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Continuum damping effects in nuclear collisions associated with twisted boundary conditions
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The time-dependent Skyrme Hartree-Fock calculations have been performed to study 24Mg + 24Mg collisions.
The twisted boundary conditions, which can avoid finite box-size effects of the employed three-dimensional
coordinate space, have been implemented. The prolate deformed 24Mg has been set to different orientations to
study vibrations and rotations of the compound nucleus 48Cr. Our time evolution results show that continuum
damping effects associated with the twist-averaged boundary condition play a persistent role after the fusion
stage. In particular, a rotational damping in continuum is presented in calculations of both twist-averaged and
absorbing boundary conditions, in which damping widths can be clearly extracted. It is unusual that the rotating
compound nucleus in continuum evolves toward spherical but still has a considerable angular momentum.
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I. INTRODUCTION

The real-time nuclear dynamics such as collective re-
sponses and large-amplitude collisions and fissions have been
studied extensively to probe effective interactions, many-body
correlations, and transport properties [1–3]. The basic theoret-
ical framework for quantum many-body dynamics is the time-
dependent Schrödinger equation with various approximations.
In this respect, the microscopic time-dependent Hartree-Fock
(TDHF) (or time-dependent density-functional theory) was
very successful for studies of nuclear dynamics, particu-
larly large-amplitude dynamics [1–7]. The improved time-
dependent-Hartree-Fock-Bogoliubov calculations have also
been developed for superfluid systems, relying on tremendous
computing capabilities [8,9]. Besides, the quantum molecular
dynamics calculations have been widely used for heavy-ion
collisions at higher energies with two-body dissipations [10].
In the small-amplitude limit of collective motions, TDHF
results can match the random-phase approximation (RPA) or
linear response theory [2,11]. For nuclear collisions involving
considerable excitation energies, the TDHF without pairing is
a reasonable approximation. For too-high excitation energies,
the TDHF is not applicable when two-body collisions become
prominent.

TDHF calculations are usually performed in three-
dimensional (3D) coordinate spaces with periodic boundary
conditions [12]. Due to the limits of computational resources,
the calculations suffer from a systematic error related to finite
box sizes that were employed. The finite box sizes lead to tiny
wave reflections at boundaries or wave interferences between
periodic images [13]. Furthermore, the continuum cannot be
accurately discretized within small coordinate spaces [14].
This is not a serious problem for descriptions of bulk prop-
erties but it could be not negligible after long-time evolutions.
The important role of continuum in nuclear reactions has
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also been demonstrated by the widely adopted continuum-
discretized coupled-channels calculations [15]. For highly
excited compound nuclei produced by fusion reactions, the
surface pressures are equilibrized by thermalized continuum
gases which allow for particle evaporations [16]. In weakly
bound nuclei, the accurate treatment of continuum couplings
is important for halo structures and associated dynamics
[17–19].

To avoid the box-size dependence in the treatment of
continuum, the twisted averaged boundary condition (TABC)
has been applied to TDHF calculations of giant resonances
[20]. The twisted boundary condition (TBC) is a generalized
periodic boundary condition (PBC) for Bloch waves with
nonzero twisted angles. In condensed-matter physics, TABC
results by averaging twisted angles can significantly cancel
finite box-size effects [21]. Partial TBC has also been found
to be useful in lattice QCD calculations of few-body systems
[22]. In nuclear physics, the quasiparticle RPA (QRPA) with
outgoing boundary conditions has been realized for spherical
nuclei [17] but it is extremely difficult for deformed nuclei. It
was known that QRPA calculations with not-well-discretized
continuum can cause false resonance peaks [14,23]. An ef-
fective way to smooth resonances of deformed nuclei is to
use the absorbing boundary condition (ABC) [13,14]. It has
been demonstrated that the TABC and ABC behave similarly
in damping effects to smooth giant resonances [20]. The
TDHF calculations can in principle take into account Landau
damping, escaping damping, and the damping due to com-
plex configuration couplings [3]. The continuum treatment
is essential in all of these damping mechanisms. The ABC
calculation has to adjust the imaginary potential to absorb
waves exactly at boundaries, and this is tedious. On the other
hand, TABC can be easily implemented for complex systems.
The TABC is very successful in studying giant resonances
which are considered as small-amplitude collective motions.
Therefore, it is desirable to explore the influences of TABC
calculations of large-amplitude nuclear collisions with time
evolutions.
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In this work, we intend to study the 24Mg + 24Mg col-
lisions by TDHF calculations with TABC, PBC, and ABC
boundary conditions. The compound nucleus 48Cr can have
hyperdeformed states at high spins from cranking calcu-
lations [24], indicating multi-α clustering structures. Such
α-conjugate compound nuclei are expected to be favorable
for searching collective molecular motions. Indeed, several
experiments have been performed for 24Mg + 24Mg collisions
and narrow resonances in inelastic cross sections have been
reported [25–27]. However, some experiments did not find
resonance structures in 24Mg + 24Mg fusion cross sections
[28]. Note that the full picture of clustering structures in
compound nuclei should take into account the dynamical
nonlocalized clustering [29]. In the precompound nuclei, the
time-dependent nucleon localization indicates that clustering
vibrations are important in the initial stage of fusion [30].
The prolate 24Mg allows studies of collisions with different
orientations. To characterize different collision reactions, the
time evolutions of total kinetic energies and deformations
have been studied using the Fourier transformation.

II. METHOD

We utilize the 3D Skyrme-TDHF solver Sky3D [12], which
solves the self-consistent HF equation and the TDHF equa-
tion. Calculations are performed in the 3D uniform coordinate
space, and there is no symmetry restrictions on the wave
functions. The full Skyrme energy functional adopts the SV-
bas [31] force, in which the spin-orbit and time-odd terms
have been included.

The grid spacing is set to be 1 fm and the time step
of dynamical evolution takes 0.2 fm/c. In Sky3D, the time
propagator is evaluated by the Taylor series expansion up
to the sixth order. Computations with these settings have
been demonstrated to be good enough for descriptions of the
essence of dynamical properties [32]. The static calculations
of 24Mg + 24Mg are first carried out to obtain the ground-state
wave functions, which are inputs for time-evolution calcula-
tions. The 3D box sizes (along the x, y, and z axes) in static
and dynamical calculations are taken as 24 × 24 × 24 fm
and 48 × 24 × 48 fm, respectively. Note that the static wave
functions can be transformed into larger coordinate spaces by
using the Fourier and inverse Fourier transformations. The
energies and density distributions as a function of time are
the main outputs.

A. Boundary conditions

PBC is a natural choice for plane-wave representation and
is efficient for computations in the uniform 3D grids [12].
TBC is a generalized Bloch boundary condition as written as
[20]

ψ (r + nL) = eiθ ·nψ (r), (1)

where r denotes the 3D coordinates, L denotes the box size,
and n is the unit vector in 3D Cartesian coordinates. The
twisted angle θ changes from zero to π . Equation (1) can go
back to PBC when the twisted angle θ is zero. The single-

particle HF equation can be written as

ĥθψαθ (r) = εαθψαθ (r), (2)

where α is the discrete label of the single-particle wave
functions.

In the TABC method, the expectation value of an observ-
able Ô can be obtained by averaging over the twist angles [20],

〈Ô(t )〉 = 1

8π3

∫∫∫ 2π

0
d3θ〈�θ (t )|Ô|�θ (t )〉, (3)

where �θ (t ) is the HF Slater wave function at time t . The
twisted angle is discretized in practical calculations. In this
work, the 3D integration over θ is performed using a four-
point Gauss-Legendre quadrature between 0 and π . This
means that total 64 TDHF calculations are carried out for each
case. The momentum k is modified accordingly as

ki,m = 2πm + θi

Li
, m = 0,±1,±2, . . .,±mmax. (4)

In principle, we can recover a continuous spectrum of k
with varying twisted angles. Calculations with different twist
angles will give rise to different finite-volume corrections
[22]. It has been demonstrated that averaging results over θ

can significantly cancel finite-volume effects [20,21,33].
For comparison, we also implemented ABC using the

mask function method [13,20]. It was known that the mask
function is effective as the imaginary absorbing potential
[13]. The mask function applies to wave functions and is
given as cos( π

2
r−L/2+labs

labs
)p for L/2 − labs < r � L/2. In ABC

calculations, the box sizes are taken as 56 × 56 × 56 fm. In
this case, the absorbing thickness labs is 12 fm and p is taken
as 0.04. These values are dependent on the specific box sizes
and time steps.

III. RESULTS

We have performed 3D TDHF calculations using the
Sky3D solver for 24Mg + 24Mg collisions. The ground state
of 24Mg has a large prolate deformation of β2 = 0.49 (axis
ratio is 1.7:1) in our Skyrme Hartree-Fock+BCS calcula-
tions. The dimensionless quadrupole deformation is defined
as β2 = 4π

3AR2
0
〈r2Y20〉 [34]. The reaction threshold energy is

−14.93 MeV since the binding energies of 24Mg and 48Cr are
198.26 MeV and 411.45 MeV [35], respectively. The fusion
barriers in this case are from 22 MeV (head to head) to 24
MeV (side to side) depending on the collision orientation.

Figure 1 shows the time evolution of the total kinetic
energy for head-to-head collisions of 24Mg + 24Mg, with col-
lision energies at Ec.m. = 29, 49, and 69 MeV, respectively.
The corresponding excitation energies of the compound 48Cr
are 43.93, 63.93, and 83.93 MeV. In the fusion stage, there are
strongly damped oscillations in kinetic energies related to the
bulk dissipation. In this stage, there are negligible differences
between PBC and TABC calculations before t < 1000 fm/c.
In PBC calculations, small-amplitude oscillations are persis-
tent after 2000 fm/c. These small-amplitude oscillations be-
have like molecular vibrating states and are presented at three
different collision energies. In TABC calculations, however,
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FIG. 1. TDHF calculated time evolution of kinetic energies for
the head-to-head 24Mg + 24Mg collisions with PBC and TABC.
(a) Ec.m. = 29 MeV, (b) Ec.m. = 49 MeV, and (c) Ec.m. = 69 MeV.

the small-amplitude oscillations are quickly damped and the
compound nucleus at equilibrium is obtained. This damping
effect has been demonstrated in the TDHF calculations of
strengthes of giant resonances with TABC and ABC [20].
The particles are not really escaped in TABC; however, the
box-size dependence of continuum treatment is actually di-
minished in TABC. For PBC calculations with not sufficiently
large box sizes, the continuum is not precisely discretized. The
continuum damping plays a persistent role after the fusion
stage. This means that “molecular vibration states” obtained
in TDHF calculations with PBC are questionable.

Figure 2 displays the Fourier analysis of the evolution of
kinetic energies from TDHF-TABC calculations as shown in
Fig. 1. It can be seen that for the three collisions at energies
of 29, 49, and 69 MeV, the main peaks are at 5.8, 5.0, and
6.0 MeV, which are lower than that of typical giant resonances
[36]. The damping widths for Ec.m. = 29, 49, and 69 MeV are
about 2.2, 1.4, and 2.3 MeV, respectively. The head-to-head
fusion is a typical underdamping process with damping widths
much smaller than oscillation frequencies, in contrast to the
widely recognized overdamped fission process [37,38]. The
main dampings are more or less similar in three cases. It can
be seen that the damping time of the 49-MeV collision is
longer than other two cases, which is related to its narrower

FIG. 2. Fourier analysis of the evolution of kinetic energies in
TABC calculations for Ec.m. = 29, 49, and 69 MeV, corresponding to
Fig. 1.

damping width. For PBC calculations, the small-amplitude os-
cillations correspond to frequencies of 7.4, 7.0, and 7.6 MeV,
respectively. These frequencies are much smaller than the
Ikeda clustering threshold energies and are not likely to be
physical molecular vibrations.

The time evolutions of quadrupole deformations from
TDHF-TABC calculations of the above-mentioned collisions
are shown in Fig. 3. At the fusion stage, the large-amplitude
oscillations are strongly damped. It can be seen that the
amplitudes are larger with higher collision energies. However,
the minimum deformations (≈260 fm2) in the three fusion
processes are close. The oscillations of deformations are not
as symmetric as that in kinetic energies. The fusion is not
a simple damped oscillator regarding the quadrupole defor-
mations, due to the density dependence of incompressibility.
At the equilibrium stage, the quadrupole deformations are
448, 485, and 510 fm2, respectively. These prolate deforma-
tions of the compound 48Cr are extremely large with axis

FIG. 3. Evolution of quadrupole moments from TDHF calcula-
tions with TABC at Ec.m. = 29, 49, and 69 MeV, corresponding to
Fig. 1.
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FIG. 4. The evolution of the quadrupole deformation and the
kinetic energy of the side-to-side 24Mg + 24Mg collision at Ec.m. =
49 MeV.

ratios of 3.9:1, 3.8:1, and 3.2:1, respectively. Therefore, larger
quadrupole deformations at higher collision energies are not
necessarily related to larger axis ratios, and volume expan-
sions of compound nuclei play a role. The corresponding final
kinetic energies of the three cases in Fig. 1 are 783.5, 776,
and 768 MeV, respectively, which are lower than the initial
kinetic energies at 809, 829, and 849 MeV, respectively. The
differences indicate that the total potential energies increase
significantly as deformation energies play a role.

Figure 4 shows the time evolutions of the 24Mg + 24Mg
side-to-side collision at 49 MeV. Similarly to Fig. 1, the
PBC and TABC calculations are close at the fusion stage
before 1000 fm/c. This process is complex and does not like
a damped oscillator as in the head-to-head fusion. Small-
amplitude oscillations in quadrupole deformations and kinetic
energies are also persistent in PBC calculations, but they are
being damped in TABC calculations. This is the same contin-
uum damping as demonstrated in the head-to-head collisions.
The final kinetic energy is about 824 MeV, which is larger than
776 MeV of the head-to-head collision with the same collision
energy. The final quadrupole deformation is about 220 fm2,
which is much smaller than that of the head-to-head collision,
showing the role of deformation energy and dependence of
collision orientations.

The last but most interesting part of this work is the fusion-
rotation reaction. In this case, the collision energy is taken as
40 MeV and the impact parameter is 2 fm for the side-to-side
collision. In our calculations, the collision direction is along z
axis and the compound nucleus rotates in the x-z plane. To
study the rotation evolution, the expectation values of 〈z2〉
are given in Fig. 5(a). It is striking to see that the rotation
amplitudes are slowly damped in TABC and ABC calcula-
tions, while the rotation is almost a perfect cosine function in

FIG. 5. The evolution results of the 24Mg + 24Mg side-to-side
collision with an impact parameter of 2 fm and Ec.m. = 40 MeV. The
upper panel shows the time evolution of mean-square value of 〈z2〉;
the middle panel shows the Fourier analysis of the evolution results
of the upper plane. The lower panel shows the time evolution of the
expection value of the angular momentum 〈Jy〉. The red line, black
line, and blue line denote TABC, PBC, and ABC results, respectively.

PBC calculations. This rotational damping is not a surprise
considering the pervious damping of small-amplitude vibra-
tions. It is more interesting because it illustrated a very clear
damping picture compared to previous vibrational cases. The
vibrational damping has been studied extensively [39], while
the rotational damping has rarely been discussed [40]. To fur-
ther study the damping effects, the spectral analysis by Fourier
transformation are also shown in Fig. 5(b). Note that the 〈z2〉
frequency (period is about 1300 fm/c) is 2 times the rota-
tion frequency. The resulted rotation frequencies ω are 0.43,
0.46, and 0.49 MeV for TABC, PBC, and ABC calculations,
respectively. ABC calculations resulted in a larger rotational
frequency [in Fig. 5(a)] and angular momentum [in Fig. 5(c)].
Note that the damped rotation amplitudes can be written as
A(t ) = A0e−
t/2 cos(ωDt + φ), where the damped frequency
ωD =

√
ω2 − 
2/4. Therefore ωD of TABC is slightly smaller

than that of PBC due to damping effects. The damping width

 can be estimated to be about 0.16 MeV for TABC and ABC
calculations, while 
 is about 0.08 MeV for PBC calculations.
The obtained damping widths are comparable with results
from cranking shell-model calculations of compound nuclei
[40], which can be measured by experiments [41,42].
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FIG. 6. The evolution of density distributions (in the x-z plane)
in log scale, corresponding to Fig. 5. TABC results are shown on
the left as (a) t = 2000 fm/c, (b) 4000 fm/c, (c) 6000 fm/c. PBC
results are shown in the middle as (d) t = 2000 fm/c, (e) 4000 fm/c,
(f) 6000 fm/c. ABC results are shown on the right as (g) t = 2000
fm/c, (h) 4000 fm/c, (i) 6000 fm/c.

Figure 6 shows the evolutions of density distributions in the
x-z plane, corresponding to rotations in Fig. 5. With time in-
creases, we see that the surface density distributions becomes
more and more uniform in TABC and ABC calculations. Note
that surface gases in TDHF calculations are dynamic rather
than static. The gases in ABC calculations are being absorbed
at outer boundaries as well as being produced simultaneously.
Consequently, the particle numbers with ABC are not con-
served. The gas density is about 10−5 fm−3, to which protons
and neutrons have similar contributions and α emission is
possible. The uniform gas is similar to the thermal gas (dom-
inated by neutrons) in heavy compound nuclei from finite-
temperature Hartree-Fock-Bogoliubov calculations [16]. The
thermal neutron escaping width is proportional to the gas
density which provides an equilibrium pressure. The density
of thermal neutron gas is dependent on the temperature and
independent of box sizes. The surface gas corresponds to
emitted particles and in principle it should be removed. We
see that PBC, TABC, and ABC all lead to a low-energy bump
at h̄ω = 0.2 MeV in Fig. 5(b), due to the floating continuum
gases, as discussed in Ref. [20]. In contrast, the density
distributions at surfaces in PBC calculations have nonuniform
structures. The nonuniform surface density is related to finite
box sizes, which does not cause damping effects in Fig. 5. The
quadrupole deformation of PBC calculations is about 227 fm2

with an axis ratio of 2.2:1. In TABC and ABC calculations,

however, the averaged bulk density distributions evolve to-
ward spherical. This is consistent with the damped rotation
amplitude in Fig. 5. In head-to-head collisions, differently,
large equilibrium deformations are maintained in compound
nuclei.

TABC calculations show that the near-spherical compound
nucleus 48Cr is still rotating at each twisted angles. For the
rotation in the x-z plane, the calculated averaged angular mo-
mentum 〈Jy〉 is about 6h̄ at 7000 fm/c, which decays slowly
and smoothly. The calculated 〈Jy〉 with PBC is decaying
slightly faster associated with oscillations. It is known that hot
nuclei at equilibrium become spherical at high temperatures in
the mean-field framework. In our case, the angular momentum
〈Jy〉 from TABC is persistent although density distributions
become spherical. It is understandable that spherical com-
pound nuclei at equilibrium can rotate due to the fading of
quantum effects, although spherical quantum systems do not
rotate. In Fig. 5(c), we see that the total angular momentum
is not conserved with different boundary conditions. In TABC
and PBC, the angular momentum is not conserved whenever
the emitted particles from highly excited compound nuclei
encounter boundaries, while this conservation is preserved for
TDHF cranking calculations [5]. In this respect, ABC is more
reasonable since its angular momentum 〈Jy〉 decreases slowly
due to real particle emissions and 〈Jy〉 is larger than TABC
results.

IV. SUMMARY

We implemented the twisted boundary condition in time-
dependent Skyrme Hartree-Fock calculations of 24Mg + 24Mg
collisions, which are performed in 3D coordinate spaces. In
head-to-head and side-to-side collisions, small-amplitude vi-
brations are persistent in calculations with periodic boundary
conditions, but they are damped with twist-averaged and ab-
sorbing boundary conditions. In TABC, this kind of damping
mechanism is related to the cancellation of box-size depen-
dence in continuum treatment. By studying the side-to-side
collision with an impact parameter of 2 fm, we found that the
rotation amplitude is damped as well, in which the continuum
damping width can be clearly extracted. The density distri-
butions show that in TABC and ABC calculations the com-
pound nucleus becomes spherical surrounded by a uniform
gas. The surface density distributions in PBC calculations
are nonuniform, due to finite box-size effects. The angular
momentum decreases slowly due to particle emissions. The
near-spherical compound nucleus are still rotating with a
considerable angular momentum. These results are inspiring
and provide a better understanding of rotating compound
nuclei. In principle, ABC can be applied to a finite system with
continuum by avoiding wave reflections. PBC descriptions are
insufficient for a system when continuum is not negligible.
TABC can remedy the spurious effects due to finite box sizes
by describing the periodicity of a system with continuum
correctly. With a very large box, different boundary conditions
should give consistent results [13]. We demonstrated that con-
sequences of continuum damping after long-time evolutions
could be significant. Further applications of twisted boundary

054318-5



C. Q. HE, J. C. PEI, YU QIANG, AND NA FEI PHYSICAL REVIEW C 99, 054318 (2019)

conditions in nuclear reactions and weakly bound nuclei will
be valuable.
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