/1.480352
https://doi.org/10.1063/1.480352
https://doi.org/10.1103/PhysRevC.88.054326
https://doi.org/10.1103/PhysRevC.88.054326
https://doi.org/10.1103/PhysRevC.88.054326
https://doi.org/10.1103/PhysRevC.88.054326
https://doi.org/10.1007/s00601-007-0193-3
https://doi.org/10.1007/s00601-007-0193-3
https://doi.org/10.1007/s00601-007-0193-3
https://doi.org/10.1007/s00601-007-0193-3


NUCLEAR ELECTROMAGNETIC DIPOLE RESPONSE … PHYSICAL REVIEW C 99, 054327 (2019)

[47] J. Ahrens, H. Borchert, K. Czock, H. Eppler, H. Gimm, H.
Gundrum, M. Kröning, P. Riehn, G. S. Ram, A. Zieger, and
B. Ziegler, Nucl. Phys. A 251, 479 (1975).

[48] A. Leistenschneider, T. Aumann, K. Boretzky, D. Cortina, J.
Cub, U. D. Pramanik, W. Dostal, T. W. Elze, H. Emling,
H. Geissel, A. Grünschloß, M. Hellström, R. Holzmann, S.
Ilievski, N. Iwasa, M. Kaspar, A. Kleinböhl, J. V. Kratz, R.
Kulessa, Y. Leifels, E. Lubkiewicz, G. Münzenberg, P. Reiter,
M. Rejmund, C. Scheidenberger, C. Schlegel, H. Simon, J.
Stroth, K. Sümmerer, E. Wajda, W. Walús, and S. Wan, Phys.
Rev. Lett. 86, 5442 (2001).

[49] B. Ishkhanov, I. Kapitonov, E. Lileeva, E. Shirokov, V.
Erokhova, M. Elkin, and A. Izotova, Tech. Rep. MSU-INP-
2002-27/711 (Institute of Nuclear Physics, Moscow State
University, Moscow, 2002).

[50] J. Birkhan, M. Miorelli, S. Bacca, S. Bassauer, C. A.
Bertulani, G. Hagen, H. Matsubara, P. von Neumann-Cosel,
T. Papenbrock, N. Pietralla, V. Y. Ponomarev, A. Richter, A.
Schwenk, and A. Tamii, Phys. Rev. Lett. 118, 252501 (2017).

[51] J. Ahrens, Nucl. Phys. A 446, 229 (1985).

[52] D. M. Rossi, P. Adrich, F. Aksouh, H. Alvarez-Pol, T. Aumann,
J. Benlliure, M. Böhmer, K. Boretzky, E. Casarejos, M.
Chartier, A. Chatillon, D. Cortina-Gil, U. Datta Pramanik, H.
Emling, O. Ershova, B. Fernandez-Dominguez, H. Geissel, M.
Gorska, M. Heil, H. T. Johansson, A. Junghans, A. Kelic-Heil,
O. Kiselev, A. Klimkiewicz, J. V. Kratz, R. Krücken, N. Kurz,
M. Labiche, T. Le Bleis, R. Lemmon, Y. A. Litvinov, K.
Mahata, P. Maierbeck, A. Movsesyan, T. Nilsson, C. Nociforo,
R. Palit, S. Paschalis, R. Plag, R. Reifarth, D. Savran, H. Scheit,
H. Simon, K. Sümmerer, A. Wagner, W. Waluś, H. Weick, and
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