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Role of pair-vibrational correlations in forming the odd-even mass difference
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In the random-phase-approximation–amended (RPA-amended) Nilsson–Strutinskij method of calculating
nuclear binding energies, the conventional shell correction terms derived from the independent-nucleon model
and the Bardeen–Cooper–Schrieffer pairing theory are supplemented by a term which accounts for the pair-
vibrational correlation energy. This term is derived by means of the RPA from a pairing Hamiltonian which
includes a neutron-proton pairing interaction. The method was used previously in studies of the pattern of binding
energies of nuclei with approximately equal numbers N and Z of neutrons and protons and even mass number
A = N + Z . Here it is applied to odd-A nuclei. Three sets of such nuclei are considered: (i) the sequence of nuclei
with Z = N − 1 and 25 � A � 99; (ii) the odd-A isotopes of In, Sn, and Sb with 46 � N � 92; (iii) the odd-A
isotopes of Sr, Y, Zr, Nb, and Mo with 60 � N � 64. The RPA correction is found to contribute significantly
to the calculated odd-even mass differences, particularly in the light nuclei. In the upper sd shell this correction
accounts for almost the entire odd-even mass difference for odd Z and about half of it for odd N . The size and
sign of the RPA contribution varies, which is explained qualitatively in terms of a closed expression for a smooth
RPA counter term.
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I. INTRODUCTION

Nuclear binding energies are often calculated in mean-
field approximations. The Bardeen–Cooper–Schrieffer (BCS)
theory of superconductivity [1], which was applied exten-
sively to the description of pairing in nuclei since its adaption
to the nuclear system by Bohr, Mottelson, and Pines [2],
Bogolyubov [3], and Solov’yov [4], is such an approximation.
Residual interactions, which are neglected in a mean-field
approximation, induce correlations, which increase the bind-
ing energy. We call this extra binding energy the correlation
energy (in Ref. [5] this term is used differently). The BCS
theory, in particular, may be derived, for a given type of
fermion (electron, neutron, proton), from the Hamiltonian

H =
∑

k

εka†
kak − GP†P, P = 1

2

∑
k

akak . (1)

Here ak annihilates a fermion in a member |k〉 of an or-
thonormal set of single-fermion states which is preserved
up to phases under time reversal, denoted by the bar. The
single-fermion energies εk = εk and the coupling constant
G are parameters. The second term in the expression (1) is
known as the pairing interaction. The exact minimum of the
Hamiltonian (1) can be calculated with any wanted accuracy
for fairly large single-fermion spaces [6]. Figure 1 shows the
result of such a calculation in comparison with that obtained
when the correlation energy is calculated in the random-phase
approximation (RPA) [7]. This approximation is seen to give a
good agreement with the exact value. Appreciable deviations

only occur in a narrow interval of G about the threshold Gcr

of BCS pairing. Because the RPA equations derived from the
Hamiltonian (1) describe oscillations of the pair field P about
the mean-field equilibrium, the correlations may thus be seen
as mainly pair vibrational.

Calculations of binding energies by the Strutinskij method
[8] conventionally include a pairing term based on the BCS
theory. Figure 1 indicates a significance of the correlation en-
ergy which suggests that it be taken into account. For G < Gcr,
in particular, the pairing interaction induces only correlation
energy. Moreover, isobaric invariance requires that the sum of
neutron and proton pairing interactions be generalized to

−G�P† · �P, (2)

with a pair field isovector

�P = i
√

2
∑

kl

〈l|ty�t |k〉al ak . (3)

Here �t = (tx, ty, tz ) is the single-nucleon isospin, and time re-
versal is assumed to commute with tx and tz and anticommute
with ty. In Eq. (3) the set k or l of quantum numbers includes
an eigenvalue of tz, and the span of the orthonormal set of
states |k〉 is isobarically invariant. The interaction (2) contains
a neutron-proton term −GP†

z Pz. In a doubly even nucleus the
Hartree–Bogolyubov quasinucleon vacuum derived from the
resulting Hamiltonian has 〈Pz〉 = 0 [9], so the neutron-proton
interaction also induces only correlation energy.

In a collaboration with Frauendorf we developed an ex-
tension of the conventional Nilsson–Strutinskij scheme which
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FIG. 1. Adapted from Fig. 1 of Ref. [5]. The exact minimum E
of the Hamiltonian (1), normalized to zero for G = 0, is shown as
a function of G in comparison with the approximations BCS and
BCS + RPA. The single-fermion space accommodates 32 equidis-
tant doublet levels εk = εk spaced by 1/g and is inhabited by n = 32
fermions. The expectation value −Gn/2 of the pairing interaction
in the G = 0 ground state is subtracted from the exact and RPA
energies. The threshold Gcr of BCS pairing is indicated. We turned
the figure upside down to display energy rather than binding energy.

takes the pair-vibrational correlations into account in the
RPA [10]. Minor modifications of the scheme of calculations
proposed in Ref. [10] were discussed by Neergård [11,12].
These articles deal with nuclei with N ≈ Z and even A, where
N and Z are the numbers of neutrons and protons and A =
N + Z . The extended Nilsson–Strutinskij scheme was found
to account, with suitably chosen parameters, quite well for
the pattern of even-A binding energies and certain excitation
energies in doubly odd nuclei in this region. We here apply
it to odd-A nuclei. We examine in particular the influence
of the inclusion of the RPA term on the calculated odd-even
mass differences. Three regions of the chart of nuclei are
considered: (i) the N ≈ Z region, previously studied with
respect to the even-A nuclei; (ii) a neighborhood of the Sn
isotopic chain; (iii) a region of well-deformed, neutron-rich
nuclei around 102Zr.

The organization of the article is as follows: In Sec. II
we describe the scheme of calculations. This section serves
to present in one place all ingredients of the RPA-amended
Nilsson–Strutinskij method in the form it has taken after
several modifications since the publication of Ref. [10]. Then,
in each of Secs. III–V, we discuss the results for one of the
regions (i)–(iii). Finally, after exploring in Sec. VI a technical
matter of interpolation of the RPA energy across the threshold
of BCS pairing, we summarize our results in Sec. VII.

II. RPA-AMENDED NILSSON–STRUTINSKIJ MODEL

The binding energy −E (N, Z ) is calculated by

E (N, Z ) = ELD +
∑

τ=n,p

(δEi.n.,τ + δEBCS,τ ) +
∑

τ=n,p,np

δERPA,τ ,

(4)

where “i.n.” stands for “independent nucleons.” Here ELD is a
liquid-drop energy, and each term δEx has the form

δEx = Ex − Ẽx, (5)

with a “smooth” counter term Ẽx. The “microscopic” energy

Emic =
∑

τ=n,p

(Ei.n.,τ + EBCS,τ ) +
∑

τ=n,p,np

ERPA,τ (6)

approximates the minimum of the Hamiltonian

H =
∑

τ=n,p

2�τ∑
k=1

εkτ a†
kτ

akτ −
∑

τ=n,p,np

Gτ P†
τ Pτ , (7)

where

Pn = 1

2

2�n∑
k=1

aknakn, Pp = 1

2

2�p∑
k=1

akpakp,

Pnp = 2− 3
2

2�np∑
k=1

(akpakn + aknakp). (8)

Here, unlike in Eq. (3), the index k numbers, for each τ = n
for neutrons and τ = p for protons, an orthonormal set of
eigenstates |kτ 〉 of a time-reversal-invariant single-nucleon
Hamiltonian hτ in an order of nondecreasing eigenvalue εkτ .
The numbering should be such that |kp〉 = t−|kn〉 in the limit
hp = hn. In this limit then Pn = −P−/

√
2, Pp = P+/

√
2, and

Pnp = Pz in terms of components of the isovector (3) provided
also all �τ are equal. Again the set of states |kτ 〉 is supposed
to be preserved under time reversal up to phases. We also
assume that each pair of an odd and the following even k refer
to a pair of states connected by time reversal up to phases.
Both of these assumptions are satisfied automatically if the
eigenvalues are doubly degenerate; that is, except in spherical
nuclei. In the spherical case it is satisfied if degenerate orbits
are distinguished by a magnetic quantum number m and pairs
of an odd and the following even k refer to pairs of states with
opposite m.

Unlike Ref. [10] strict isobaric invariance is not imposed
on the microscopic model. The single-nucleon Hamiltonians
hn and hp may be different, and different valence space
dimension 2�τ may be employed for different τ . We use
throughout �n = N , �p = Z , and �np = �A/2� so that the
neutron and proton valence spaces are always half filled
and �np ≈ (�n + �p)/2. These modifications, which where
introduced partly in Refs. [11,12], renders the model better
suited for nuclei with a large neutron or proton excess.

We also allow different coupling constants Gτ for different
τ , writing

Gτ = GAζ (1 − αMT M ′
T ), (9)

where MT = (N − Z )/2 is the isomagnetic quantum number
of the nucleus and M ′

T that of the interacting pair; that is,
M ′

T = 1, −1, and 0 for τ = n, p, and np, respectively. The
parameters G, ζ , and α are set separately for each region
(i)–(iii). The limit where hp = hn, all Gτ are equal, and all �τ

are equal will be referred to as the limit of isobaric invariance.
For each nucleus we assume a deformation, which we take

from a conventional Nilsson–Strutinskij calculation [13]. It is
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expressed by the Nilsson parameters ε2, γ , and ε4 [14,15]. The
deformations are listed in the Appendix.

A. Liquid-drop energy

The liquid-drop energy is written

ELD = −
(

av − avt
|MT |(|MT | + 1)

A2

)
A

+
(

as − ast
|MT |(|MT | + 1)

A2

)
A2/3Bs+ ac

Z (Z − 1)

A1/3
Bc,

(10)

where the coefficients ax are parameters. The deformation-
dependent factors Bs and Bc are calculated from the Nilsson
parameters in two steps. First, following Seeger and Howard
[16], we determine the coefficients αlm in the equations in
spherical coordinates (r, θ, φ) of the surfaces of constant
second term in the expression (16) below,

r ∝ 1 +
∑

|m|�l>0

(−)mαlm

√
(l − |m|)!
(l + |m|)!P|m|

l (cos θ ) exp(−imφ),

(11)

where Pm
l (x) is the Legendre function of the first kind as

defined by Edmonds [17]. With ε20 = ε2 cos γ and ε22 =
(−ε2 sin γ )/

√
2, the nonzero coefficients with l � 4 are given

to second order in ε2 and ε4 by

α20 = 2

3
ε20 + 5

63
ε2

20 − 2

21
ε20ε4 − 10

63
ε2

22 + 50

231
ε2

4 ,

α22 = α2(−2) = 2

3
ε22 − 10

63
ε20ε22 − 1

63
ε22ε4,

α40 = −ε4 + 12

35
ε2

20 − 30

77
ε20ε4 + 4

35
ε2

22 + 243

1001
ε2

4 ,

α42 = α4(−2) =
√

48

245
ε20ε22 +

√
1215

5929
ε22ε4,

α44 = α4(−4) =
√

8

35
ε2

22. (12)

This approximation is adopted. For ε22 = 0, the expansion
(12) (including results for l > 4 which we do not show)
should give Eqs. (10)–(13) of Ref. [16]. Some coefficients
there differ from ours, which were derived by computer
algebra.

The coefficients with l > 4 are not required in the second
step, where Bs and Bc are expanded in the αs. This expansion
can be derived from Swiatecki’s results in Ref. [18]. Swiate-
cki’s expansion is restricted to γ = 0, but when only terms
of total rank 8 or less are retained, each term has a unique
continuation into γ �= 0 given by the requirement that it be a
scalar polynomial in the spherical tensor components αlm. The
resulting expansion, which we adopt, is

Bs = 1 + 2
5 p20 − 4

105 p30 − 66
175 p40 − 4

35 p21 + p02,

Bc = 1 − 1
5 p20 − 4

105 p30 + 51
245 p40 − 6

35 p21 − 5
27 p02, (13)

TABLE I. Liquid-drop parameters for optimal pairing parame-
ters. The last column shows the rms deviation from the data. The
unit is MeV throughout.

av avt as ast ac rms

N ≈ Z 15.23 112.5 16.52 148.9 0.6601 1.018
Around Sn 15.37 115.2 16.97 157.5 0.6737 0.515
Around 102Zr 14.78 151.2 16.07 355.5 0.5774 0.043

with

p20 = α2
20 + 2α2

22, p30 = α20
(
α2

20 − 6α2
22

)
, p40 = p2

20,

p21 =
(

α2
20 + 1

3
α2

22

)
α40 +

√
20

3
α20α22α42 +

√
70

9
α2

22α44,

p02 = α2
40 + 2α2

42 + 2α2
44. (14)

For given pairing parameters G, ζ , α and an RPA interpo-
lation width w defined in Sec. VI we fix the coefficients ax in
Eq. (10) by a least-square fit of the calculated total energies
(4) to the measured ones. Included in this fit are all doubly
even nuclei in the considered region of the chart of nuclei
whose binding energies have been measured. The limits of
each region for this purpose are specified in Secs. III–V. The
fit of the liquid-drop parameters ax is done before the pairing
parameters are fit to other data. Table I shows the results
for the optimal pairing parameters. For the 102Zr region the
sample of doubly even nuclei consists of only nine nuclei.

B. Independent nucleons

The terms Ei.n.,τ in Eq. (6) are given by

Ei.n.,τ =
Nτ∑

k=1

εkτ , (15)

with Nτ = N for τ = n and Nτ = Z for τ = p. The single-
nucleon energies εkτ are the eigenvalues of the Nilsson Hamil-
tonian [14,15,19],

hτ = p2

2Mτ

+ 1

2

⎛
⎝Mτ

3∑
q=1

(ωαxα )2 + 2ε4ω0ρ
2P4(cos θt )

⎞
⎠

− κNsh,τ

◦
ω

[
2l t · s + μNsh,τ

(
l2

t − 〈
l2

t

〉
Nsh

)]
, (16)

where r = (x1, x2, x3) and p are the spatial coordinates and
momentum, s is the spin, and Mτ is the nucleon mass. The
function Pl (x) is the Legendre polynomial. The oscillator
frequencies ωq are given by

ωq = ω0

[
1 − 2

3
ε2 cos

(
γ + q

2π

3

)]
, (17)

where ω0 satisfies the condition of volume conservation:

3∏
q=1

ωq = ◦
ω

3
,

◦
ω = 41A−1/3 MeV. (18)

The “stretched” spherical coordinates (ρ, θt, φt ) and or-
bital angular momentum l t [19] correspond to Cartesian
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coordinates

ξqτ = xq

√
Mτωq, (19)

and Nsh is the number of oscillator quanta. For the param-
eters κNsh,τ and μNsh,τ we adopt the values recommended in
Ref. [20].

The independent-nucleon counter terms are

Ẽi.n.,τ = 2
∫ λ̃τ

−∞
εg̃τ (ε)dε, (20)

where the smooth chemical potential λ̃τ is defined by

2
∫ λ̃τ

−∞
g̃τ (ε)dε = Nτ , (21)

and the smooth level density g̃τ (ε) is given by [8,21]

g̃τ (ε) = 1

2γStr
√

π

∑
k

L

(
mStr,

1

2
,

(
ε − εkτ

γStr

)2
)

× exp

[
−

(
ε − εkτ

γStr

)2
]

(22)

in terms of the generalized Laguerre polynomial L(n, a, x).
We use smoothing width γStr = ◦

ω and smoothing order mStr =
3 and include in the sum in Eq. (22) all such k that εkτ <

47.5 MeV + 5 γStr and Nsh � 9.

C. BCS theory

The terms EBCS,τ are given by the standard BCS theory. A
derivation of the following equations is found, for example in
Ref. [9]. For even Nτ one has

EBCS,τ =
2�τ∑
k=1

v2
kτ εkτ − �2

τ

Gτ

− Ei.n.,τ , (23)

with

ukτ

vkτ

}
=

√
1

2

(
1 ± εkτ − λτ

Ekτ

)
, Ekτ =

√
(εkτ − λτ )2 + �2

τ .

(24)

Here λτ and �τ obey

2�τ∑
k=1

v2
kτ = Nτ , Gτ

2�τ∑
k=1

ukτvkτ = 2�τ . (25)

For later reference we define the quasinucleon annihilators

αkτ = ukτ akτ − vkτ a†
kτ

. (26)

The equations (24) and (25) always have a solution with
�τ = 0 and there is a threshold Gcr,τ such that no other �τ is
possible for G � Gcr,τ . For G > Gcr,τ there is a solution with
�τ > 0 and a lower EBCS,τ , which is chosen. If ε(Nτ +2)τ > εNτ τ

then Gcr,τ > 0 and Gcr,τ is given by

4

Gcr,τ
= min

εNτ τ <λτ <ε(Nτ +2)τ

2�τ∑
k=1

1

|εkτ − λτ | . (27)

If ε(Nτ +2)τ = εNτ τ , as happens in spherical nuclei when a
j shell is partly occupied in the absence of pairing, then
Gcr,τ = 0.

If Nτ is odd, a Bogolyubov quasinucleon annihilated by
αNτ τ is assumed to be present in the BCS ground state. The
orbit |Nτ τ 〉 is then fully occupied and its time reverse |(Nτ +
1)τ 〉 fully empty. The BCS energy EBCS,τ is calculated as if
Nτ − 1 nucleons of type τ inhabited the remaining orbits. The
odd nucleon is said to block the Fermi level.

To simplify notation we let g̃τ without an argument mean
g̃τ (λ̃τ ) and write

1

g̃τ Gτ

= χτ . (28)

The BCS counter terms are then given by [11,22]

ẼBCS,τ = −1

2
�τ�̃τ exp(−χτ ), �̃τ = �τ

2g̃τ sinh χτ

. (29)

D. Random-phase approximation

The calculation of ERPA,τ is based on the theory in Ref. [9].
It involves linear relations in the space spanned by the terms in
the sums in Eq. (8). A linearly independent set of terms in the
expression for Pτ may be labeled by the odd single-nucleon
indices k from 1 to 2�τ − 1. When both N and Z are even,
we denote this set of k by Sτ . Modifications of this definition
when one or both of N and Z are odd are discussed below. It is
convenient to introduce at this point labels ττ ′ = nn, pp, np
alternative to and synonymous with τ = n, p, np and vectors
and matrices with components or element indexed by the set
Sττ ′ . A diagonal matrix Eττ ′ is defined by its elements

Eττ ′,kl = δkl (Ekτ + Ekτ ′ ) (30)

and column vectors Uττ ′ and Vττ ′ by their components

Uττ ′,k = ukτ ukτ ′ , Vττ ′,k = −vkτvkτ ′ . (31)

Let

Aττ ′ = Eττ ′ − Gττ ′ (Uττ ′Uττ ′ T + Vττ ′Vττ ′ T ),

Bττ ′ = −Gττ ′ (Uττ ′Vττ ′ T + Vττ ′Uττ ′ T ). (32)

Then

ERPA,ττ ′ = 1

2

(∑
k

√
zττ ′,k − tr Eττ ′

)
, (33)

where zττ ′,k are the eigenvalues of

(Aττ ′ + Bττ ′ )(Aττ ′ − Bττ ′ ). (34)

The terms
√

zττ ′,k are the RPA frequencies.
For τ = τ ′ and, in the limit of isobaric invariance, for

ττ ′ = np and N = Z , one RPA mode is, for Gττ ′ > Gcr,ττ ′

(with Gcr,np = Gcr,n = Gcr,p in the isobarically invariant limit),
a Nambu–Goldstone mode with zero frequency [9,23]. That
is, in this degree of freedom vibration turns into rotation. This
is what gives rise to the singularity at G = Gcr in Fig. 1 [10].
To circumvent this singularity we interpolate the calculated
ERPA,ττ ′ across the region of Gττ ′ = Gcr,ττ ′ for τ = τ ′ or ττ ′ =
np and N = Z with Gcr,np ≈ Gcr,n ≈ Gcr,p in the latter case.
Details are given in Sec. VI.
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The expression (33) results from the expansion of the
ground-state energy in Feynman diagrams formed as closed
bubble chains; see Eq. (36) in Ref. [9]. Each bubble represents
a virtual creation and subsequent annihilation of a pair of
Bogolyubov quasinucleons. When, say, N is odd, the presence
of the unpaired nucleon in the BCS ground state blocks the
creation of quasinucleon pairs by the terms in Pn and P†

n

proportional to α
†
Nnα

†
(N+1)n. Therefore k = N should be and

is omitted from Sn for odd N . The remainder exhausts the set
of excitations of the BCS ground state mediated by the fields
Pn and P†

n .
The case of Snp is more involved for odd N . The fields Pnp

and P†
np have terms proportional to α

†
(N+1)nα

†
N p and α

†
N pαNn,

which, respectively, adds a pair of quasinucleons and scatters
the quasineutron in the Fermi level orbit into a quasiproton.
The latter excitation, in particular, may have negative energy,
which inhibits the use of the RPA. Even when the energy
is positive, it is small in comparison to that of the genuine
two-quasinucleon excitations, which may render the RPA cal-
culation unstable anyway. For Z = N in the limit of isobaric
invariance, both these excitations have zero matrix elements
when one assumes, as we do (cf. Sec. II E), that the unpaired
neutron and the unpaired proton combine to isospin T = 0.
This allows the use of Eq. (33), omitting k = N from Snp like
it is omitted from Sn. To avoid the troubles just described, we
have chosen to do so also when Z is even. That is, we generally
omit k = N from Sn and Snp when N is odd, and analogously
for odd Z . In physical terms this amounts to extending to
the RPA the assumption in the BCS theory with the Fermi
level blocked that the unpaired nucleon acts as a spectator
to interactions among the paired nucleons in a valence space
that excludes the half occupied single-nucleon level. A more
satisfactory treatment of the neutron-proton pair vibrational
correlations for odd A might be based on the theory of (quasi-)
particle-vibration coupling.

For even N and Z the RPA energy as given by Eq. (33) gets
contributions from fluctuations of the quasinucleon vacuum
in every direction generated by an operator α

†
kτ

α
†
kτ ′ + α

†
kτ ′α

†
kτ

with k ∈ Sττ ′ . Vaquero, Egido, and Rodríguez take an dif-
ferent path to study pairing fluctuations [24]. A combination
of the variances of N and Z is used (for a given deforma-
tion) as a generator coordinate to obtain a wave function
that describes the distribution of quasinucleon vacua in the
single degree of freedom associated with this coordinate. The
quasinucleon vacua are generated by the constrained Hartree–
Fock–Bogolyubov method with a Gogny two-nucleon
interaction.

For the calculation of the RPA counter terms ẼRPA,ττ ′

we define g̃ττ ′ (ε) by replacing εkτ by (εkτ + εkτ ′ )/2 in the
expression (22). This definition coincides with Eq. (22) for
τ = τ ′. A function λ̃ττ ′ (x) is defined by

2
∫ λ̃ττ ′ (x)

−∞
g̃ττ ′ (ε)dε = x. (35)

In particular λ̃ττ (Nτ ) = λ̃τ by Eq. (21). We let g̃np without an
argument mean g̃np(λ̃np(A/2)) and generalize Eq. (28) to

1

g̃ττ ′Gττ ′
= χττ ′ (36)

and the definition of �̃τ in Eq. (29) to

�̃ττ ′ = �ττ ′

2g̃ττ ′ sinh χττ ′

×
√

1 −
(

g̃ττ ′ (λ̃ττ ′ (Nτ ) − λ̃ττ ′ (Nτ ′ )) tanh χττ ′

�ττ ′

)2

.

(37)

Then ẼRPA,ττ ′ is given by [11]

ẼRPA,ττ ′ = 2�̃ττ ′

π

∫ ∞

0
ln

(
1

χττ ′
tanh−1

{[
1 + (

l2
ττ ′ + x2

)−1]− 1
2 tanh χττ ′

})
dx, (38)

with

lττ ′ = λ̃ττ ′ (Nτ ) − λ̃ττ ′ (Nτ ′ )

2�̃ττ ′
. (39)

E. Isobaric analogs

The scheme presented so far describes states with isospin
T ≈ |MT |. This relation is satisfied empirically by nearly all
ground states. The exception is that for odd N = Z > 20 most
ground states have T ≈ 1 while the lowest states with T ≈ 0
are excited. For odd N = Z < 20 the lowest states with T ≈
1 are mostly excited. We denote the energies of these T ≈
1 states by E∗(N, Z ) to distinguish them from the energies
of the T ≈ 0 states. For odd N = Z the T ≈ 1 states are the
isobaric analogs of the ground states of the doubly even nuclei
with neutron and proton numbers (N ′, Z ′) = (N + 1, Z − 1).

Accordingly we set

E∗(N, Z ) = E (N ′, Z ′) + ac
Z (Z − 1) − Z ′(Z ′ − 1)

A1/3
Bc,

(40)

where Bc is calculated from the deformation of the doubly
even nucleus.

III. N ≈ Z REGION

Our calculations for even A in the N ≈ Z region follow
the scheme previously applied in Refs. [10,12]. Again we
consider the doubly even nuclei with 24 � A � 100 and 0 �
N − Z � 10 and the doubly odd ones with 26 � A � 98 and
N = Z . Unlike Ref. [12] we use different �τ for different
τ and a considerably smaller interval of interpolation of
the RPA energies as discussed in Sec. VI. Furthermore, the
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deformations were recalculated, all oscillator shells with
Nsh � 9 being included in the calculation by the scheme of
Ref. [13] instead of just four shells close to the neutron or
proton Fermi level for τ = n and p, respectively. For the
doubly even nuclei this only changed the deformations of
84Zr and 86Mo, which went from spherical to oblate. For the
T ≈ 0 states of the doubly odd nuclei, the deformations were
determined in the prior work by averaging over the deforma-
tions of the adjacent doubly even nuclei. In the present work
these deformations are calculated independently by blocking
the Fermi levels. This resulted in significant changes of the
individual deformations, while the overall pattern of variation
along the chain of these states remains the same.

Again we set α = 0 in Eq. (9) so that one pair coupling
constant G covers the cases τ = n, p, and np. The parameters
G and ζ are fit to the following data for odd N = Z .

(1) The T ≈ 0 doubly-odd–doubly-even mass differences

E (N, N ) − 1
2 [E (N − 1, N − 1) + E (N + 1, N + 1)]. (41)

(2) The differences of the lowest energies for T ≈ 1 and
T ≈ 0; that is,

E∗(N, N ) − E (N, N ). (42)

The set of data is the same as in Refs. [10,12] and thus
includes extrapolated masses of 82Nb and 86Tc, but all mass
data were updated from AME12 [25] to AME16 [26]. Again
excitation energies are taken from the Evaluated Nuclear

Structure Data File [27]. A least-square fit gives

G = 7.196A−0.7461 MeV, (43)

with a rms deviation of 0.789 MeV. Plotting the T ≈ 0
doubly-odd–doubly-even mass differences, the T ≈ 0 to T ≈
1 energy splittings, the symmetry energy coefficients, and the
“Wigner x” as functions of A results in figures grossly similar
to Figs. 6–9 of Refs. [10] and Fig. 1 of Ref. [12]. As for the
Wigner x, more detail is given in Sec. VI.

With the parameters thus set we consider the odd-A nuclei
with Z = N − 1 and 25 � A � 99. The odd-even mass differ-
ence �oe(N, Z ) is defined as the mass of the odd-A nucleus
relative to the average mass of its two doubly even neighbors.
The calculated �oe(N, Z ) are shown in Fig. 2 in comparison
with the data. The model is seen to reproduce the typical size
of the measured values. This is remarkable because G and ζ

were fit not to these data but to energies in doubly odd nuclei.
This supports an interpretation of the lowest T ≈ 0 states of
such nuclei as essentially two-quasinucleon states.

The figure also displays the individual contributions to
the calculated �oe(N, Z ) from ELD, δEi.n. = ∑

τ=n,p δEi.n.,τ ,
δEBCS = ∑

τ=n,p δEBCS,τ , and δERPA = ∑
τ=n,p,np δERPA,τ .

The liquid-drop contribution is negative except for N = 43
with an average about −0.4 MeV. The contribution from the
independent-nucleon shell correction δEi.n. fluctuates wildly
as a function of N or Z . These fluctuations are reduced by the
pairing, which also renders the total �oe(N, Z ) mostly positive
in accordance with the data. Very low and, for odd N , even
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FIG. 2. The panels on the left show the calculated odd-even mass differences �oe(N, Z ) for Z = N − 1 in successive approximations in
comparison with the values extracted from mass data. The panels on the right display the BCS gap parameters �τ of the odd-A nuclei and their
doubly even neighbors, where τ = n for odd N and p for odd Z .
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negative values are calculated; however, for N and Z = 25
and for N = 49, not the least induced by anomalously low
contributions of δERPA. These low contributions, as well as
one at Z = 49, are correlated with Gcr,n or Gcr,p being close to
G for odd N and Z , respectively, so that the accuracy of the
RPA is uncertain (cf. Sec. VI). The measured odd-even mass
difference actually decreases when N or Z = 25 is approached
from below, but this decrease is much exaggerated in the
calculation.

The RPA contribution is positive for all odd Z except
Z = 25 and 49 and for all odd N < 30 except N = 25. In the
upper sd shell it gives almost the entire �oe(N, Z ) for odd
Z and about half of it for odd N . For odd N > 30 the RPA
contribution is negative, and both for odd N and for odd Z it
is numerically smaller in the heavier than in the lighter nuclei.

These differences in the size and sign of the RPA contri-
bution may be understood qualitatively from the expression
(38). Thus for lττ ′ = 0, which holds by Eq. (39) for τ = τ ′
and approximately for ττ ′ = np and N ≈ Z , Eqs. (36)–(38)
give

ẼRPA,ττ ′ = 1
2 �ττ ′Gττ ′ f (χττ ′ ), (44)

with

f (χ ) = 2χ

π sinh χ

∫ ∞

0

× ln

(
1

χ
tanh−1[(1 + x−2)−

1
2 tanh χ ]

)
dx. (45)

This function is displayed in Fig. 3. The contribution of δERPA

to �oe(N, Z ) stems mainly from the microscopic term ERPA.
In fact, because the counter term ẼRPA is a smooth function
of N , Z , and deformation, with no distinction between even
and odd Nτ , its contribution is small. Consider the case of
odd N . The difference between ERPA,nτ for odd and even N is
roughly a result of the effective dilution in the odd case of the
single-neutron spectrum by the blocking of the Fermi level.
The impact on ERPA,nτ of this decrease of level density near the
Fermi level is similar to the impact on ẼRPA,nτ of a decrease
of g̃nτ . By Eqs. (28) and (36) the latter increases χnτ and thus
gives rise to an increase of ẼRPA,nτ proportional to f ′(χnτ ) with
a positive coefficient. The case of odd Z is analogous. The
calculated χττ ′ decrease from about 3.8 for A = 24 to about
2.6 for A = 100. Thus in the lighter nuclei we have f ′(χττ ′ ) >

0 2 4 6

−1.3

−1.2

−1.1

−1

χ

f
(χ

)

FIG. 3. The function f given by Eq. (45).

0 and accordingly expect a large positive RPA contribution to
�oe(N, Z ), while in the heavier nuclei we have f ′(χττ ′ ) ≈ 0
and accordingly expect a small contribution, which can take
either sign.

Also shown in Fig. 2 are the calculated gap parameters �τ

for both the odd-A nucleus and its doubly even neighbors. It
is seen that often in the lighter nuclei, �τ = 0, most often for
odd A. The BCS approximation to �oe(N, Z ) is seen to follow
roughly the fluctuating gap parameters as a function of N or Z .

IV. NEIGHBORHOOD OF THE Sn ISOTOPES

In the neighborhood of the Sn isotopic chain we consider
all nuclei with 48 � Z � 52 and even N in the interval 46 �
N � 92 and all Sn isotopes with odd N in the interval 47 �
N � 91. In Eq. (9), we keep the A exponent ζ = −0.7461
which resulted from the analysis of data for N = Z [cf.
Eq. (43)], but adjust G and α so as to reproduce the average of
the measured �oe(N, Z ) separately for odd N and odd Z . The
result is

Gτ = 5.818A−0.7461(1 − 0.0170MT M ′
T ) MeV. (46)

For 100Sn, Eq. (43) gives Gτ = 0.2317 MeV for all τ , while
Eq. (46) gives Gτ = 0.1873 MeV for all τ . We thus have
two determinations of the pair coupling constant in 100Sn, the
higher one 24% greater than the lower one. They result from
extrapolation from different directions in the chart of nuclei,
one from the N = Z line and one from the neighborhood of
the Sn isotopic chain. Because the data in the fit (43) include
extrapolated masses and interpretations of incomplete spectra
of 82Nb and 86Tc, the lower value is likely to be most reliable.

Figure 4 illustrates the need of both the nonzero α and the
smaller G. The quantities plotted in the upper-left, upper-right,
and lower-right panels are the total calculated shell correction
δE = δEi.n. + δEBCS + δERPA and its empirical counterpart
δEemp = Eemp − ELD, where −Eemp is the measured binding
energy. They are displayed for the doubly even Sn isotopes as
functions of N . Different sets of liquid-drop parameters give
rise to a difference of δEemp between the panels. In the upper-
left panel, the pairing parameters are inherited from the N ≈ Z
region [cf. Eq. (43)]. They describe fairly well the empirical
binding energies near the N = 50 shell closure but not at all
near the N = 82 shell closure. Because the Sn isotopes have
constant proton configuration, the Gτ that most significantly
influences the isotopic variation is Gn. When α is positive, Gn

decreases more with increasing N than by the factor A−0.7461.
The upper-right panel shows the result when G = 7.196 MeV
is kept—so that Eq. (43) would be retained for N = Z—but
α is set to 0.0170. Now δEemp is equally well described at
both shell closures, but the empirical �oe(N, 50) is seen in
the lower-left panel to be vastly overestimated. The top panel
of Fig. 5 shows that this discrepancy is eliminated when G
is reduced to 5.818 MeV. As seen from the lower-right panel
of Fig. 4 this also improves the reproduction of the measured
doubly even binding energies near both shell closures.

We notice in passing that, in particular, a discontinuity
of the measured two-neutron separation energy at N = 66
is reproduced. Togashi et al. [28] describe this discontinuity
as a second-order phase transition. In our calculations it is
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FIG. 4. The upper-left, upper-right, and lower-right panels show the calculated shell corrections δE of the doubly even Sn isotopes for
three different sets of pairing parameters. The lower-left panel shows the odd-even mass differences �oe(N, 50) calculated with the pairing
parameters of the upper-right panel. For all these results the corresponding empirical values are shown for comparison. The empirical shell
corrections δEemp differ between the panels due to different liquid-drop parameters. A plot of the neutron-proton RPA energy ERPA,np is included
in the lower-right panel.

correlated with an onset of oblate deformation at the entrance
at N = 68 of the highly degenerate 1h11/2 shell (cf. the
Appendix). This concurs with a finding of Togashi et al.,
based on an analysis of the result of a large-scale shell-model
calculation, that these nuclei have oblate deformations. In the
upper panels of Fig. 4, the plots of δE behave differently
at N ≈ 66. Pairing thus contributes to the formation of the
discontinuity in our calculations.

Also shown in Fig. 4 is the neutron-proton RPA energy
ERPA,np(N, 50). It increases with increasing neutron excess
because the products in Eq. (31) decrease with increasing
distance between λn and λp. It is seen, however, that in 142Sn
with almost twice as many neutrons as protons, it is only
reduced numerically to about two thirds of its value in the
N = Z nucleus 100Sn.

Figure 5 shows the measured and calculated odd-even mass
differences and the decompositions of the latter. The RPA
contribution to the calculated �oe(N, Z ) is positive with few
exceptions. On average it makes up 7%, 31%, and 14% of the
total for the odd-A isotopes of Sn, In, and Sb. This dominantly
positive sign is qualitatively consistent with the values of χττ ′ .
For N = 46 they are approximately equal, about 3.3, and they
decrease slightly to about 3.2 for N = 54. When N increases
further, χn increases to about 4.0 while χn and χnp continue
decreasing to about 2.7 and 3.0, respectively. That the χττ ′

of 100Sn are larger here than in the calculation discussed in
Sec. III is due to the smaller G.

Except for the largest N we get �τ = 0 when Nτ is magic
or magic ± 1. These are the cases when the Fermi level
lies within the magic gap in the single-nucleon spectrum.

Otherwise �τ > 0. The emergence of �p > 0 in 90Sn, 92Sn,
and 92Sb reflects that Gcr,p is close to Gp for the heaviest
isotopes of In, Sn, and Sb. This is correlated with low RPA
contributions to the calculated �oe(N, Z ) in the isotopes of In
and Sb with N = 90 and 92.

V. 102Zr REGION

In the region around 102Zr we consider all doubly even-
and odd-A nuclei with 60 � N � 64 and 38 � Z � 42. As in
the Sn region, we keep the A exponent ζ = −0.7461 from
Eq. (43) but adjust G and α in Eq. (9) so as to reproduce the
average of the measured �oe(N, Z ) separately for odd N and
odd Z . The result is

Gτ = 5.820A−0.7461(1 − 0.0132MT M ′
T ) MeV. (47)

Thus G is practically the same as in the Sn region [cf. Eq. (46)]
but α is significantly smaller.

The measured and calculated odd-even mass differences
are compared and the decompositions of the latter shown
in Fig. 6. The sign of the RPA contribution varies with a
slight predominance of the positive sign, which occurs in
8 out of 12 cases. This is consistent with the values of
χττ ′ , which are χn ≈ 3.4 and χp ≈ χnp ≈ 3.2. On average
the RPA contribution makes up 6% of the total calculated
�oe(N, Z ).

The gap parameters �τ are almost constant with averages
about 1.1 MeV for even N and Z and 0.8 MeV for odd A. The
latter is close to the average of the calculated �oe(N, Z ).
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FIG. 5. Similar to Fig. 2 for the neighborhood of the Sn isotopes.

VI. INTERPOLATION

We mentioned that the RPA energies ERPA,ττ ′ are inter-
polated across intervals of Gττ ′ about the thresholds Gcr,τ of
BCS pairing to avoid the singularities there. The interpolating
function is the polynomial of third degree in Gττ ′ which
joins the calculated values smoothly at the interval endpoints.
Interpolation is done for τ = τ ′ and for ττ ′ = np and N = Z .
In terms of the interpolation width w mentioned in Sec. II A,
the interval is Gmin,ττ ′ < Gττ ′ < Gmax,ττ ′ with

Gmin,ττ ′ = (1 − w) min(Gcr,τ , Gcr,τ ′ ),

Gmax,ττ ′ = (1 + w) max(Gcr,τ , Gcr,τ ′ ). (48)

If Gmax,ττ ′ = 0 no interpolation is done.
For even Nτ the threshold Gcr,τ increases with increasing

ε(Nτ +2)τ − εNτ τ . It is therefore particularly large when Nτ is
magic. As a result both Gcr,τ are close to the common value
G of Gn, Gp, and Gnp in the doubly magic nuclei 56Ni and

100Sn. For 100Sn, Fig. 7 shows the energy Emic given by Eq. (6)
as a function of G upon interpolation with different w. A
figure for 56Ni is very similar. In this calculation we used
the levels (εkn + εkp)/2 for both neutrons and protons so that
Gcr,n = Gcr,p := Gcr. It is seen that the choice of w can make
a difference of 1–2 MeV in Emic when Gcr is close to G.

In Refs. [10,12], w = 0.5 was chosen. This choice was
based on a comparison with a result of diagonalization of
the Hamiltonian (7) in a small valence space [29]. Also,
Fig. 1 seems to suggest a fairly large interpolation interval.
In the latter calculation, however, the Hamiltonian is given by
Eq. (1), not Eq. (7). Probably more importantly, the single-
nucleon levels are equidistant. The behavior of the exact
energy may be different when the Fermi level lies in a gap
in the single-nucleon spectrum. In an early study, Feldman
indeed observed an approach of the exact result for the
lowest excitation energy to that of the RPA with increasing
degeneracies of two separate shells the lower of which is
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closed for G = 0 [30]. There is no way of determining the
w which best approximates the exact minimum of any such
Hamiltonian other than calibrating the interpolation against
an exact calculation, which is beyond our capacity. Dukelsky
et al. calculated the exact lowest energies for isospin T = 0,
1, and 2 given by the Hamiltonian (7) in the limit of isobaric
invariance as functions of G for the single nucleus 64Ge with a
different valence space and different single-nucleon energies
[31], and even in this elaborate calculation the dimension of
the valence space (p f shell plus 1g9/2 subshell) is little greater
than half of ours for 56Ni.

With the large w employed in Refs. [10,12], quite a few
calculated binding energies depend on this parameter. This is
unsatisfactory because the choice of w is largely arbitrary.
We prefer to trust the actual RPA energies unless there is
a clear reason not to do so. Such a reason is given by the
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FIG. 7. Interpolated microscopic energy Emic as a function of
G/Gcr for different interpolation widths w in the case of 100Sn. See
the text for details.

observation that the exact minimum of the Hamiltonian (7)
must decrease as a function of G because the interaction is
negative definite. As shown in Fig. 7, for the interpolated Emic

of 100Sn to similarly decrease as a function of G it is necessary
that w � 0.035. The same approximate limit results for 56Ni.
Therefore w = 0.035 was used in the present calculations.

This diminishing of w relative to the calculations in
Refs. [10,12] has implications for the calculated “Wigner x,”
defined by [29]

E (N, Z ) = E0 + |MT |(|MT | + x)

2θ
+ ac

Z (Z − 1)

A1/3
Bc (49)

for a constant A and |MT | = 0, 2, 4 when A ≡ 0 mod 4 and
1, 3, 5 when A ≡ 2 mod 4. Here, besides x, also E0 and θ are
constants. The value of ac is the one that results from the fit of
liquid-drop parameters described in Sec. II A. As a function
of A the empirical x has local maxima at the mass numbers
of the doubly magic nuclei 40Ca, 56Ni, and 100Sn. This is seen
in Fig. 8 (and also in the plots of x in Refs. [10,12], which
resemble the bottom panel in Fig. 8 in this respect) to be
reproduced with w = 0.035 but not with w = 0.5. The small
w is similarly decisive for the sharpness of the calculated
shell correction minimum at 100Sn in the lower-right panel
of Fig. 4. These successes of the small w in reproducing
qualitative features of the patterns of binding energies near
closed shells should evidently not be seen as a proof that it
best approximates the exact minimum of the Hamiltonian (7).

VII. SUMMARY

The random-phase-approximation–amended (RPA-
amended) Nilsson–Strutinskij method of calculating nuclear
binding energies was reviewed in the form it has taken after
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FIG. 8. The calculated Wigner x as a function of A for two
different interpolation widths w in comparison with the values
extracted from mass data. In both calculations, the pair coupling
constants Gτ are those of Sec. III. The liquid drop parameters are
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(14.98, 102.6, 15.82, 119.5, 0.6400) MeV and rms deviations 0.735
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modifications in the preceding literature and in our present
work. It was then applied in a study of odd-mass nuclei.
Three sets of such nuclei were considered. In terms of the
numbers N and Z of neutrons and protons and the mass
number A = N + Z they are (i) the sequence of nuclei with
Z = N − 1 and 25 � A � 99; (ii) the odd-A isotopes of In,
Sn, and Sb with 46 � N � 92; (iii) the odd-A isotopes of
Sr, Y, Zr, Nb, and Mo with 60 � N � 64. An RPA-based
part of the total shell correction which accounts for the
pair-vibrational correlation energy was found to contribute
significantly to the calculated odd-even mass differences,
particularly in the light nuclei. In the upper sd shell it thus
gives almost the entire odd-even mass differences for odd Z
and about half of it for odd N . In the heavier part of the set
(i) it is less significant and the contribution is negative for
odd N > 30. In the sets (ii) and (iii) it is dominantly positive
and makes up 6%–31% of the total calculated odd-even mass
difference in various cases. These differences were explained

qualitatively in terms of a closed expression for a smooth
RPA counter term.

The coupling constants Gn, Gp, and Gnp of neutron, proton,
and neutron-proton pairing interactions were expressed by
Eq. (9) in terms of the parameters G, ζ , and α, which were
set independently for regions of the chart of nuclei each
containing one of the sets (i)–(iii) of odd-A nuclei. In region
(i), following previous studies of even-A nuclei in this region,
we took α = 0 and adjusted G and ζ to data on doubly
odd nuclei with N = Z . Remarkably, the resulting parameters
reproduce the typical size of the odd-even mass difference.
In the regions (ii) and (iii) the parameters G and α were fit
directly to the odd-even mass differences with ζ kept from
region (i). Essentially the same G but different α resulted.
The value of G derived from the data on doubly odd N = Z
nuclei is 24% greater than the one derived from odd-even mass
differences in the regions (ii) and (iii). As a result we got for
100Sn, which belongs to both regions (i) and (ii), two values of
the common value of Gn, Gp, and Gnp differing by these 24%.
It was suggested that this difference be due to uncertainty of a
part of the data on doubly odd N = Z nuclei.

An investigation of the binding energies of the Sn isotopes
with even N showed that our model reproduces a discontinuity
of the two-neutron separation energy at N = 66 discussed
recently by Togashi et al. [28]. Like in their analysis of results
of a large-scale shell-model calculation, it is associated in
our calculation with an onset of oblate deformations at the
entrance of the 1h11/2 neutron shell. Pairing was found to
contribute to the formation of the discontinuity.

The RPA neutron-proton pair-vibrational correlation en-
ergy is expected to decrease numerically with increasing neu-
tron excess due to an increasing mismatch of the occupations
of single-neutron and single-proton levels. In 142Sn, which has
almost twice as many neutrons as protons, it was found to be
reduced anyway only to about two thirds of its value in the
N = Z nucleus 100Sn.

The RPA-amended Nilsson–Strutinskij method involves an
interpolation of RPA energy terms across the thresholds of
the pair coupling constants for Bardeen–Cooper–Schrieffer
pairing in the neutron or proton system. Arguments were
given for choosing the interpolation interval substantially
smaller than in previous applications of the method, and such
a smaller width was applied in our present calculations. As a
side effect, diminishing the width of the interpolation interval
resulted in an improved qualitative correspondence between
the variations with A of the measured and calculated Wigner x.
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APPENDIX: DEFORMATIONS

Table II shows the deformations used in the calculations. For odd N = Z these are the deformations assumed for the lowest
states with T ≈ 0.
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TABLE II. Deformations used in the calculations.

Nucleus ε2 γ (◦) ε4 Nucleus ε2 γ (◦) ε4 Nucleus ε2 γ (◦) ε4 Nucleus ε2 γ (◦) ε4 Nucleus ε2 γ (◦) ε4

24O 0.000 0.000 62Fe 0.043 60 0.001 102Zr 0.265 0 −0.002 101In 0.026 0 0.005 135Sn 0.013 60 −0.003
26O 0.000 0.000 54Co 0.084 0 0.007 103Zr 0.266 0 0.005 103In 0.036 0 0.005 136Sn 0.000 0.000
24Ne 0.091 0 0.000 56Ni 0.000 0.000 104Zr 0.270 0 0.010 105In 0.053 0 0.004 137Sn 0.009 60 −0.001
26Ne 0.000 0.000 58Ni 0.000 0.000 82Nb 0.203 60 0.025 107In 0.073 0 0.004 138Sn 0.000 0.000
28Ne 0.000 0.000 60Ni 0.000 0.000 101Nb 0.240 0 −0.006 109In 0.082 0 0.005 139Sn 0.000 0.000
30Ne 0.000 0.000 62Ni 0.000 0.000 103Nb 0.257 0 0.000 111In 0.082 0 0.007 140Sn 0.000 0.000
24Mg 0.284 0 0.014 64Ni 0.000 0.000 105Nb 0.263 10 0.011 113In 0.082 0 0.007 141Sn 0.012 0 0.000
26Mg 0.201 0 0.012 66Ni 0.000 0.000 84Mo 0.200 60 0.031 115In 0.104 36 0.002 142Sn 0.000 0.000
28Mg 0.000 0.000 58Cu 0.054 0 −0.001 86Mo 0.080 60 0.003 117In 0.113 41 0.005 97Sb 0.033 60 −0.004
30Mg 0.000 0.000 60Zn 0.000 0.000 88Mo 0.000 0.000 119In 0.107 2 0.009 99Sb 0.026 60 −0.004
32Mg 0.000 0.000 62Zn 0.000 0.000 90Mo 0.000 0.000 121In 0.099 7 0.011 101Sb 0.022 60 −0.004
34Mg 0.000 0.000 64Zn 0.000 0.000 92Mo 0.000 0.000 123In 0.080 7 0.011 103Sb 0.026 60 −0.004
26Al 0.223 30 0.002 66Zn 0.037 60 0.001 94Mo 0.000 0.000 125In 0.051 0 0.008 105Sb 0.035 60 −0.005
28Si 0.222 60 −0.003 68Zn 0.000 0.000 102Mo 0.219 26 0.001 127In 0.027 0 0.005 107Sb 0.045 60 −0.005
30Si 0.000 0.000 70Zn 0.000 0.000 103Mo 0.226 26 0.006 129In 0.018 0 0.004 109Sb 0.077 0 −0.012
32Si 0.000 0.000 62Ga 0.011 0 0.000 104Mo 0.241 21 0.005 131In 0.014 0 0.004 111Sb 0.083 0 −0.009
34Si 0.000 0.000 64Ge 0.000 0.000 105Mo 0.251 17 0.007 133In 0.016 0 0.004 113Sb 0.079 60 −0.007
36Si 0.000 0.000 66Ge 0.091 0 0.004 106Mo 0.255 16 0.012 135In 0.022 0 0.004 115Sb 0.110 60 −0.009
38Si 0.132 0 −0.005 68Ge 0.113 60 0.002 86Tc 0.189 57 0.034 137In 0.033 0 0.003 117Sb 0.126 60 −0.007
30P 0.000 0.000 70Ge 0.121 60 0.005 88Ru 0.000 0.000 139In 0.056 0 0.000 119Sb 0.128 60 −0.002
32S 0.000 0.000 72Ge 0.000 0.000 90Ru 0.000 0.000 141In 0.086 0 −0.005 121Sb 0.118 60 0.003
34S 0.000 0.000 74Ge 0.000 0.000 92Ru 0.000 0.000 96Sn 0.000 0.000 123Sb 0.103 60 0.007
36S 0.000 0.000 66As 0.114 0 0.007 94Ru 0.000 0.000 97Sn 0.014 0 0.002 125Sb 0.085 60 0.008
38S 0.000 0.000 68Se 0.171 60 −0.002 96Ru 0.000 0.000 98Sn 0.000 0.000 127Sb 0.051 60 0.001
40S 0.000 0.000 70Se 0.213 60 −0.002 98Ru 0.000 0.000 99Sn 0.022 0 0.005 129Sb 0.026 60 −0.002
42S 0.000 0.000 72Se 0.200 60 0.002 90Rh 0.008 0 0.000 100Sn 0.000 0.000 131Sb 0.017 60 −0.003
34Cl 0.054 60 0.003 74Se 0.190 60 0.008 92Pd 0.000 0.000 101Sn 0.018 60 −0.002 133Sb 0.014 60 −0.003
36Ar 0.000 0.000 76Se 0.000 0.000 94Pd 0.000 0.000 102Sn 0.000 0.000 135Sb 0.016 60 −0.003
38Ar 0.000 0.000 78Se 0.058 0 0.000 96Pd 0.000 0.000 103Sn 0.011 60 −0.001 137Sb 0.022 60 −0.004
40Ar 0.000 0.000 70Br 0.244 60 −0.004 98Pd 0.000 0.000 104Sn 0.000 0.000 139Sb 0.033 60 −0.005
42Ar 0.000 0.000 72Kr 0.273 60 −0.003 100Pd 0.000 0.000 105Sn 0.000 0.000 141Sb 0.066 0 −0.016
44Ar 0.000 0.000 74Kr 0.248 60 0.001 94Ag 0.032 0 0.004 106Sn 0.000 0.000 143Sb 0.096 0 −0.020
46Ar 0.000 0.000 76Kr 0.220 60 0.008 94Cd 0.000 0.000 107Sn 0.015 0 0.001 98Te 0.000 0.000
38K 0.018 60 0.000 78Kr 0.201 60 0.014 96Cd 0.000 0.000 108Sn 0.000 0.000 100Te 0.000 0.000
40Ca 0.000 0.000 80Kr 0.063 0 0.001 98Cd 0.000 0.000 109Sn 0.009 60 −0.001 102Te 0.000 0.000
42Ca 0.000 0.000 82Kr 0.051 0 0.002 100Cd 0.000 0.000 110Sn 0.000 0.000 104Te 0.000 0.000
44Ca 0.000 0.000 74Rb 0.231 60 0.002 102Cd 0.000 0.000 111Sn 0.009 0 0.000 106Te 0.000 0.000
46Ca 0.000 0.000 76Sr 0.238 60 0.006 104Cd 0.000 0.000 112Sn 0.000 0.000 108Te 0.000 0.000
48Ca 0.000 0.000 78Sr 0.218 60 0.013 106Cd 0.000 0.000 113Sn 0.029 0 0.001 110Te 0.000 0.000
50Ca 0.000 0.000 80Sr 0.205 60 0.018 108Cd 0.084 0 0.003 114Sn 0.000 0.000 112Te 0.000 0.000
42Sc 0.066 60 −0.008 82Sr 0.073 60 0.003 110Cd 0.086 0 0.005 115Sn 0.068 60 −0.004 114Te 0.000 0.000
44Ti 0.000 0.000 84Sr 0.000 0.000 112Cd 0.092 0 0.006 116Sn 0.000 0.000 116Te 0.111 60 −0.009
46Ti 0.000 0.000 86Sr 0.000 0.000 114Cd 0.122 60 −0.001 117Sn 0.061 60 −0.001 118Te 0.132 60 −0.007
48Ti 0.000 0.000 98Sr 0.248 60 −0.019 116Cd 0.127 60 0.004 118Sn 0.092 60 0.000 120Te 0.132 60 −0.002
50Ti 0.000 0.000 99Sr 0.266 0 −0.007 118Cd 0.116 60 0.009 119Sn 0.088 60 0.001 122Te 0.119 60 0.003
52Ti 0.000 0.000 100Sr 0.252 60 −0.013 120Cd 0.111 4 0.013 120Sn 0.088 60 0.004 124Te 0.100 60 0.008
54Ti 0.000 0.000 101Sr 0.251 60 −0.008 122Cd 0.084 29 0.012 121Sn 0.083 60 0.006 126Te 0.076 60 0.008
46V 0.046 0 −0.004 102Sr 0.249 60 −0.003 124Cd 0.000 0.000 122Sn 0.076 60 0.007 128Te 0.000 0.000
48Cr 0.150 0 −0.014 78Y 0.222 60 0.013 126Cd 0.000 0.000 123Sn 0.064 60 0.007 130Te 0.000 0.000
50Cr 0.100 0 −0.002 99Y 0.237 60 −0.015 128Cd 0.000 0.000 124Sn 0.039 60 0.003 132Te 0.000 0.000
52Cr 0.000 0.000 101Y 0.265 0 −0.003 130Cd 0.000 0.000 125Sn 0.019 60 0.001 134Te 0.000 0.000
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TABLE II. (Continued.)

Nucleus ε2 γ (◦) ε4 Nucleus ε2 γ (◦) ε4 Nucleus ε2 γ (◦) ε4 Nucleus ε2 γ (◦) ε4 Nucleus ε2 γ (◦) ε4

54Cr 0.000 0.000 103Y 0.241 60 0.000 132Cd 0.000 0.000 126Sn 0.000 0.000 136Te 0.000 0.000
56Cr 0.000 0.000 80Zr 0.212 60 0.020 134Cd 0.000 0.000 127Sn 0.018 60 0.001 138Te 0.000 0.000
58Cr 0.087 0 0.002 82Zr 0.204 60 0.025 136Cd 0.000 0.000 128Sn 0.000 0.000 140Te 0.000 0.000
50Mn 0.149 0 −0.005 84Zr 0.153 60 0.016 138Cd 0.000 0.000 129Sn 0.016 60 0.001 142Te 0.000 0.000
52Fe 0.000 0.000 86Zr 0.000 0.000 140Cd 0.093 0 −0.009 130Sn 0.000 0.000 144Te 0.086 0 −0.014
54Fe 0.000 0.000 88Zr 0.000 0.000 95In 0.037 0 0.006 131Sn 0.019 0 0.006
56Fe 0.000 0.000 90Zr 0.000 0.000 97In 0.028 0 0.006 132Sn 0.000 0.000
58Fe 0.000 0.000 100Zr 0.249 0 −0.009 98In 0.040 0 0.009 133Sn 0.016 60 −0.004
60Fe 0.000 0.000 101Zr 0.259 0 −0.006 99In 0.022 0 0.005 134Sn 0.000 0.000
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