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method for odd-A nuclei
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To study exotic odd nuclear systems, the self-consistent continuum Skyrme-Hartree-Fock-Bogoliubov theory
formulated with Green’s function technique is extended to include blocking effects with the equal filling
approximation. Detailed formulas are presented. By comparing with box-discretized calculations, the great
advantages of the Green’s function method in describing the extended density distributions, resonant states,
and the couplings with the continuum in exotic nuclei are shown. Taking the neutron-rich odd nucleus 159Sn as
an example, the halo structure is investigated by blocking the lowest quasiparticle state. We find that it is mainly
the weakly bound states near the Fermi surface that contribute a lot to the extended density distributions at large
coordinate space. Finally, taking the neutron-rich Sn isotopes with mass numbers A = 122–178 as examples, the
halo structures are studied systematically. The small two-neutron separation energy and the low Fermi energy
in a long mass range after the shell N = 82 offer a good environment for the emergence of the halo structure.
The neutron rms radius in 133Sn and the heavier isotopes display a steep increase with A and deviate from
the traditional rule of r ∝ A1/3. Correspondingly, the densities for those nuclei are very extended. Besides, the
odd-even staggering of neutron radius rrms is observed in the mass region A = 151–165, due to the occupations
of the odd neutrons on the low p orbits.
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I. INTRODUCTION

With the operation of new radioactive ion beam facilities
worldwide [1–7] and developments in detection techniques,
exotic nuclei far from the β stability line have become a
very challenging topic and have attracted great interest ex-
perimentally and theoretically [8–16]. Many new and ex-
otic phenomena such as halos [17–22], changes of nuclear
magic numbers [23], and pygmy resonances [24] have been
observed or predicted. In these weakly bound nuclei, the
neutron or proton Fermi surface is very close to the continuum
threshold, and the valence nucleons can be easily scattered
to the continuum due to the pairing correlations. Besides,
when the valence nucleons occupy states with low angular
momentum, very extended spatial density distributions as
well as large nuclear radius are obtained [20]. As a result,
to give a proper theoretical description of the exotic nu-
clei, one must treat pairing correlations and the couplings
with the continuum in a self-consistent way and consider
properly the extended asymptotic behavior of nuclear density
distributions.

The Hartree-Fock-Bogliubov (HFB) theory has achieved
great successes in describing exotic nuclei with a unified
description of the mean field and the pairing correlation
and with proper treatment of the coupling with the contin-
uum. In the spherical case, it has been mainly applied to
the Gogny-HFB theory [25], Skyrme-HFB theory [26–29],
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the relativistic continuum Hartree-Bogoliubov (RCHB) the-
ory [30–33], and density dependent relativistic Hartree-Fock-
Bogoliubov (RHFB) theory [34–36]. To describe the halo
phenomenon in deformed nuclei, the deformed relativistic
Hartree-Bogoliubov (DRHB) theory based on a Woods-Saxon
basis [22,37–40] and the coordinate-space Skyrme-HFB ap-
proach with interaction [41,42] have been developed. Gener-
ally, these H(F)B equations can be solved in the coordinate
space [43] where the Nomerov or Runge-Kutta method [44]
can be applied, or in an appropriate basis [45–47]. For the
exotic nuclei with very extended density distributions, the
simple oscillator basis fails due to its localized single-particle
wave functions. Instead, the wave functions in a Woods-Saxon
basis have a much more realistic asymptotic behavior at large
coordinate. It is shown that the solutions of the relativistic
Hartree equations in a Woods-Saxon basis is almost equiva-
lent to the solution in coordinate space [47]. However, in the
spherical systems, compared with the basis expansion method,
solving the HFB equations in the coordinate space is more
convenient.

In many calculations in the coordinate-space H(F)B ap-
proach, the box boundary condition is adopted, and hence
the discretized quasiparticle states are obtained [20,27,31,48].
Although it is appropriate for deeply bound states, the box
boundary condition is not suitable for weekly bound and
continuum states unless a large enough box is taken. On
the other hand, the Green’s function method [49] allows
one to impose the correct asymptotic behaviors on the wave
functions, especially for the weakly bound and continuum
states, and to calculate the densities.
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The Green’s function (GF) method [50–52] is an efficient
tool for describing the continuum: the discrete bound states
and the continuum can be treated on the same footing, both
the energies and widths for the resonant states can be given
directly, and the correct asymptotic behaviors for the wave
functions can be described. Nonrelativistically and relativis-
tically, there are already many applications of the GF method
in nuclear physics to study the contribution of the continuum
to the ground states and excited states. Nonrelativistically,
in the spherical case, in 1987, Belyaev et al. constructed
the Green’s function in the Hartree-Fock-Bogoliubov (HFB)
theory in the coordinate representation [49]. Afterwards,
Matsuo applied this Green’s function to the quasiparticle
random-phase approximation (QRPA) [53], which was fur-
ther used to describe the collective excitations coupled to
the continuum [54–60], microscopic structures of monopole
pair vibrational modes and associated two-neutron transfer
amplitudes in neutron-rich Sn isotopes [61], and neutron
capture reactions in the neutron-rich nuclei [62]. Recently,
Zhang et al. developed the fully self-consistent continuum
Skyrme-HFB theory with GF method [63–65]. In the de-
formed case, in 2009, Oba et al. extended the continuum
HFB theory to include deformation on the basis of a coupled-
channel representation and explored the properties of the
continuum and pairing correlation in deformed nuclei near the
neutron drip line [66]. Relativistically, in the spherical case,
in Refs. [67,68], the fully self-consistent relativistic contin-
uum random-phase-approximation (RCRPA) was developed
with the Green’s function of the Dirac equation and used to
study the contribution of the continuum to nuclear collective
excitations. In 2014, considering the great successes of the
covariant density functional theory (CDFT) in nuclear struc-
ture [31,69–82] and nuclear astrophysics [83–87], the authors
developed the continuum CDFT based on the GF method,
with which the accurate energies and widths of the single-
neutron resonant states were calculated for the first time [88].
This method has been further extended to describe single-
particle resonances for protons [89] and � hyperons [90]. In
2016, further containing pairing correlation, the Green’s func-
tion relativistic continuum Hartree-Bogoliubov (GF-RCHB)
theory was developed, in which the continuum was treated
exactly and the giant halo phenomena in neutron-rich Zr
isotopes were studied [91].

However, the above Skyrme HFB theory with the Green’s
function method is only formulated for even-even nu-
clei [53,63,64,66,92]. To describe the exotic nuclear struc-
ture in neutron rich odd-A nuclei, the blocking effect has
to be taken into account. In this work, we extend the con-
tinuum Skyrme-HFB theory with Green’s function method
to discuss odd-A nuclei by incorporating the blocking ef-
fect. In this way, pairing correlations, continuum, and block-
ing effects can be described consistently in the coordinate
space.

The paper is organized as follows: In Sec. II, we introduce
the formulation of the continuum Skyrme-HFB theory for
odd-A nuclei using the Green’s function technique. Numerical
details and checks will be presented in Sec. III. After giving
the results and discussions in Sec. IV, finally conclusions are
drawn in Sec. V.

II. THEORETICAL FRAMEWORK

A. Coordinate-space Hartree-Fock-Bogoliubov theory

In the Hartree-Fock-Bogoliubov (HFB) theory, the pair
correlated nuclear system is described in terms of independent
quasiparticles [93]. In the coordinate space, the HFB equation
for the quasiparticle state φi(rσ ) is written as [26](

h − λ h̃
h̃∗ −h∗ + λ

)
φi(rσ ) = Eiφi(rσ ), (1)

with the quasiparticle energy Ei and the Fermi energy λ de-
termined by constraining the expectation value of the nucleon
number. The solutions of the HFB equation have two sym-
metric branches. One is positive (Ei > 0) with wave function
φi(rσ ), and the other one is negative (−Ei < 0) with conjugate
wave function φ̄ĩ(rσ ). The quasiparticle wave function φi(rσ )
and its conjugate wave function φ̄ĩ(rσ ) have two components,

φi(rσ ) ≡
(

ϕ1,i(rσ )
ϕ2,i(rσ )

)
, φ̄ĩ(rσ ) ≡

(−ϕ∗
2,i(rσ̃ )

ϕ∗
1,i(rσ̃ )

)
, (2)

where ϕ(rσ̃ ) ≡ −2σϕ(r,−σ ). Note that the notations in
this paper follow Ref. [53]. The Hartree-Fock Hamiltonian
h(rσ, r′σ ′) and the pair Hamiltonian h̃(rσ, r′σ ′) can be respec-
tively obtained by the variation of the total energy functional
with respect to the particle density ρ(rσ, r′σ ′) and pair density
ρ̃(rσ, r′σ ′),

ρ(rσ, r′σ ′) ≡ 〈	0|c†
r′σ ′crσ |	0〉, (3a)

ρ̃(rσ, r′σ ′) ≡ 〈	0|cr′σ̃ ′crσ |	0〉, (3b)

where |	0〉 is the ground state of the system and crσ and c†
rσ

are the particle annihilate and creation operators, respectively.
The two density matrices can be combined in a generalized
density matrix R as

R(rσ, r′σ ′)

≡
(

ρ(rσ, r′σ ′) ρ̃(rσ, r′σ ′)
ρ̃∗(rσ̃ , r′σ̃ ′) δrr′δσσ ′ − ρ∗(rσ̃ , r′σ̃ ′)

)
, (4)

where the particle density ρ(rσ, r′σ ′) and pair density
ρ̃(rσ, r′σ ′) are the “11” and “12” components of R(rσ, r′σ ′),
respectively.

For an even-even nucleus, the ground state |	0〉 is repre-
sented as a vacuum with respect to quasiparticles [93], i.e.,

βi|	0〉 = 0 for all i = 1, . . . , M, (5)

where βi and β
†
i are the quasiparticle annihilation and creation

operators which are obtained by the Bogoliubov transforma-
tion from the particle operators crσ and c†

rσ , and M is the
dimension of the quasiparticle space.

Starting from the bare vacuum |0〉, the ground state |	0〉
for an even-even nucleus can be constructed as

|	0〉 =
∏

i

βi|0〉, (6)

where i runs over all values of i = 1, 2, . . . , M.
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With the quasiparticle vacuum |	0〉, the generalized den-
sity matrix can be expressed in a simple form,

R(rσ, r′σ ′) =
∑
i:all

φ̄ĩ(rσ )φ̄†
ĩ
(r′σ ′). (7)

B. Blocking effect for odd-A nuclei

For an odd-A nucleus the ground state is a one-
quasiparticle state |	1〉 [93], which can be constructed based
on a HFB vacuum |	0〉 as

|	1〉 = β
†
ib
|	0〉, (8)

where ib denotes the blocked quasiparticle state occupied by
the odd nucleon. For the ground state of the odd system,
βib = β1 corresponds to the quasiparticle state with the lowest
quasiparticle energy. The state |	1〉 is a vacuum to the opera-
tors (β̃ib , β̃2, . . . , β̃M ) with

β̃ib = β
†
1 , β̃2 = β2, . . . , β̃M = βM, (9)

where the exchange of the operators β
†
ib

↔ βib (or β
†
1 ↔ β1)

corresponds to the exchange of the wave function

φib (rσ ) ↔ φ̄ĩb (rσ ). (10)

Accordingly, the particle density ρ(rσ, r′σ ′) and pair density
ρ̃(rσ, r′σ ′) for the one-quasiparticle state |	1〉 are

ρ(rσ, r′σ ′) ≡ 〈	1|c†
r′σ ′crσ |	1〉, (11a)

ρ̃(rσ, r′σ ′) ≡ 〈	1|cr′σ̃ ′crσ |	1〉, (11b)

and the generalized density matrix R(rσ, r′σ ′) becomes

R(rσ, r′σ ′) =
∑
i:all

φ̄ĩ(rσ )φ̄†
ĩ
(r′σ ′)

− φ̄ ĩb (rσ )φ̄†
ĩb

(r′σ ′) + φib (rσ )φ†
ib

(r′σ ′),

(12)

where two more terms are introduced compared with those for
even-even nuclei in Eq. (7) after including the blocking effect
in odd nuclear systems.

C. Density and quasiparticle spectrum

In the conventional Skyrme-HFB theory, one solves the
HFB equation (1) with the box boundary condition to ob-
tain the discretized eigensolutions for the single-quasiparticle
energy and the corresponding wave functions. Then the gen-
eralized density matrix R(rσ, r′σ ′) can be constructed by a
sum over discretized quasiparticle states. We call this method
the box-discretized Skyrme-HFB approach. However, the box
boundary condition is not appropriate for the description of
weakly bound states and continuum in exotic nuclei unless a
large enough box size is taken.

Instead, the Green’s function method is used to impose
the correct asymptotic behaviors on the wave functions, espe-
cially for the continuum states, and to calculate the densities.
The Green’s function G(rσ, r′σ ′; E ) with an arbitrary energy

E defined for the coordinate-space HFB equation obeys[
E −

(
h − λ h̃

h̃∗ −h∗ + λ

)]
G(rσ, r′σ ′; E )

= δ(r − r′)δσσ ′ . (13)

With a complete set of eigenstates {φi(rσ ), φ̄ĩ(rσ )} and eigen-
values {Ei,−Ei} of the HFB equation, the HFB Green’s
function in Eq. (13) can be represented as

G(rσ, r′σ ′; E )

=
∑∫ (

φi(rσ )φ†
i (r′σ ′)

E − Ei
+ φ̄ĩ(rσ )φ̄†

ĩ
(r′σ ′)

E + Ei

)
, (14)

which has two branches. One is for φi(rσ ) and Ei, and the
other is for φ̄ĩ(rσ ) and −Ei. The

∑∫
is summation for the quasi-

particle discrete states with the quasiparticle energy |Ei| < |λ|
and integral for the continuum with |Ei| > |λ| explicitly.

Corresponding to the upper and lower components of the
quasiparticle wave function, the Green’s function for the HFB
equation can be written as a 2 × 2 matrix,

G(rσ, r′σ ′; E ) =
(

G(11)(E ) G(12)(E )
G(21)(E ) G(22)(E )

)
. (15)

Starting from Eq. (14) and according to Cauchy’s theorem,
the generalized density matrix in Eq. (12) can be calculated
with the integrals of the Green’s function in the complex
quasiparticle energy plane as

R(rσ, r′σ ′) = 1

2π i

[ ∮
CE<0

dE G(rσ, r′σ ′; E )

−
∮

C−
b

dE G(rσ, r′σ ′; E )

+
∮

C+
b

dE G(rσ, r′σ ′; E )

]
, (16)

where the contour path CE<0 encloses all the negative quasi-
particle energies −Ei, C−

b encloses only the pole −Eib , and
C+

b encloses only the pole Eib , which can be seen in Fig. 1.
Note that the three terms in Eq. (16) corresponds one-to-one
to those in Eq. (12). The energies E in G(rσ, r′σ ′; E ) are
complex, taken along the paths CE<0, C−

b , and C+
b .

In the spherical case, the quasiparticle wave function
φi(rσ ) and the conjugate wave function φ̄ĩ(rσ ) can be ex-
panded as

φi(rσ ) = 1

r
φnl j (r)Y l

jm(r̂σ ), φnl j (r) =
(

ϕ1,nl j (r)
ϕ2,nl j (r)

)
,

(17a)

φ̄ĩ(rσ ) = 1

r
φ̄nl j (r)Y l∗

jm(r̂σ̃ ), φ̄nl j (r) =
(−ϕ∗

2,nl j (r)
ϕ∗

1,nl j (r)

)
,

(17b)

where Y l
jm(r̂σ ) is the spin spherical harmonic, and Y l

jm(r̂σ̃ ) =
−2σY l

jm(r̂ − σ ). Similarly, the generalized density matrix
R(rσ, r′σ ′) and the Green’s function G(rσ, r′σ ′; E ) can also
be expanded as
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FIG. 1. Contour paths CE<0,C−
b ,C+

b are to perform the integra-
tions of the Green’s function on the complex quasiparticle energy
plane. The paths are chosen to be rectangles with the same width
γ and different lengths, i.e., Ecut, Eb, and Eb for CE<0, C−

b , and C+
b

respectively. The crosses denote the discrete quasiparticle states and
the continuum states are denoted by the thick solid line. Quantum
number ib denotes the single quasiparticle state to be blocked.

R(rσ, r′σ ′) =
∑
l jm

Y l
jm(r̂σ )Rl j (r, r′)Y l∗

jm(r̂′σ ′), (18a)

G(rσ, r′σ ′; E ) =
∑
l jm

Y l
jm(r̂σ )

Gl j (r, r′; E )

rr′ Y l∗
jm(r̂′σ ′),

(18b)

where Rl j (r, r′) and Gl j (r, r′; E ) are the radial parts of the
generalized density matrix and Green’s function, respectively.
Note that the equal filling approximation is applied for the odd
nucleon, i.e., we take an average of the blocked quasiparticle
state ib = (nblb jbmjb ) over the magnetic quantum numbers
mjb = − jb,− jb + 1, . . . , jb − 1, jb.

As a result, the radial local generalized density matrix
R(r) = R(r, r) can be expressed by the radial box-discretized
quasiparticle wave functions φnl j (r) or the radial HFB Green’s
function Gl j (r, r′; E ) as

R(r) =
∑

l j

Rl j (r, r) = 1

4πr2

⎡
⎣∑

l j:all

(2 j + 1)
∑
n:all

φ̄2
nl j (r)

− φ̄2
nblb jb (r) + φ2

nblb jb (r)

⎤
⎦

= 1

4πr2

1

2π i

⎡
⎣∑

l j:all

(2 j + 1)
∮

CE<0

dE G l j (r, r; E )

−
∮

C−
b

dEGlb jb (r, r; E ) +
∮

C+
b

dE G lb jb (r, r; E )

⎤
⎦.

(19)

From the radial generalized matrix R(r), one can easily obtain
the radial local particle density ρ(r) and pair density ρ̃(r),
which are the “11” and “12” components of R(r), respectively.
In the same way, one can express other radial local densities
needed in the functional of the Skyrme interaction [94,95],
such as the kinetic-energy density τ (r), the spin-orbit density
J (r), etc., in terms of the radial Green’s function.

Accordingly, the particle density and pair density for the
blocked partial wave l j = lb jb can be written as

ρl j (r) = ρ0,l j (r) − ρ1,l j (r) + ρ2,l j (r)

= 1

4πr2

[
(2 j + 1)

∑
n

ϕ2
2,nl j (r) − ϕ2

2,nblb jb (r) + ϕ2
1,nblb jb (r)

]

= 1

4πr2

1

2π i

[
(2 j + 1)

∮
CE <0

dE G (11)
l j (r, r; E ) −

∮
C−

b

dE G (11)
l j (r, r; E ) +

∮
C+

b

dE G (11)
l j (r, r; E )

]
, (20a)

ρ̃l j (r) = ρ̃0,l j (r) − ρ̃1,l j (r) + ρ̃2,l j (r)

= 1

4πr2

[
(2 j + 1)

∑
n

ϕ1,nl j (r)ϕ2,nl j (r) − ϕ1,nblb jb (r)ϕ2,nblb jb (r) − ϕ2,nblb jb (r)ϕ1,nblb jb (r)

]

= 1

4πr2

1

2π i

[
(2 j + 1)

∮
CE <0

dE G (12)
l j (r, r; E ) −

∮
C−

b

dE G (12)
l j (r, r; E ) +

∮
C+

b

dE G (12)
l j (r, r; E )

]
. (20b)

And for the partial waves with l j 	= lb jb, the terms introduced
by the blocking effect, i.e., ρ1,l j (r) and ρ2,l j (r) in ρl j (r), and
ρ̃1,l j (r) and ρ̃2,l j (r) in ρ̃l j (r), are zero.

Within the framework of the continuum Skyrme-HFB the-
ory, the quasiparticle energy spectrum can be given by the
occupation number density nl j (E ) or the pair number density
ñl j (E ). The integrals of them with energy E represent the

occupied nucleon number Nl j and paired nucleon number Ñl j

in partial wave l j, i.e.,

Nl j =
∫

dE nl j (E ), (21a)

Ñl j =
∫

dE ñl j (E ). (21b)
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For odd-A nuclei, the occupation number density nl j (E )
and the pair number density ñl j (E ) for the partial wave l j =
lb jb can be written as

nl j (E ) = n0,l j (E ) − n1,l j (E ) + n2,l j (E )

= 2 j + 1

π

∫
dr ImG (11)

0,l j (r, r; −E − iε)
∣∣0
−E=−Ecut

− 1

π

∫
dr ImG (11)

lb jb
(r, r; −E − iε)

∣∣0
−E=−Eb

+ 1

π

∫
dr ImG (11)

lb jb
(r, r; E − iε)

∣∣Eb

E=0, (22a)

ñl j (E ) = ñ0,l j (E ) − ñ1,l j (E ) + ñ2,l j (E )

= 2 j + 1

π

∫
dr ImG (12)

0,l j (r, r; −E − iε)
∣∣0
−E=−Ecut

− 1

π

∫
dr ImG (12)

lb jb
(r, r; −E − iε)

∣∣0
−E=−Eb

+ 1

π

∫
dr ImG (12)

lb jb
(r, r; E − iε)

∣∣Eb

E=0, (22b)

where the terms n1,l j (E ) and n2,l j (E ) in nl j (E ) and ñ1,l j (E )
and ñ2,l j (E ) in ñl j (E ) are introduced due to the blocking
effect, and they are zero for the partial waves with l j 	= lb jb,
and ε is the smoothing parameter with which the δ function
originating from a discrete quasiparticle state is simulated by
a Lorentzian function with the full-width at half-maximum
of 2ε. The energy ranges of the Green’s functions in the
terms n0,l j (E ), n1,l j (E ), and n2,l j (E ) are −Ecut < −E < 0,
−Eb < −E < 0, and 0 < E < Eb, which are in accordance
with the real energy ranges of the contour paths CE<0, C−

b ,
and C+

b in Fig. 1.

D. Construction of HFB Green’s function

For given quasiparticle energy E and quantum number
l j, the radial HFB Green’s function Gl j (r, r′; E ) can be
constructed as
Gl j (r, r′; E ) =

∑
s,s′=1,2

css′
l j

[
θ (r − r′)φ(+s)

l j (r, E )φ(rs′ )T
l j (r′, E )

+ θ (r′ − r)φ(rs′ )
l j (r, E )φ(+s)T

l j (r′, E )
]
, (23)

where θ (r − r′) is the step function, φ(rs)
l j (r, E ) and φ

(+s)
l j (r, E )

(s = 1, 2) are independent solutions of the radial HFB equa-
tions,

φ
(rs)
l j (r, E ) =

(
ϕ

(rs)
1,l j (r, E )

ϕ
(rs)
2,l j (r, E )

)
,

(24)

φ
(+s)
l j (r, E ) =

(
ϕ

(+s)
1,l j (r, E )

ϕ
(+s)
2,l j (r, E )

)
,

obtained by a Runge-Kutta integral starting from the boundary
conditions at the origin, r = 0, and at the edge of the box,
r = R, respectively. The coefficients css′

l j (E ) are expressed in
terms of the Wronskians as(

c11
l j c12

l j

c21
l j c22

l j

)
=

(
wl j (r1,+1) wl j (r1,+2)

wl j (r2,+1) wl j (r2,+2)

)−1

, (25)

with

wl j (rs,+s′)

= h̄2

2m

[
ϕ

(rs)
1,l j (r)

d

dr
ϕ

(+s′ )
1,l j (r) − ϕ

(+s′ )
1,l j (r)

d

dr
ϕ

(rs)
1,l j (r)

−ϕ
(rs)
2,l j (r)

d

dr
ϕ

(+s′ )
2,l j (r) + ϕ

(+s′ )
2,l j (r)

d

dr
ϕ

(rs)
2,l j (r)

]
. (26)

Note that the energies E and the solutions φ
(rs)
l j (r, E ) and

φ
(+s)
l j (r, E ) in the constructed Green’s function (23) are not

eigenvalues and eigenfunctions of the HFB equation.
To impose the correct asymptotic behavior on the wave

function for the continuum states, we adopt the boundary
condition as follows:

φ
(rs)
l j (r, E ) : regular at the origin r = 0,

φ
(+s)
l j (r, E ) : outgoing wave at r → ∞. (27)

Explicitly, the solutions φ
(+s)
l j (r, E ) at r > R satisfy

φ
(+1)
l j (r, E ) →

(
eik+(E )r

0

)
, φ

(+2)
l j (r, E ) →

(
0

eik−(E )r

)
. (28)

Here k±(E ) = √
2m(λ ± E )/h̄ with m the nucleon mass, and

their branch cuts are chosen so that Im k± > 0 is satisfied.

III. NUMERICAL DETAILS AND CHECKS

In this part, numerical details and checks in the continuum
Skyrme-HFB calculations are presented for odd nuclear sys-
tems. Besides, the advantages of the Green’s function method
are shown compared with those by the discretized method
with box boundary conditions.

A. Numerical details

In the particle-hole channel, the Skyrme parameter
SLy4 [96] is taken. In the particle-particle channel, a density
dependent δ interaction (DDDI) is adopted for the pairing
interaction,

vpair (r, r′) = 1

2
(1 − Pσ )V0

[
1 − η

(
ρ(r)

ρ0

)α]
δ(r − r′), (29)

with which the pair Hamiltonian h̃(rσ, r′σ ′) is reduced to a
local pair potential [26]

�(r) = 1

2
V0

[
1 − η

(
ρ(r)

ρ0

)α]
ρ̃(r), (30)

where ρ(r) and ρ̃(r) are the particle density and pair density,
respectively. The parameters in DDDI are taken as V0 =
−458.4 MeV fm3, η = 0.71, α = 0.59, and ρ0 = 0.08 fm−3,
which are constrained by reproducing the experimental neu-
tron pairing gaps for the Sn isotopes [56,59,97] and the
scattering length a = −18.5 fm in the 1S channel of the bare
nuclear force in the low density limit [97]. The cutoff of the
quasiparticle states is taken with maximal angular momentum
jmax = 25/2 and the maximal quasiparticle energy Ecut =
60 MeV. The smoothing parameter ε is Eq. (22) is taken
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FIG. 2. (a) Neutron occupation number density nl j (E ) around the continuum threshold energy −λ and (b) neutron density distributions
4πr2ρl j (r) for the partial wave p1/2 of 159Sn obtained in the continuum Skyrme HFB calculation by blocking quasiparticle state 3p1/2 with
different blocking energy widths Eb = 0.9 MeV (solid lines) and 1.2 MeV (dashed lines). For the case of the blocking energy width Eb > −λ,
i.e., Eb = 1.2 MeV, (b) the contributions for nl j (E ) from the terms n0,l j (E ), n1,l j (E ), and n2,l j (E ) in Eq. (22a), and (d) the contributions for
ρl j (r) from the terms ρ0,l j (r), ρ1,l j (r), and ρ2,l j (r) in Eq. (20a) are presented.

as 5 keV to discuss the structure of the occupation number
density and pair number density.

To perform the integrals of the Green’s function, the con-
tour paths CE<0,C−

b ,C+
b are chosen to be three rectangles on

the complex quasiparticle energy plane as shown in Fig. 1,
with the same height γ = 0.1 MeV and different widths, i.e.,
Ecut, Eb, Eb respectively [63]. To enclose all the negative
quasiparticle energies, the length of the contour path CE<0

is taken as the maximal quasiparticle energy Ecut = 60 MeV.
The contour paths C+

b and C−
b are symmetric with respect to

the origin and have the same length Eb, which enclose the
blocked quasiparticle states at Eib and −Eib , respectively. For
the contour integration, we adopt an energy step �E = 0.01
MeV on the contour path. In Fig. 1, the blocked state is the
lowest quasiparticle state, corresponding to the ground state
of the odd system. If one blocks a state with i1 < ib < i2,
the path CE<0 keeps the same, while the paths C−

b and C+
b

introduced for the blocking effects should only include exactly
the blocked state ib. The HFB equation is solved with the box
size R = 20 fm and mesh size �r = 0.1 fm in the coordinate
space.

B. Numerical checks

In the following, taking the odd-even neutron-rich nucleus
159Sn as an example, the numerical checks on the widths
of contour paths C−

b and C+
b introduced due to the blocking

effects will be discussed. As we have said, C−
b and C+

b should

include the pole of quasiparticle energy for the blocked level
and the width Eb cannot be taken arbitrarily. In the following
discussions, we mainly take two different blocking energy
widths Eb, i.e., (1) Eib < Eb < −λ, and (2) Eb > −λ, where
Eib is the quasiparticle energy of blocked level and −λ is the
continuum threshold. Both of them include the blocked level,
but in the second case some continuum states are included in
the contour paths C−

b and C+
b .

For the ground state of even-even nucleus 158Sn, according
to the continuum Skyrme-HFB calculations, the lowest quasi-
particle state is 3p1/2 with the energy around 0.9 MeV and the
Fermi energy around −1.0 MeV. Thus, in the calculations for
the nearby odd-even nucleus 159Sn with the Green’s function
method, the odd neutron will be blocked on the quasiparticle
state 3p1/2 and we take Eb = 0.9 and 1.2 MeV for discussions
of the blocking energy widths.

In Fig. 2, the neutron occupation number density nl j (E )
around the continuum threshold energy −λ and the neutron
density distributions 4πr2ρl j (r) for the blocked partial wave
p1/2 of 159Sn are presented, which are calculated by the con-
tinuum Skyrme HFB with the blocking energy widths Eb =
0.9 and 1.2 MeV. From the occupation number density nl j (E )
in panel (a), a discrete quasiparticle state 3p1/2 is observed
around E = 0.83 MeV below the continuum threshold −λ,
and very small continuum states in the region above −λ. Com-
paring the results obtained with Eb = 0.9 and 1.2 MeV, most
of them are same except that an unphysical peak is observed
in the continuum region in the case of Eb = 1.2 MeV, which
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starts from the threshold energy E = −λ and ends at E =
1.2 MeV. To analyze the structure of this unphysical peak, we
plot in panel (b) the different contributions n0,l j (E ), n1,l j (E ),
and n2,l j (E ) in Eq. (22a) and find that it is the term n2,l j (E )
that leads to the unphysical peak in continuum. A similar
problem happens also for the neutron density distributions in
the coordinate space. It can be seen in panel (c) that when
the blocking energy width Eb = 1.2 MeV, the neutron density
4πr2ρl j (r) for the partial wave p1/2 has an increasing tail
compared with that obtained with Eb = 0.9 MeV, which is
against the outgoing decay asymptotic behavior of the nuclear
wave functions. To explain the abnormal tail of density, the
contributions ρ0,l j (r), ρ1,l j (r), and ρ2,l j (r) in Eq. (20a) for
ρl j (r) are plotted in panel (d), and obviously it is caused
by the term ρ2,l j (r). However, the unphysical peak in nl j (E )
and increasing tail in ρl j (r) do not happen when taking any
blocking energy width if Eb < −λ. Thus, we can explain
these problems as following: in the case of Eb = 1.2 MeV,
extra continuum distributed over the threshold −λ is included
in blocking. For the quasiparticle states in continuum, the
upper component of the wave function ϕ1(r) is oscillating
and outgoing while the lower component ϕ2(r) is decaying.
Since the term ρ2,l j (r) in Eq. (20a) is related to ϕ2

1,nblb jb
(r),

the calculated density will be oscillating and outgoing in
large coordinate if continuum states are included. A similar
explanation is applicable for the occupation number density
n2,l j (E ), which is also related to ϕ2

1,nblb jb
(r).

According to the above discussions, in the following the
blocking energy width Eb should be taken with Eib < Eb <

−λ. However, note that for the very neutron rich nuclei whose
Fermi surface is very close to zero, there maybe no discrete
quasiparticle states and we have to block a quasiparticle state
in continuum. In this case, the blocking contour path will
intrude into the continuum and should be taken very carefully,
including only the blocked level.

In the following, we will show the advantages of the
Green’s function method in describing the neutron-rich nuclei
compared with using the box-discretized method. In Fig. 3,
the particle density ρn(r) and pair density ρ̃n(r) for neutrons in
159Sn obtained in the continuum and box-discretized Skyrme-
HFB calculations are presented with coordinate space sizes
of R = 15 fm and R = 20 fm, respectively. It can be clearly
seen that in the box-discretized calculations, densities ρn(r)
and ρ̃n(r) in 159Sn decrease sharply at the edge due to the box
boundary conditions, which restrict wave functions to zero at
the edge of the box. As a result, in order to describe the asymp-
totic behaviors of extended density distributions properly,
large coordinate space size should be taken. However, in the
continuum Skyrme-HFB calculations with Green’s function
method, the exponential decay of density distribution is well
described. Moreover, these descriptions are independent of
the space size because the correct asymptotic behaviors on
the wave functions, especially for the continuum states, are
imposed in the Green’s function method to describe extended
densities.

In Fig. 4, the occupation number density nl j (E ) and pair
number density ñl j (E ) obtained in the continuum Skyrme-
HFB calculation with Green’s function method are shown for
the partial wave f7/2 in 159Sn, displayed with red solid lines.

FIG. 3. (a) Neutron density ρn(r) and (b) neutron pairing density
ρ̃n(r) for 159Sn by the continuum Skyrme-HFB theory with Green’s
function method, in comparison with those by the box-discretized
method. Space sizes R = 15 fm and R = 20 fm are taken in both
calculations. The Skyrme parameter set is SLy4.

For comparison, the occupation probability v2 ∈ [0, 1] and
pair probability uv ∈ [0, 0.25] in the box-discretized Skyrme-
HFB calculations are also plotted,

v2 =
∫

dr ϕ2
2,nl j (r), (31a)

uv =
∫

dr ϕ1,nl j (r)ϕ2,nl j (r), (31b)

where ϕ1,nl j (r) and ϕ2,nl j (r) are respectively the upper and
lower components of the HFB radial wave functions in
Eq. (17a). From panel (a), two quasiparticle resonant peaks
are observed in the continuum region around quasiparticle
energies E = 3.2 and 27.6 MeV. Especially, the state near
the continuum threshold −λ corresponds to a weakly bound
single-particle level 2 f7/2 near the Fermi surface, which has an
obvious width due to the couplings with the continuum, while
the other peak corresponds to the deeply bound single-particle
state 1 f7/2, the occupation number density of which is very
high and sharp. Correspondingly, the occupation probability
v2, denoted by blue dashed lines, is almost equal 1.0 for
the deeply bound 1 f7/2 while it is less than 1.0 for the
weakly bound 2 f7/2 state. However, a series of nonphysical
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FIG. 4. (a) Occupation number density nl j (E ) and (b) pair num-
ber density ñl j (E ) for the partial wave f7/2 in 159Sn obtained in the
continuum Skyrme-HFB calculation with Green’s function method
(red solid lines). For comparison, the occupation probability v2

and pair probability uv obtained in the box-discretzed Skyrme-HFB
calculation are also plotted (blue dashed lines). The black dashed
line denotes the continuum threshold −λ. The Skyrme parameter set
is SLy4.

discrete single-quasiparticle states are also obtained with the
box-discretized HFB method. For example, the quasiparticle
state 2 f7/2 is discretized to three peaks by the box-discretized
method. In panel (b), the pair number density ñl j (E ) distribu-
tion is similar to the occupation number density nl j (E ), except
the width is obviously smaller around the Fermi energy. In
fact, it is believed that the pair number density ñl j (E ) rep-
resents more clearly the structure of continuum quasiparticle
states due to the relevance to the pair correlation. From the
occupation number density nl j (E ) or the pair number density
ñl j (E ), the quasiparticle energies and widths for the quasipar-
ticle resonant states can be read directly. The pair correlation
strength, the resonant states, and the couplings between the
bound states and continuum can also be investigated by ana-
lyzing the resonant widths.

IV. RESULTS AND DISCUSSION

A. Halo in 159Sn

In this part, still taking the neutron-rich nucleus 159Sn
as the example, we analyze its structure by the contin-
uum Skyrme-HFB theory with blocking of the quasi-particle
state 1p1/2. In Fig. 5, the particle density ρ(r) and pair
density ρ̃(r) for neutrons in 159Sn as well as their contri-
butions from different partial waves l j, i.e., ρl j (r)/ρ(r) and
ρ̃l j (r)/ρ̃(r), are plotted as functions of radial coordinate r.
The shallow regions are for the total densities ρ(r) and ρ̃(r).
The solid and dashed lines are respectively the contributions
from orbits with the negative and positive parities. In panel
(a), the neutron density ρ(r) decreases sharply from 5 fm and

FIG. 5. Compositions of different partial waves to the total par-
tial density ρl j (r)/ρ(r) (a) and the total pair density ρ̃l j (r)/ρ̃(r)
(b) for neutrons in nucleus 159Sn by the continuum Skyrme-HFB cal-
culations. The shallow regions corresponding to the particle density
in the upper panel and the pair density in the lower panel are rescaled
by multiplying a factor of 5 and 50, respectively.

becomes very small around 9 fm, which finally determines the
neutron radius in 159Sn, rn = 5.44 fm. Besides, it can be seen
clearly that outside the nuclear surface, it is the orbits p1/2,
p3/2, f5/2, f7/2, and h9/2 that contribute a lot to the neutron
density, especially the p1/2 orbit, which is the most dominant
composition in the large coordinate space with r > 15 fm.
In panel (b), the pair density ρ̃(r) mainly locates around the
nuclear surface, becuase the pairing interaction mainly affects
the orbits around the Fermi surface.

In Fig. 6, the occupation number densities nl j (E ) and the
pair number densities ñl j (E ) for neutrons in 159Sn are plotted
in the low energy interval E = 0–4 MeV. The dashed lines
represent the continuum threshold with |λn| = 0.958 MeV,
above which is the quasiparticle continuum. In panel (a), one
discrete quasiparticle state 1p1/2 and five resonant states 1 f5/2,
1p3/2, 1h9/2, 1i13/2, and 1 f7/2 are observed. All those quasi-
particle states correspond to the weakly bound or continuum
single-particle states around the Fermi surface, as shown in
Fig. 7. The blocked quasiparticle state 1p1/2, which locates
below |λn| with no width, corresponds to the weakly bound
Hartree-Fock single-particle state 3p1/2. The quasiparticle
resonant states 1 f5/2, 1p3/2, 1h9/2, 1i13/2, and 1 f7/2, which
have peak structures with finite widths, correspond to the
single-particle states 2 f5/2, 3p3/2, 1h9/2, 1i13/2, and 3 f7/2,
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FIG. 6. (a) Neutron occupation number densities nl j (E ) and
(b) neutron pair number densities ñl j (E ) within quasiparticle energy
range 0–4 MeV for different orbits l j in 159Sn by continuum Skyrme-
HFB calculations. The black dashed line represents the threshold of
the quasiparticle continuum E = −λ.

respectively. All these single-particle states are bound except
state 1i13/2. We can conclude that it is the pairing corre-
lations that transform these bound HF single-particle orbits
to the quasiparticle continuum and, the finite widths mainly
result from the pair correlation and the couplings with the
continuum. In general, the pair correlation will increase the
width of resonant states [64]. From panel (a), the quasiparticle
state 1p3/2 has the largest width, which is consistent with
the most important contribution for the pair density ρ̃(r) at
coordinate space with r > 10 fm. The strict relations between
the quasiparticle energy E and single-particle energy ε can
be analyzed by the equation E =

√
(ε − λ)2 + �2, where

� is the pairing gap. Besides, we find that it is the states
around the Fermi surface that contribute the extended density
distributions Fig. 5. In panel (b), the discrete state 1p1/2

disappears in terms of the pair number density while other
states keep the same positions.

B. Sn isotope

In the following, we take the neutron-rich Sn isotope as
examples and investigate the halo structures. In Fig. 8, we plot
the two-neutron separation energy S2n(N, Z ) = E (N, Z ) −
E (N − 2, Z ) for both the even-even and odd-even Sn iso-
topes. The calculations are done using the Green’s function
method and the box-discretized method, which are denoted

FIG. 7. Neutron Hartree-Fock single-particle energy ε of 159Sn
around the Fermi energy. The dashed line denotes the neutron Fermi
energy λ. The Skyrme parameter set is SLy4.

by the black filled circles and red open circles, respectively.
It can be seen clearly that around the neutron gap N = 82,
the two-neutron separation energy drops sharply from S2n =
13.25 MeV at 132Sn to S2n = 4.94 MeV at 134Sn, which is
consistent with the experimental data [98]. After that, the S2n

FIG. 8. Two-neutron separation energy S2n obtained in the con-
tinuum (black filled circle) and box-discretized (red open circle)
Skyrme-HFB calculations for the neutron-rich Sn isotopes with A =
122–178. The experimental data [98] (blue filled square) are also
presented for comparison.
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FIG. 9. Neutron quasiparticle levels around the continuum
threshold obtained in the continuum Skyrme-HFB calculations for
the Sn isotopes with A = 122–176. The dashed line represents the
continuum threshold with E = |λn|.

decreases gradually and finally becomes negative at 178Sn.
In this way, the neutron drip-line nucleus of Sn isotopes is
177Sn. However, the determination of the drip line is model
dependent. Besides, according to different quantity or crite-
rion, the drip line is also different. For example, according to
the single-neutron separation energy Sn(N, Z ) = E (N, Z ) −
E (N − 1, Z ), the drip line of the Sn isotopes is much shorter
and the drip line nucleus is 148Sn; according to the Fermi
surface λn shown in Fig. 9, the drip line nucleus is 174Sn. The
small two-neutron separation energy or the Fermi surface is
one of the conditions for the emergence of the halo structure.
From Fig. 8, we can see that the continuum and the box-
discretized calculations give very close two-neutron separa-
tion energy S2n and the same neutron drip line nucleus 177Sn
for the Sn isotopes. In comparison with the box-discretized
method, the Green’s function method has great advantages
in describing the spatial properties of exotic nuclei such as
densities and rms radius, as shown in Fig. 10.

In Fig. 9, the single quasiparticle levels around the contin-
uum threshold |λn| with quasiparticle energy E = 0–8 MeV
are plotted as a function of the mass number A for the Sn
isotopes. Around the continuum threshold, there are several
quasiparticle orbits, i.e., p1/2, p3/2, f5/2, f7/2, h9/2, and i13/2,
which correspond to the weakly bound single-particle levels
or those in the continuum, as shown in Fig. 7. For the odd
Sn isotopes, the last neutron occupies the lowest quasiparticle
state, which gives the ground state of the system. As a
result, in the odd mass nuclei 123–131Sn, 133–139Sn, 141–149Sn,
151–165Sn, and 167–173Sn, the last neutron is blocked in the orbit
h11/2, f7/2, p3/2, p1/2, and i13/2, respectively.

In Fig. 10, the neutron root-mean-square (rms) radius rrms,

rrms ≡
√∫

4πr4ρ(r)dr∫
4πr2ρ(r)dr

, (32)

FIG. 10. (a) Neutron root-mean-square (rms) radius rrms and
(b) neutron density ρ(r) for Sn isotopes. The filled circles and solid
lines are the results of the continuum HFB calculations while the
open circles and the dashed lines are those obtained in the box-
discretized HFB calculations. In the inset of panel (a), the radius
differences �r = rrms − 0.961 A1/3 are shown.

and the corresponding neutron density ρ(r) are plotted for
the neutron rich Sn isotopes. In panel (a), compared with the
isotopic trend in A � 132, which gives an extrapolation as
rrms ≈ 0.961 A1/3 fm, the neutron rms radius in 133Sn and the
heavier isotopes display a steep increase with A. These results
are consistent with the previous investigations for the even-
even Sn isotopes in Refs. [28,99], where the halo structure
is predicted in the isotopes with A � 134. In panel (b), the
neutron densities of the odd mass nuclei 125,135,145,155,165Sn
are plotted as well as that of 160Sn for comparison. The Sn
isotopes with A � 135 exhibit a long tail extending far outside
the nuclear surface compared with A = 125. Besides, com-
pared with the box-discretized method, the Green’s function
method can describe well the extended density distributions
in the very neutron-rich Sn isotopes, especially for those with
A � 145.

After including the odd mass Sn isotopes, obvious odd-
even staggering of the neutron radius rrms is observed in the
mass region A = 151–165. For example, the nucleus 151Sn
has a much larger neutron rms radius than the neighboring
nuclei 150Sn and 152Sn. Correspondingly, the densities of
those odd mass nuclei are much extended, such as those of
the nuclei 145,155,165Sn plotted in panel (b), which are more
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FIG. 11. Neutron rms radius rrms,l j of the p1/2, p3/2, f5/2, and f7/2

partial waves of Sn isotopes calculated for the l j-decomposed neu-
tron density ρl j (r). The filled symbols are obtained in the continuum
Skyrme-HFB calculation while the open symbols are obtained in the
box-discretized Skyrme-HFB calculation.

extended than the even-even nuclei. Moreover, this odd-even
staggering is much more strongly described by the Green’s
function method than by the box-discretized method. This is
mainly due to the larger rms radii of the odd mass isotopes
obtained by the Green’s function method. For the same reason,
the odd-even staggering of the neutron rms radius cannot
be observed in the mass region A = 155–165 by the box-
discretized method. In order to see better the differences of the
rms radii obtained by the continuum and the box-discretized
methods, we plot rrms − 0.961 A1/3 by the two methods in the
inset of panel (a). It is shown that the Green’s function method
obtains larger rms radii for the odd mass nuclei from 141Sn to
165Sn compared with the box-discretized method.

To further investigate the odd-even staggering in Fig. 10,
the contributions of the neutron rms radius from different
partial waves rl j,rms are studied,

rl j,rms ≡
√∫

4πr4ρl j (r)dr∫
4πr2ρl j (r)dr

, (33)

where ρl j (r) is the density of the partial wave l j. In Fig. 11,
we plot the rms radius for partial waves l j = p1/2, p3/2, f5/2,
and f7/2 in nuclei 156–160Sn. Results obtained in the continuum
HFB calculations and box-discretized HFB calculations are
shown by the filled symbols and open symbols, respectively.
We can see clearly that the large rms radii of 157Sn and 159Sn
compared with those of neighboring nuclei are mainly due to
the large contribution from the p1/2 partial wave, which is the
blocked state of the odd neutron. Meanwhile, the rms radii
for other partial waves of Sn isotopes do not exhibit large

odd-even staggering. Comparing the results obtained by the
Green’s function method and box-discretized method, the rms
radii of the partial wave p1/2 are very different for the odd
mass Sn isotopes, while they are quit close for the even-even
Sn isotopes. More precisely, it is the occupation of the very
weakly bound 3p1/2 state in the odd mass Sn isotopes that
leads to the large rms radius of partial wave p1/2. Since the
Green’s function method can describe the weakly bound state
and the continuum very well, it finally gives much a larger rms
radius of the p1/2 partial wave.

V. SUMMARY

In this work, the self-consistent continuum Skyrme-HFB
theory is extended to describe odd-A nuclei with the Green’s
function technique in the coordinate space. The blocking
effects are incorporated by taking the equal filling approxi-
mation. Detailed formulas for the densities and quasiparticle
spectrum in forms of the HFB Green’s function are presented
for odd nuclear systems.

Taking the neutron-rich nucleus 159Sn as an example, we
give numerical details and checks. The SLy4 parameter is
taken in the particle-hole channel and the DDDI is taken as the
pairing interaction, the parameters of which are constrained
by reproducing the experimental neutron pairing gaps for the
Sn isotopes and the scattering length a = −18.5 fm in the 1S
channel of the bare nuclear force. To perform the integrals
of the Green’s function, three contour paths CE<0, C−

b , and
C+

b are chosen, the heights of which are taken uniformly
as γ = 0.1 MeV, and width CE<0 is taken as the maximal
quasiparticle energy Ecut = 60 MeV to enclose all the negative
quasiparticle energies. The numerical checks on the widths of
contour paths C−

b and C+
b introduced for the blocking effects

are discussed, and it is found that the width Eb should taken
with Eib < Eb < −λ. This means that the contour paths C−

b
and C+

b should include the blocked quasiparticle state but
cannot intrude into the continuum area. Besides, by compar-
ing with the box-discretized Skyrme-HFB calculations, the
advantages of the Green’s function method in describing the
neutron-rich nuclei are shown. First, Green’s function method
can describe the extended density distributions very well, and
these descriptions are independent of the space size. Second,
the Green’s function method can describe the quasiparticle
spectrum, especially the continuum, very well; thereby the
energies and widths of quasiparticle resonant states can be
given directly.

To study the halo structure, we first investigate the neutron-
rich nucleus 159Sn with the continuum Skyrme-HFB theory
by blocking the quasiparticle state 1p1/2. We find that it is the
weakly bound states 3p1/2, 2 f5/2, 3p3/2, 1h9/2, and 2 f7/2 that
contribute a lot to the extended density distributions at large
coordinate space. Besides, the particle number density nl j (E )
and pair number density ñl j (E ) are also studied, from which
the quasiparticle energies and the width of resonant states
can be extracted. The pairing correlation and the couplings
with the continuum can be analyzed from the widths of
quasiparticle resonant states.

Finally, taking the neutron-rich Sn isotope with mass num-
ber A = 122–178 as examples, the halo structures are studied
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systematically. After exceeding the shell N = 82, the two-
neutron separation energy S2n of Sn isotopes decreases sharply
and keeps a small value in a long mass range, which offers
a good environment for the emergence of the halo structure
together with the low Fermi energy. Compared with the tra-
ditional trend of r = 0.961 A1/3 fm, the neutron rms radius in
133Sn and the heavier isotopes display a steep increase with
A. Correspondingly, the densities for those nuclei are very
extended. Besides, the odd-even staggering of neutron radius
rrms is observed in the mass region A = 151–165, in which
the last neutron of the odd nucleus is blocked in the low l orbit
p1/2 or p3/2. Moreover, this odd-even staggering is much more

strongl described by the Green’s function method than by the
box-discretized method, due to the advantage of the Green’s
function method in describing the weakly bound state and the
continuum.
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