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Interplay between low-lying isoscalar and isovector dipole modes: A comparative analysis
between semiclassical and quantum approaches

S. Burrello,1 M. Colonna,1 G. Colò,2,3 D. Lacroix,4 X. Roca-Maza,2,3 G. Scamps,5,6 and H. Zheng1,7

1Laboratori Nazionali del Sud, INFN, I-95123 Catania, Italy
2Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milano 20133, Italy

3Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Milano, via Celoria 16, Milano 20133, Italy
4Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, Université Paris-Saclay, F-91406 Orsay Cedex, France

5Institute of Astronomy and Astrophysics (IAA), Université libre de Bruxelles (ULB), CP 226,
Boulevard du Triomphe, B-1050 Bruxelles, Belgium

6Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8571, Japan
7School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China

(Received 22 February 2019; published 13 May 2019)

We perform time-dependent Hartree-Fock (TDHF) calculations, employing Skyrme functionals, to investigate
the small amplitude dipole response of selected neutron-rich nuclei and Sn isotopes. A detailed comparison with
the dipole strength predicted by random-phase approximation calculations is presented for the first time. TDHF
results are also confronted to Vlasov calculations, to explore up to which extent a semiclassical picture can
explain the properties of the nuclear response. The focus is on the low-energy response, below the giant dipole
resonance region, where different modes of nonnegligible strength are identified. We show that the relative
weight of these excitations evolves with nuclear global features, such as density profile and neutron skin, which
in turn reflect important properties of the nuclear effective interaction. A thorough analysis of the associated
transition densities turns out to be quite useful to better characterize the mixed isoscalar (IS)-isovector (IV) nature
of the different modes and their surface/volume components. In particular, we show that the dipole response in
the so-called pygmy dipole resonance region corresponds to isoscalarlike surface oscillations, of larger strength
in nuclei with a more diffuse surface. The ratio between the IV and IS energy-weighted sum rule fractions
exhausted in this region is shown to almost linearly increase with the neutron skin thickness in Sn isotopes.
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I. INTRODUCTION

The development of collective motion, i.e., a coherent
pattern of particles in phase–space, is a fundamental feature of
many-body systems. For instance, atomic nuclei are strongly
correlated, self-bound many-body systems, which, together
with single-particle properties, exhibit a variety of collective
phenomena [1,2]. More recent examples are provided by
Bose-Einstein condensates [3–5] and there are strong exper-
imental and theoretical evidences that similar effects occur
in other fermionic systems as well [6,7]. Collective patterns
may emerge out of single-particle motion whenever favored
by energy and kinematic conditions. The collective dynamics
is often well described at the classical level and it is reflected
in the spectral properties of the corresponding quantum many-
body system. Hence, the associated spectrum of excitations
usually includes states of single-particle and of collective
natures, together with mixed forms, with a partial degree
of collectivity. A thorough understanding of the emergence
of collective motion from the microscopic point of view is,
however, a true challenge.

The isovector giant dipole resonance (GDR) in heavy
nuclei is a prominent and well-known example of collective
motion, first measured in photoabsorption experiments [8].
The cross-section associated with the electric dipole radiation

and the corresponding strength function show between 10 and
30 MeV—the energy depending on the size of the nucleus as
≈A1/3—a large increase, with a spreading width larger than
the mean level spacing. This excitation can be described in
terms of the classical picture of neutrons and protons moving
against each other, resulting in a large response function.
Thus, the difference between the center-of-mass coordinates
of the two spheres appears as the proper collective coordinate
in this case.

In recent years, there has been a considerable amount of
experimental and theoretical studies on dipole excitations in
neutron-rich nuclei, and in particular on the low-energy tail of
the isovector GDR, the so-called pygmy dipole strength (PDS)
observed in the IV dipole response [often denominated pygmy
dipole resonance (PDR)] [9–11].

The PDR has been often interpreted as an exotic mode of
excitation due to the motion of the weakly bound neutron
excess against an almost inert proton-neutron core [12–14],
although this picture, and the underlying collective nature of
the mode, are still under debate [15].

One major reason for the recently increased interest in
the PDR is the possibility of carrying out several measure-
ments on these low-lying dipole excitations, using heavy-ion
[16,17], proton [18,19], and α inelastic scattering experiments
[20,21]. Indeed, the experimental study of the PDR with
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different probes provides intimate information about the
isospin nature of these excitations which would not be pos-
sible to infer from γ experiments alone [12]. These exper-
imental discoveries were followed by intensive theoretical
investigations, focusing on the isoscalar (IS)-isovector (IV)
character of dipole excitations in isospin-asymmetric nuclear
systems [22,23].

In this paper we aim at getting a deeper insight into
the features of the dipole response in nuclei, with a special
attention to the role of neutron/proton imbalance. By looking
at the dynamical response of the system to different kinds of
external perturbations, we explore spatial profile and IS-IV
character of the dipole excitation modes in neutron-rich nuclei
and Sn isotopes.

This study is tackled by investigating the small amplitude
limit of the dynamical nuclear response to a dipole opera-
tor within the quantal time-dependent Hartree-Fock (TDHF)
method [24–26], its zero amplitude limit, known as the
random-phase approximation (RPA) [27], as well as within
its semiclassical analog: the Vlasov equation [28–30].

As a key point, the paper presents, for the first time, a
detailed comparison between TDHF and RPA calculations,
with the purpose of verifying numerically the analytical equiv-
alence of the two approaches in the small amplitude limit. In
such a way, we aim at bringing out the possible emergence of
spurious differences arising from technical details and assess-
ing practical advantages or drawbacks of the two procedures.
It is worth noting that a similar task, namely carrying out
detailed comparisons between the results of time-dependent
relativistic mean-field, in the small-amplitude limit, and rela-
tivistic RPA, was performed in Refs. [31–33].

Examining analogies and differences between semiclassi-
cal and quantal results, one expects to learn more about the
nature and the degree of collectivity of excitation modes of
present experimental interest. A schematic interpretation of
nuclear excitations in terms of collective motion, whenever
possible, may allow one to establish a more direct connection
to global features of the nuclear effective interaction, such
as surface tension and symmetry energy, also linking the
nuclear response to macroscopic properties of nuclei, like
density profile and neutron skin [34]. To this purpose, we
will also examine the sensitivity of the dipole response to
specific ingredients of the nuclear mean-field potential and to
the equation of state (EoS), adopting Skyrme parametrizations
which mainly differ in the isovector channel [35], already
employed in recent structure studies [36].

Hence, from our analysis, we also aim at extracting im-
portant information on some aspects of effective interaction
and nuclear EoS of considerable relevance also in other fields,
such as heavy-ion reactions and nuclear astrophysics. Last, we
note that, whereas we concentrate on dipole excitations in the
present work, the same investigation can be extended to other
multipolarities as well (cf., e.g., Ref. [37]).

The paper is organized as follows: in Sec. II we introduce
the approaches employed in our analysis and the details of
the calculations related to the dipole response. Section III is
devoted to the discussion of the results obtained for dipole
strengths and transition densities of selected neutron-rich
nuclei and Sn isotopes. We discuss in particular the features

of the low-lying region of the dipole response, showing inter-
esting connections between isoscalar and isovector strengths
in neutron-rich nuclei. The paper ends up with a summary and
some perspectives in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Microscopic approaches and effective interactions

In the present work, we compare three different micro-
scopic theories that are widely used to describe many-body
dynamics: the TDHF, the RPA, and the Vlasov approaches.
Main features and connections among them are briefly dis-
cussed below.

In the TDHF theory, the evolution of the one-body density
matrix ρ(t ) is determined by

ih̄∂tρ(t ) = [h[ρ], ρ(t )], (1)

where h[ρ] = p2/2m + U [ρ] is the nonrelativistic single-
particle Hamiltonian with U [ρ] being the self-consistent
mean-field potential, that is a functional of the one-body
density.

The TDHF approach is nowadays widely used in nu-
clear physics to describe various aspects of nuclear dynamics
[24–26,38]. Here we will restrict ourselves to the study of
small deviations from the equilibrium density ρe. The small
amplitude fluctuations δρ(t ) = ρ(t ) − ρe can be determined
either by solving explicitly the time-dependent evolution
given by Eq. (1) or by linearizing the TDHF equation, leading
to the RPA approach. Keeping only terms linear in δρ, Eq. (1)
equals to

ih̄
∂

∂t
δρ = [h[ρe], δρ] +

[
∂U

∂ρ
· δρ, ρe

]
, (2)

so one can access the response function of the system to a
small external perturbation. Therefore, despite the TDHF has
a larger domain of applicability, from the analytical point of
view, it is equivalent in the small amplitude regime to the
RPA approach, where the time-evolution is replaced by an
eigenvalue problem. A detailed discussion on the RPA method
employed to obtain the results presented here can be found in
Ref. [39] and references therein.

The Vlasov equation, which describes the time evolution
of the one-body distribution function in phase space, repre-
sents instead the semiclassical limit of TDHF and, for small-
amplitude dynamics, of the RPA equations [27]. This self-
consistent approach is suitable to describe robust quantum
modes, of zero-sound type, in both nuclear matter and finite
nuclei [29,40–42], though it is unable to account for effects
associated with the shell structure. Expliciting the two species
constituting nuclear matter, one has essentially to solve the
two coupled Vlasov kinetic equations for the neutron and
proton distribution functions fq(r, p, t ), with q = n, p [40]:

∂ fq

∂t
+ ∂εq

∂p
∂ fq

∂r
− ∂εq

∂r
∂ fq

∂p
= 0. (3)

In the equations above, εq represents the neutron or proton
single particle energy, which contains the mean-field potential
Uq.
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To represent the nuclear effective interaction, we start
considering a given energy density functional E [ρ]. This
formulation is very convenient since it allows to extract the
mean-field potential as its functional derivative with respect to
the density. Actually, the residual interaction, i.e., the antisym-
metrized particle-hole interaction used in RPA calculations, is
calculated via the second functional derivative of E [ρ], when
dealing with density dependent forces.

Considering a standard Skyrme interaction, and specializ-
ing to even-even systems, the functional E [ρ] is expressed in
terms of the isoscalar, ρ = ρn + ρp, and isovector, ρ3 = ρn −
ρp, densities and kinetic energy densities (τ = τn + τp, τ3 =
τn − τp) as [43]:

E = h̄2

2m
τ + C0ρ

2 + D0ρ
2
3 + C3ρ

α+2 + D3ρ
αρ2

3 + Ceffρτ

+ Deffρ3τ3 + Csurf(�ρ)2 + Dsurf(�ρ3)2, (4)

where m is the nucleon mass and the coefficients C.., D..

are combinations of the Skyrme parameters [44]. The actual
Skyrme functional is more complicated than in Eq. (4) as it
includes the spin-orbit terms, plus other terms that depend
on the spin-orbit densities �J and are dubbed J2 terms. The
spin-orbit terms are considered in TDHF and RPA calcula-
tions, but they are not included in the semiclassical Vlasov
calculations. The J2 terms are not included in the TDHF
and Vlasov calculations. Although they could be included in
RPA, for the sake of comparing it with other models, they
are dropped in RPA as well. One may expect that the overall
qualitative features of the excitations investigated here are not
significantly affected by the approximations we have made.
The Coulomb interaction is considered in all frameworks.

We are interested in effects linked to the neutron/proton
content of the nuclei under study, thus it is convenient to in-
troduce the symmetry energy per nucleon, Esym/A = C(ρ)I2,
where I = ρ3/ρ is the asymmetry parameter and the coef-
ficient C(ρ) can be written as a function of the Skyrme
coefficients:

C(ρ) = εF

3
+ D0ρ + D3ρ

α+1 + 2m

h̄2

(
Ceff

3
+ Deff

)
εF ρ, (5)

with εF denoting the Fermi energy at density ρ.
In the following, we will adopt the recently introduced

SAMi-J Skyrme effective interactions [35] based on the fitting
protocol of the SAMi interaction [45]. The SAMi-J family
has been produced by systematically varying the value of J =
C(ρ0) (being ρ0 the saturation density) from 27 to 35 MeV,
keeping fixed the optimal value of the incompressibility and
effective mass predicted by SAMi and refitting again the
parameters for each value of J. This produces a set of inter-
actions of similar quality on the isoscalar channel and that,
approximately, isolate the effects of modifying the isovec-
tor channel in the study of a given observable. The SAMi
fitting protocol [45] includes: binding energies and charge
radii of some doubly magic nuclei, which allows the SAMi-J
family to predict a reasonable saturation density and energy
of symmetric nuclear matter (the incompressibility value is
K = 245 MeV); some selected spin-orbit splittings; the spin
and spin-isospin Landau Migdal parameters [46]; and, finally,
the neutron matter EoS of Ref. [47]. These features allow the

TABLE I. The symmetry energy coefficient at saturation density
for the Skyrme interactions employed in our study and the corre-
sponding slope L.

Interaction J [MeV] L [MeV]

SAMi-J27 27 29.9
SAMi-J31 31 74.5
SAMi-J35 35 115.2

new SAMi-J interactions to give a reasonable description of
isospin as well as spin-isospin resonances, keeping a good
reproduction of well known empirical data such as masses,
radii, and important nuclear excitations (see original work for
further details).

In our calculations, we employed three SAMi-J
parametrizations: SAMi-J27, SAMi-J31 and SAMi-J35
[35]. Since, as mentioned above, the SAMi-J interactions
have been fitted to also reproduce the main features of
finite nuclei, for the three parametrizations the symmetry
energy coefficient gets the same value, C(ρc) ≈ 22 MeV
at ρc = 0.6ρ0, which would approximately correspond to
the average density probed by nuclear masses via the fitting
protocol, if one assumes a local density approximation
[36,48]. The corresponding values of symmetry energy at
saturation, together with the values of the slope parameter
L = 3ρ0

dC(ρ)
dρ

|
ρ=ρ0

are reported in Table I.

B. Numerical details of the calculations and
ground-state configuration

To determine the ground-state configuration of the nuclei
under study, different numerical procedures are followed in
quantal and semiclassical approaches. In the quantal case,
Hartree-Fock (HF) calculations are performed, although two
different codes are employed for TDHF and RPA calculations.
In the former case, the EV8 code [49] is used, while in the
latter case the code SKYRME_RPA [39] is employed. In the
present study, we consider selected closed-shell nuclei and
some Sn isotopes known to be spherical (see, e.g., Ref. [50]).
In addition, pairing correlations have been neglected to allow
for a consistent comparison between the different approaches.
Pairing will not play a role in the magic nuclei that we discuss
below. In the open-shell spherical systems, pairing is known to
affect more the low-lying quadrupole and octupole states than
the dipole response [51,52]. More specifically, in Ref. [53] it
has been shown that pairing effects have no influence on the
dipole polarizability in the 116−132Sn isotopes, especially in
the case of SAMi-J31, that is employed here.

In the EV8 code, the HF equations are solved in coordinate
space. The mesh size has been taken as dx = 0.8 fm. The
imaginary time method is adopted, with a fixed time step
dt0 = 0.36 fm/c. These parameters correspond to standard
choices [49]. The total size of the cubic mesh should be large
enough to avoid effects of particle evaporation on the TDHF
dynamical response. We will consider several choices to test
the sensitivity of the results to this parameter. However, the
values considered should also ensure a reasonable computa-
tional time.
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On the other side, within the fully self-consistent HF+RPA
calculations [39] presented here, the ground-state properties
of the different nuclei are calculated in coordinate space using
box boundary conditions assuming spherical symmetry. Also
in this case, we will test different sizes of the box, keeping
a radial mesh of dr = 0.1 fm. The same box is used to
calculate discrete states at positive energy that are associated
with the continuum part of the spectrum. A cutoff energy of
120 MeV (in the single-particle energy) is adopted for the
RPA calculations. With this energy cutoff, we have checked
that the energy weighted sum rule is satisfactorily fulfilled.

The integration of the Vlasov transport equations is based
on the test-particle (t.p.) (or pseudoparticle) method [54], with
a number of 1500 t.p. per nucleon in all the cases, ensuring in
this way a good spanning of the phase space. The ground-state
configuration corresponds to the stationary solution of Eq. (3).
Within the Thomas-Fermi (TF) approximation, we adopt the
following numerical procedure: neutrons and protons are
distributed inside spheres of radii Rn and Rp, respectively.
Accordingly, particle momenta are initialized inside Fermi
spheres associated with the local neutron or proton densities.
Then Rn and Rp are tuned to minimize the corresponding total
energy, associated with the effective interaction adopted in
the calculations. Because test particles are often associated
with finite width wave packets (we use triangular functions
[55]), some surface effects are automatically included in the
initialization procedure and in the dynamics, even though
explicit surface terms, as those contained in the effective
Skyrme interactions, are not considered. This implies that,
for the surface terms, one cannot simply use the coefficients
associated with the SAMi-J parametrizations. Indeed we ob-
serve that a good reproduction of the experimental values of
both proton root-mean-square radius and binding energy, for
the nuclei selected in our analysis, is obtained when taking
Csurf = Dsurf = 0 in our parametrizations. Thus, this choice
has been adopted in the following for Vlasov calculations (see
Ref. [23] for more details).

C. Dipole response

Dipole oscillations and response functions can be investi-
gated, in both TDHF and semiclassical treatments, introduc-
ing a small perturbation of the ground-state configuration of
the nucleus under study and then looking at its dynamical
evolution, as given by Eqs. (1) or (3). Thus, we study the
E1 (isoscalar and isovector) response of nuclear systems,
considering initial conditions determined by the instantaneous
excitation Vext = ηkδ(t − t0)D̂k , along the z direction [42,56].
Here D̂k denotes the operator employed to introduce isoscalar
(k = S) or isovector (k = V) dipole excitations and takes the
standard form [39]:

D̂S =
A∑

i=1

(
r2

i − 5

3
〈r2〉

)
zi, (6)

D̂V =
A∑

i=1

[
τi

N

A
− (1 − τi )

Z

A

]
zi, (7)

where N and Z indicate neutron and proton number, A =
N + Z , τi = 1(0) for protons (neutrons) and 〈r2〉 denotes the

mean square radius of the nucleus considered. The above
definitions [Eqs. (6) and (7)] avoid the undesired effect of the
so called spurious state and remove the contribution from the
center of mass, respectively. We note that the operator D̂V

also contains an isoscalar component, which vanishes only
for symmetric (N = Z) systems. According to basic quantum
mechanics, if |
0〉 is the state before perturbation, then the
excited state becomes |
k (t0)〉 = eiηk D̂k |
0〉. The value of ηk

can be related to the initial expectation value of the collective
dipole momentum �̂k , which is canonically conjugated to the
collective coordinate D̂k , i.e., [D̂k, �̂k] = ih̄ [57].

The same operators defined above are considered in
RPA calculations, to extract isoscalar and isovector dipole
strength functions: Sk (E ) = ∑

n>0 |〈n|D̂k|0〉|2δ[E − (En −
E0)], where En is the excitation energy of the state |n〉 and
E0 is the energy of the ground state |0〉 = |
0〉.

In TDHF and Vlasov calculations, the strength function is
obtained from the imaginary part of the Fourier transform of
the time-dependent expectation value of the dipole moment
Dk (t ) = 〈
k (t )|D̂k|
k (t )〉 as

Sk (E ) = Im[Dk (ω)]

πηk
, (8)

where Dk (ω) = ∫ tmax

t0
Dk (t )eiωt dt , with E = h̄ω. In these two

approaches, we follow the dynamics of the system, looking
in particular at the time oscillations of the dipole moments,
until tmax = 1800 fm/c. The TDHF equations are solved using
the 3D-TDHF code of Refs. [51,58–60], with a time step
dt = 0.36 fm/c. A slightly larger time step, dt = 0.50 fm/c,
is instead adopted for the solution of the Vlasov equation.
As described in Ref. [61], to eliminate the artifacts resulting
from a finite time domain analysis of the signal, a filtering
procedure was moreover applied by introducing a smooth
cutoff function such that

Dk (t ) → Dk (t ) exp

(
−γ t

2h̄

)
, (9)

with γ = 0.8 MeV.

III. RESULTS

This section is dedicated to investigating the E1 (IS and
IV) response of neutron-rich nuclear systems. To compare
with the semiclassical results reported in a previous work
[23], we consider in our analysis three closed-shell nuclei:
68Ni (proton closed-shell), 132Sn, and 208Pb. Later, to better
explore how the features of the dipole response evolve with
the neutron/proton content of the nuclei under study, we will
also consider two other Sn isotopes (100Sn, 120Sn) in our
analysis.

A. Comparison between quantal and semiclassical approaches

1. Ground-state properties and density profiles

As stressed in the Introduction, we aim at elucidating the
role of some global properties, such as density profiles and
neutron skin, in determining the main features of the nuclear
response. Therefore, as a preliminary step, it is worthwhile
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TABLE II. Neutron and proton root-mean-square radii, their
difference, and binding energy for three systems considered in our
study, as obtained in TF and HF models with the SAMi-J31 interac-
tion. The experimental values, for charge radius and binding energy,
are also indicated [62].

√
〈r2〉n [fm]

√〈r2〉p [fm]
√

〈r2〉n − √〈r2〉p [fm] B
A [MeV]

68Ni
HF 4.001 3.831 0.170 8.845
TF 4.102 3.898 0.204 9.050
Exp – 3.857 – 8.682

132Sn
HF 4.927 4.664 0.263 8.448
TF 5.035 4.741 0.294 8.552
Exp – 4.709 – 8.354

208Pb
HF 5.654 5.456 0.198 7.916
TF 5.735 5.536 0.199 8.042
Exp – 5.501 – 7.867

to illustrate the capability of both semiclassical and quantal
approaches in reproducing some experimental ground-state
quantities. It should be noticed that the HF calculations give
an excellent agreement with data if the J2 terms are included.
Indeed, the SAMi family has been originally fitted including
all Skyrme-like terms.

The proton root-mean-square radius and the binding en-
ergy evaluated by employing, respectively, a semiclassical
treatment in the TF approximation or a self-consistent quantal
HF calculation, are listed in Table II, together with the corre-
sponding experimental values. For the sake of completeness,
neutron root-mean-square radius and neutron skin thickness
are also reported. The SAMi-J31 parametrization of the effec-
tive interaction has been employed.

One observes, in both models, a general good reproduction
of the experimental values, especially for larger systems,
as it should be, according to the mean-field approximation
adopted. TF calculations predict a more extended neutron skin

as well as slightly larger binding energy values with respect
to the HF case. To better emphasize the differences observed
between the two approaches, the isoscalar density ρ and the
local asymmetry ρ3/ρ profiles are plotted in Figs. 1 and 2,
respectively.

With respect to the HF result, the TF isoscalar density
profile appears flatter in the internal region, especially in
the Ni and Pb case, indicating a sharper transition from the
volume to the surface region. This could be attributed to
the numerical treatment of surface effects in Vlasov calcu-
lations and to the lack of intrinsic quantal gradient terms,
corresponding to the h̄2 terms in the Wigner-Kirkwood h̄-
expansion of the distribution function [63,64]. One expects
that these differences will affect the details of the modes
mostly involving surface oscillations. Looking at Fig. 2, one
observes some differences between quantal and semiclassical
predictions also in the isovector density ρ3. Semiclassical
calculations are characterized by a larger neutron drift towards
the surface. Some differences appear also in the more internal
region, evidencing the role of shell effects in shaping the fine
details of the nuclear structure.

2. Dipole response and strength function

Next, we investigate the dipole response. Figure 3 shows
the time evolution of IS and IV dipole moments in the system
132Sn, as obtained by using an initial IS or IV perturbation.
In our analysis we choose, as perturbation strength, the fol-
lowing values: ηS = 1.0 × 10−4 fm−3, ηV = 1.0 × 10−4 fm−1

in TDHF calculations and ηS = 2.5 × 10−3 fm−3, ηV = 1.3 ×
10−1 fm−1 for Vlasov ones, respectively. The numerical pro-
cedure adopted to solve the Vlasov equation, related to the
use of a finite number of test particles to map the one-body
distribution function, introduces some numerical noise, im-
plying to consider larger amplitude perturbations, with respect
to TDHF. One may generally note larger damping effects in
the Vlasov calculations, probably related to the finite number
of test particles and to the larger amplitude of the initial per-
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r / r0

0.03
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0.3 0.6 0.9 1.2 1.5
r / r0

0.3 0.6 0.9 1.2 1.5
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68Ni 208Pb132Sn

(a) (b) (c)

FIG. 1. The isoscalar density profiles for 68Ni, 132Sn, and 208Pb, from Hartree-Fock and Thomas-Fermi models, versus the normalized
radius r/r0, with r0 = 1.2 A1/3.
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FIG. 2. The local asymmetry profile for 68Ni, 132Sn, and 208Pb, from Hartree-Fock and Thomas-Fermi models, versus the normalized radius
r/r0, with r0 = 1.2 A1/3.

turbation, that may induce nonlinear effects, i.e., the coupling
to other multipoles, and increase particle evaporation.

Figure 4 displays the corresponding IV and IS dipole
strength functions in 68Ni, 132Sn, and 208Pb. Looking at the
bottom panels, one notices that the IV dipole strength is
clearly dominated by the collective IV GDR mode peaked in
the energy region around 12–16 MeV. Despite the differences

observed between the semiclassical and quantal ground-state
features, the IV dipole strength deduced within the TDHF
model is generally well reproduced by the corresponding
Vlasov calculation. The agreement is particularly satisfying
for the energy of the main IV peak, especially when larger sys-
tems are considered. Some strength is observed at low energy,
i.e., in the region of the PDS, albeit the corresponding peaks
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FIG. 3. (Top panels) The time evolution of the IS dipole moment for 132Sn and SAMi-J31 interaction, as obtained in TDHF (left panel)
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FIG. 4. (Top panels) The strength function of the IS response of the closed shell nuclei 68Ni, 132Sn, and 208Pb, with SAMi-J31 interaction.
Full lines represent the results from TDHF calculations, dashed lines the ones from Vlasov calculations. (Bottom panels) Similar to the figures
in the top panels, but for the strength function of the IV response.

look shifted in Vlasov calculations, with respect to TDHF.
Though it is interesting to notice that the PDS also emerges
in semiclassical calculations, we stress that the details of this
low-energy IV contribution, namely its degree of collectivity
and precise energy location, are strongly affected by shell
effects and by the ingredients of the residual interaction, as
pointed out in recent investigations [65,66].

Concerning the IS dipole strength (top panels in Fig. 4),
the scenario is more complicated. In the case of the large
systems, the two models give close values for the centroid
of the high-energy peak, in the excitation energy domain
of the IS GDR (around 30 MeV), where the compressional
modes dominate [67]. For 68Ni, a shift to higher energy is
clearly evidenced in the Vlasov case, with respect to TDHF.
Moreover, TDHF calculations lead to a larger fragmentation
of the strength function, particularly in the Ni case.

These differences may arise from the fact that in Vlasov
simulations the evaporated particles are more abundant and
may leave the calculation box. A remarkable discrepancy
can be identified in the shape of the nuclear response in the
low-energy regime. Two main regions of contribution can
be recognized, which are well separated in energy in the
TDHF case (see for instance the contributions around 8 and
13 MeV in the 132Sn case). In the same energy region, the
Vlasov calculations show two main peaks which are closer
in energy (around 8 and 11 MeV for 132Sn) and not always
clearly distinguishable (see in particular the result for 208Pb).
Moreover, the relative weight of the two peaks is different in
TDHF and Vlasov calculations.

It is worthwhile to notice that in previous semiclassical
studies [41], where isoscalar toroidal excitations were inves-
tigated, the modes emerging in this energy region have been
associated with surface oscillations. In particular, the lowest
energy one corresponds to oscillations deeply involving the
outer surface zone, whereas the second mode (of higher
energy) would correspond to standard toroidal dipole excita-
tions, associated with the oscillation of the surface against the
bulk region [41].

As anticipated above, the energy position predicted for
these isoscalar surface peaks is quite different in Vlasov and

TDHF calculations. In particular, in TDHF calculations, the
second region of considerable strength is shifted to higher
frequency. This discrepancy could originate from the approx-
imations done in the semiclassical approach, like the lack of
gradient terms and, however, from the numerical procedure
adopted to treat surface effects in this case, as already noted
for the ground-state configuration. Since isoscalar gradient
terms give a positive contribution to the restoring force, we
may expect higher oscillation frequencies in TDHF. Last but
not least, the details of the low-lying excitations are very likely
to be also affected by shell effects.

Moreover, TDHF calculations seem to favor the lowest en-
ergy peak, whereas the opposite happens in the Vlasov results.
This latter behavior could be connected to the different density
profile predicted by the two calculations. A sharper evolution
from the bulk to the surface region, as observed in the Vlasov
case, seems to favor the dominance of the standard toroidal
mode. However, a smoother density profile enhances surface
effects, leading to more robust oscillations in the lowest-
energy region. A further insight about the volume/surface
nature of these excitation is gained, however, by looking at the
shape of the corresponding transition densities, as discussed in
the following (see Sec. III D).

B. Isoscalar-isovector mixing in n-rich systems

As stated in the Introduction, one of the goals of our
analysis is to get a deeper insight into the isoscalar-isovector
mixing which characterizes the excitation modes of nuclei
with an unbalanced number of protons and neutrons. Let us
consider TDHF calculations for the system 132Sn, with the
SAMi-J31 effective interaction. Fig. 5 (left panels) shows that
it is possible to extract a sizable IS response by perturbing the
nucleus not only with an initial IS excitation (top), but also
by employing an initial IV excitation (bottom). Similarly, the
investigation of the IV response carried out by employing the
two kinds of initial perturbation (see Fig. 6, left panels) shows
that IS excitations also generate an IV strength. In each panel
of Figs. 5 and 6, the relative height of the peaks will depend
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FIG. 5. The imaginary part of the IS response with IS perturbation (top) and IV perturbation (bottom), respectively, as obtained for 132Sn
(left panels) and 100Sn (right panels) with SAMi-J31 in TDHF calculations.

on the initial perturbation type and on the intrinsic structure
of the mode considered.

This characterization holds for almost all the main modes,
which are excited by both the IS and IV perturbations, ac-
cording to their mixed nature. Looking at the strength of the
peaks in the different panels, it appears that, whereas the
IV GDR manifests its well established predominant isovector
nature, though with some mixing, the lowest-energy excita-
tion (indicated as PDR) turns out to be mostly an isoscalarlike
mode (see also the analysis in Ref. [66]), which, however, can
be excited also by an IV perturbation, owing to the coupling
existing between isoscalar and isovector modes in asymmetric
systems. Only for the IS GDR, the IV projection comes out to
be negligible, thus indicating a quite robust isoscalar nature
of this mode. Looking at the bottom panels of Figs. 5 and
6, one can notice, as a quite interesting detail, that the two
mixed projections, i.e., the IS(IV) response generated by an
IV(IS) perturbation have the same structure. This confirms
the consistency of our calculations. It should be noticed that
similar results about the isoscalar-isovector mixing of the
excitation modes in neutron-rich systems have been obtained
also in semiclassical calculations [23].

To better clarify the role of the isospin asymmetry in shap-
ing the mixing observed in the dipole response, we extended
our analysis to the nuclear system 100Sn, that is the double-
magic nucleus of the Sn isotope chain, which is constituted
by an equal number of protons and neutrons.

According to the framework depicted above, one expects
the coupling between the modes excited by the two pertur-
bation kinds to be quenched in this case. Indeed, this is in

line with the results plotted in the right panels of Figs. 5
and 6. Beyond dispute, in this case, the correspondence in
the dipole strengths associated with the two perturbations
considered is reduced. For instance, the PDS is not observed,
i.e., there is no IV strength in the PDR region in the case of
IV excitations (top right panel of Fig. 6). This stresses once
again the prominant isoscalar nature of the pygmy mode and
the strong connection of its IV counterpart with the neutron
richness of the nucleus considered. In the same way, owing
to its isovector nature, the IV GDR peak (see the dashed
green line in the right panels of Figs. 5 and 6) has a reduced
strength in the IS response obtained with an IS perturbation
(top right panel of Fig. 5). However, even for the symmetric
100Sn, the cross responses (right bottom panels) evidence
the presence of some IS-IV mixing, mainly for the modes
located in the region between the PDR and the IV GDR.
In particular, a noticeable degree of mixing is observed just
slightly below the IV GDR, reflecting a sudden transition from
IS to IV excitations. Therefore, even though the scenario for
100Sn is partially simplified by its N = Z nature, the general
picture has not a trivial interpretation overall. The mixing
observed arises from the Coulomb interaction, which breaks
the symmetry between neutron and proton response. For the
following analyses we will concentrate only on the IV (IS)
response induced by an IV (IS) perturbation.

C. Sensitivity to the effective interaction

To discuss the impact of the employed effective interaction
on the dipole response, we show in Fig. 7 the results obtained
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for 132Sn, using three SAMi-J parametrizations differing by
the (J-L) combination values (see Table I). It is well known
[68,69] that the IV response is quite sensitive to the symmetry

0

3.5

7

10.5

14

17.5

S S (E
) [

10
3  fm

6 /M
eV

]

SAMi-J27
SAMi-J31
SAMi-J35

5 10 15 20 25 30 35
E [MeV]

-25

-20

-15

-10

-5

0

-S
V

 (E
) [

fm
2 /M

eV
]

132Sn

(a)

(b)

FIG. 7. The IS (a) and IV (b) dipole response for 132Sn, as
obtained in TDHF calculations when employing three SAMi-J
parametrizations.

energy details, as we also observe here. In particular, the
strength in the region below the IV GDR increases with L
[66,70]. We notice that, within the adopted interactions, also
the neutron skin thickness increases with L (see Tables I and
II). Also the frequency of the IV GDR is affected, and it
moves to higher values as L decreases, reflecting the larger
value of the symmetry energy at low density (below ρc). A
splitting of the resonance in two peaks occurs in the case of
the SAMi-J27 interaction.

However, we observe only a slight sensitivity of the IS
response to the interactions considered in our study. The
shift observed for the second relevant IS peak is probably
related to the different isoscalar surface terms of the SAMi-J
interactions considered, whose strength decreases from J27 to
J35. This observation supports the important impact of surface
terms on the features of this mode, as already discussed when
comparing TDHF and Vlasov results. The compressional IS
GDR is insensitive to the choice adopted for the interaction,
as one would expect considering the SAMi-J parametrizations
are characterized by the same compressibility value.

D. Comparison between TDHF and RPA

In this section, we aim at undertaking a detailed compari-
son of the dipole response which is extracted within the two
quantal approaches employed in our work: TDHF and RPA.
The two models are equivalent from the theoretical point of
view, at least in the limit of small oscillations, so this analysis
allows one to highlight possible spurious effects introduced by
the technical procedure adopted and therefore isolate only the
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relevant physical features. Moreover, this study helps in giving
some hints concerning the numerical parameters to be adopted
to ensure the best possible agreement between the two codes,
which could be used as a reference also for future works.

For this analysis, we discuss the results obtained for the
132Sn system, employing the SAMi-J31 interaction. Figure 8
presents a comparison of the IS and IV dipole response,
as obtained in TDHF calculations, with corresponding RPA
calculations. In the latter, the strength function is calculated
by convoluting the transition probability with a Lorentzian
function of width equal to 0.5 MeV. However, in the TDHF
results, the spread originates from the finite time interval
considered to follow the dynamics and from our smoothing
procedure (see Sec. II C).

For the two approaches, we have explored the dependence
of the results on the size of the box considered. This ingredient
determines the discretization of the single-particle states in the
continuum, so that it could affect the details of the oscillation
modes at higher frequency. We denote by Lbox either half of
the side of the cubic box employed in THDF calculations or
the radius of the spherical box considered in RPA calculations.
Within the spanned range, the values obtained for both the IS
and IV Energy Weighted Sum Rule (EWSR) are convergent
and consistent between THDF and RPA calculations (within
0.1%).

As one can see in Fig. 8, the IV response is nearly insen-
sitive to Lbox (within the range considered) and an excellent
agreement is obtained between the two approaches. The exci-

tation energies of the modes characterizing the IV response
are indeed lower, and the coupling with the continuum is
smaller than in the case of the IS response. As far as the
IS component is concerned, the TDHF response is slightly
affected by the Lbox parameter and practically converges to its
final shape already for Lbox = 20 fm. The RPA calculations
exhibit, within a similar range of values as adopted in the
TDHF case, a larger sensitivity to Lbox in the high-energy
region of the IS spectrum. At present, although we cannot
prove it, we could say that the differences between TDHF and
RPA may be simply due to different discretization procedures.

An indication along this line can be seen in Fig. 9,
that shows a comparison between TDHF (Lbox = 20 fm) and
RPA (Lbox = 30 fm). Here, at variance with Fig. 8, the RPA
strength has been convoluted with a Lorentzian function of
energy-dependent width

�(E ) =
{

e− (E−30)2

252 ln 2 5 � E � 55 MeV

0.5 elsewhere,
(10)

which leads to a maximum width of 1.0 MeV in the energy
region of the IS GDR.

One can conclude that, in spite of the different degree of
sensitivity to some technical ingredients, such as the box size,
a very good agreement is observed between TDHF and RPA
calculations, as far as the IS and IV dipole responses are
concerned.
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E. Transition densities

In addition to the investigation of the dipole strength
discussed so far, the analysis of the transition densities as-
sociated with the different excitation modes of the system
is very instructive since it delivers important information
about the spatial structure related to the dynamics of every
excitation. To undertake this analysis in TDHF and Vlasov
calculations, we need to evaluate the local spatial density
as a function of time. To reduce numerical fluctuations,
we take into account the cylindrical symmetry of the ini-
tial perturbation and, averaging over the azimuthal φ angle,
we extract the density ρq(r, cos θ, t ) and the corresponding
fluctuation δρq(r, cos θ, t ) = ρq(r, cos θ, t ) − ρq(r, t0), where
cos θ = z/r and ρq(r, t0) denotes the ground-state density
profile, which only depends on r. As suggested in Ref. [41],
assuming that the amplitude of the oscillation is weak (lin-
ear response regime), the spherical symmetry of the ground
state and the dipole shape of the excitation operator im-
ply that the transition density can be written, at each time,
as δρq(r, cos θ, t ) = δρq(r, t ) cos θ . Then one can finally ex-
tract the transition density just as a function of the radial
distance r, by averaging over the polar angle the quantity
δρq(r, t ).

It is clear that, both in Vlasov and TDHF calculations, the
perturbation Vext, at t = t0, induces simultaneously all modes
which can be excited by the operator D̂k . Thus the corre-
sponding density oscillations observed along the dynamical
evolution will appear as the result of the combination of the
different excitation modes. To pin down the contribution of a
given mode, of energy E , to the density oscillations, one can

compute the Fourier transform of δρq(r, t ):

δρq(r, E ) ∝
∫ ∞

t0

dt δρq(r, t ) sin
Et

h̄
. (11)

In practice, since the simulation runs only to tmax =
1800 fm/c, the sine function is multiplied by a damping
factor, as in the strength function Sk (E).

We notice that, in RPA calculations, one does not need to
use any auxiliary prescription, since the transition densities
are directly evaluated from the forward and backward am-
plitudes solution of the RPA matrix, associated with a given
energy eigenvalue E [see Eqs. (36) and (37) in Ref. [39]].
Nonetheless, in principle, it could be possible to average the
RPA transition densities in a given energy window.

It is well known that, in symmetric matter, neutrons and
protons oscillate with exactly equal (isoscalar) or opposite
(isovector) amplitudes. In neutron-rich systems, the picture
is more complex; however, one can still identify isoscalarlike
modes, when the two nuclear species oscillate in phase, and
isovectorlike modes, with neutrons and protons oscillating out
of phase. Apart from this information, connected to the mixed
character of each mode, the overall spatial structure of the
transition densities tells us which part of the system (internal
part or surface) is more involved in the oscillation.

In dynamical calculations, dipole excitations are directly
excited by a given (IS or IV) perturbation. Hence IS(IV)-
like oscillations, and corresponding transition densities, are
better identified when an initial IS(IV) perturbation is applied.
Actually, this possibility to directly probe the response of the
system to specific excitations could also help to disentangle
between modes having similar energies but different nature.
However, the modes with a strong IS-IV mixing react to both
(IS and IV) excitations, so the associated transition density
can be extracted from both kinds of calculations.

Here we present the transition densities related to the
modes giving a sizeable contribution to the IS dipole strength
function (Fig. 10) and/or to the IV one (Fig. 11), as obtained
for the system 132Sn in TDHF, Vlasov and RPA calculations.
For the Vlasov calculations, we consider the same modes
identified in Ref. [23]. The energies considered in TDHF and
RPA calculations are indicated by vertical bars in Fig. 9.

As a general feature, it should be noticed that TDHF and
RPA calculations lead to very similar results. The first row
of the two figures displays the structure of what we may call
PDR (full orange bar in Fig. 9), which manifests itself as an
isoscalarlike mode, but with also an isovector contribution.
Indeed, in TDHF and Vlasov calculations, essentially the
same structure is observed when the transition density is
extracted from IS or IV perturbations, though with a reduced
amplitude in the latter case.

The structure obtained in quantal calculations is in agree-
ment with previous results [66] and is qualitatively well re-
produced also by the semiclassical density oscillations, except
for the behavior in the central region which could be related
to the trend observed in the quantal isovector density profiles
(see Fig. 2). One can see that density oscillations involve
deeply the surface region (see the behavior for r between 5
and 9 fm). This is in line with the observation that this mode
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FIG. 10. The transition densities related to the main peaks evidenced in Fig. 9, as obtained in the IS strength function for 132Sn, SAMi-J31
parametrization and for the three different models considered. Corresponding energies are also indicated.

is particularly robust in nuclei exhibiting a diffuse density
profile, as discussed in Sec. III A.

In the low-lying energy domain (below the IV GDR), a
second peak is observed both in the IS and IV dipole strength
(dash-dotted blue and dash-dash-dotted red bars in Fig. 9,
respectively). These peaks reflect two distinct excitation
modes, though their energy is close. The corresponding tran-
sition densities are displayed in the second row of Figs. 10
and 11 and, as it is particularly clear in the Vlasov case,
manifest their isoscalarlike or isovectorlike nature, respec-
tively. This result indicates that, in addition to the PDR, it is
possible to recognize at least other two distinct modes, with
different structure, in the energy region below the IV GDR.
As compared to the PDR, for this second isoscalarlike mode
(compare first and second rows of Fig. 10) density oscillations
look shifted to the left, thus involving more the internal part of
the system. Actually, this mode should correspond to standard
toroidal excitations, where the surface moves against the core.
Thus, we expect this mode to be more robust in nuclei with a
sharper evolution from the volume to the surface in the density
profile.

A deeper investigation on the nature of the modes lying in
this low-energy domain will be tackled in Sec. III F.

The structure of the IV GDR (dashed green bar in Fig. 9)
is plotted in the third rows of the two figures. In all the
cases, the well-established isovectorlike structure correspond-
ing to the semiclassical Goldhaber-Teller (GT) picture is
well represented, with essentially one prominent oscillation,
having a maximum close to the nuclear surface (see Fig. 11)

[71]. The mode presents also a sizeable isoscalar component;
indeed quite similar transition densities, though of reduced
amplitude, are extracted considering an initial IS perturbation
(Fig. 10) [72].

Lastly, the last rows are dedicated to display the structure
of two volume modes: the IS GDR peak obtained in the
high-energy region of the IS response (Fig. 10, dotted violet
bar in Fig. 9) and the isovector-like peak emerging in the
IV response beyond the IV GDR (Fig. 11, dash-dot-dotted
cyan bar in Fig. 9). One can notice that the latter IV peak
exhibits a structure which is typical of the Steinwedel-Jensen
(SJ) description, characterized by a kind of double oscillation
and deeply involving also the internal part of the system. The
three models compare very well in this case.

To conclude, from this analysis it emerges that semiclas-
sical calculations are able to grasp the main features of the
density oscillations associated with the excitation modes con-
sidered here, though volume modes are described better than
the ones characterized by important surface contributions.

F. Low-lying energy modes for Sn isotopes

We focus here on low-energy modes, which are more in-
triguing and controversial, exploring how their features evolve
with the isospin asymmetry content of the systems. A large
amount of investigations has been devoted in recent years to
the behavior of a variety of isotopes, from light to heavy, from
spherical to deformed, and from normal to superfluid nuclei,
to shed light on the properties of the PDR [73]. Although we
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are not going to develop here a systematic study in the strict
sense, with the aim of elucidating our understanding of the
structure of the low-lying energy modes, in this section we are
looking at the properties of these excitations in three spherical
nuclei belonging to the Sn isotope chain: the semi-magic
nucleus 120Sn and two double magic-nuclei, namely, 100Sn
and 132Sn. The latter Sn isotope is the one already considered
in the previous sections. In such a way, we can isolate the
effect of the N/Z ratio on the isoscalar-isovector mixing and
on the structure of the modes we wish to analyze.

In analogy with the investigation carried on for the closed
shell nuclei examined in the first section, in Figs. 12–14
the isoscalar density and local asymmetry profiles are plot-
ted, for the three Sn isotopes considered. The three SAMi-J
parametrizations of the effective interaction introduced above
are adopted: SAMi-J27, SAMi-J31, SAMi-J35. In such a way,
it will also be possible to probe the effects of modifying
the isovector channel of the functional considered on the
observables under study. To better compare the structure
of these profiles, in these figures, as in Figs. 1 and 2, we

0.3 0.6 0.9 1.2
r / r0

0

0.03

0.06

0.09

0.12

0.15

0.18

ρ 
[f

m
-3

]

100Sn
120Sn
132Sn

0.3 0.6 0.9 1.2
r / r0

0.3 0.6 0.9 1.2
r / r0

SAMi-J27 SAMi-J35SAMi-J31(a) (b) (c)

FIG. 12. The isoscalar density profiles of the three spherical nuclei in the Sn isotope chain, for the three parametrizations SAMi-J27 (a),
SAMi-J31 (b), and SAMi-J35 (c) considered (r0 = 1.2A1/3).
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FIG. 13. Similar to Fig. 9, but for 100Sn.

renormalized the radius with respect to the standard radius
r0 (r0 = 1.2A1/3). From Fig. 12, it is rather evident that, as
a consequence of the shell structure, the double magic nuclei
exhibit a similar profile, which has a more compact shape and
a rather flat behavior in the internal region. This configuration
reflects in a sharper radial evolution of the density in the
surface region, with respect to the open-shell nucleus 120Sn,
whose density profile appears more diffuse. At the same
time, the isovector density profiles (Fig. 14) clearly show the
increasing of the local asymmetry ρ3/ρ in correspondence
of the surface, especially for the more neutron-rich system,
132Sn, owing to the neutron skin development [74]. This is
more evident employing the SAMi-J35 interaction, that has
the largest value of the slope L. One can also observe a sligthly
proton-rich surface region in the case of 100Sn.
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FIG. 15. Similar to Fig. 9, but for 120Sn.

Analogously to the analysis presented in Fig. 9 for 132Sn,
in Figs. 13–15, we show the IS and IV dipole strengths as
obtained with both TDHF and RPA models, for 100Sn and
120Sn considering the SAMi-J31 parametrization only. We ob-
serve a nice agreement between TDHF and RPA calculations.
It clearly emerges that the IS dipole strength of the pygmy
mode (indicated by the full orange bar) is strongly enhanced
in the case of 120Sn, not only with respect to the symmetric
system 100Sn, but also in comparison to the neutron-rich
nucleus 132Sn. The relative importance of the pygmy mode
in the IS response is in fact enforced at the expense of
the strength arising in the energy region just below the IV
GDR (peak associated with the dash-dash-dotted red bars in
Figs. 9, 13, and 15). As already discussed in Sec. III A, when
commenting on the differences observed between Vlasov and
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FIG. 14. The local asymmetry profiles of the three spherical nuclei in the Sn isotope chain, for the three parametrizations SAMi-J27 (a),
SAMi-J31 (b), and SAMi-J35 (c) considered (r0 = 1.2A1/3).
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FIG. 16. The transition densities of the PDR (indicated by full orange bars in Figs. 9, 13, and 15), as obtained in TDHF with an initial
IS perturbation (left panels) or in RPA (right panels) calculations, for the three nuclei in the Sn isotope chain and for the three SAMi-J
parametrizations.

TDHF calculations, this evolution could be connected to the
different density profile of the open-shell 120Sn, with respect
to the closed shell nuclei. Also here, one can notice that a
smoother density profile is associated with a larger strength
of the isoscalar mode of lowest energy, that has a significant
surface component. Owing to the coupling which exists in
isospin asymmetric systems, a larger PDS is observed in
the IV response. In other words, the PDS does not increase
monotonically with N , contrarily to the trend exhibited by the
neutron-skin in these Sn isotopes.

Let us concentrate now on the spatial structure of the low-
lying energy modes. In the following we will investigate the
Sn isotopes introduced above and we will present the results
for the three parametrizations of the effective interaction
employed in our study. The left panels in Fig. 16 present the
transition densities extracted in TDHF for the lowest energy
peak in the pygmy region of the IS dipole response (indi-
cated by full orange bars in Figs. 9, 13, and 15). The result
related to the system 132Sn and the SAMi-J31 interaction has
already been shown in Fig. 10. However, here our aim is
to see the evolution of the PDR structure when varying the
isospin asymmetry of the systems, as well as the interaction
adopted. First of all, it is interesting to notice once again the
isoscalarlike nature of the PDR, especially for the symmetric
system, where neutrons and protons oscillate almost exactly
in phase. As extensively discussed above, indeed, for this
system the isoscalar-isovector mixing, which usually charac-
terizes neutron-rich systems, is strongly reduced. Moreover,
in agreement also with our semiclassical results [23], when
considering interactions with increasing slope L (from SAMi-
J27 to SAMi-J35), one can see that for neutron-rich systems,
neutron oscillations become larger, with respect to proton
oscillations, especially in the surface region. This can be
explained on the basis of Fig. 14, where one observes that
the system asymmetry is pushed more towards the surface,
corresponding to the development of a thicker neutron skin,
when increasing the value of the slope L. The right panels

of Fig. 16 show that a good agreement is obtained with the
analogous RPA results.

We turn now to examine the peak observed in the IV
response (the dash-dotted blue bars in Figs. 9, 13, and 15).
As shown by the TDHF calculations of Fig. 17, the transition
densities clearly reveal the isovectorlike nature of this mode.
Again, as for the PDR, the amplitude of the oscillations at
the surface increases as a function of the slope L (see Fig. 7
for the corresponding effect on the strength). Moreover, the
IS-IV mixing increases when moving from 100Sn to 132Sn.
It is interesting to notice that the observation of two low-
energy modes of close energy, the one of lowest energy being
mainly isoscalar and the other being mainly isovector, has
been reported also in other recent studies [12].

Finally, Fig. 18 shows the transition densities of the second
relevant peak appearing in the IS response (that is the peak
indicated by dash-dash-dotted red bars in Figs. 9, 13, and 15).
As discussed above, this excitation may correspond to the
toroidal mode [41]. Indeed, the transition densities deduced
by employing an IS perturbation manifest the development of
a mode which is clearly isoscalarlike, especially in the case of
100Sn where coupling effects are quenched (see Fig. 18). Also
in this case, the IS-IV mixing increases with the symmetry
energy slope L of the parametrization considered and with
the N/Z of the system. The shape of the transition densities
indicates that this mode corresponds to oscillations of the
surface against the volume. The small amplitude observed
for 120Sn, especially in the case of SAMi-J27, is related to
the reduced IS strength in the energy region considered (see
Fig. 15). It should be noticed that a quite good correspondence
with RPA results (not shown here) is obtained also for the
modes described in Figs. 17 and 18.

G. Sn isotope chain: Evolution of the PDR strength

In this section, we aim at assessing the evolution of the
PDR strength when varying the N/Z ratio of nuclear systems.

054314-15



S. BURRELLO et al. PHYSICAL REVIEW C 99, 054314 (2019)

-0.01

0

0.01
neutrons
protons

100Sn 120Sn 132Sn

-0.01

0

0.01

δρ
 [a

rb
. u

ni
ts

]

0

0.01

r [fm]
-0.01

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 10

E = 11.86 MeV

E = 12.04 MeV

E = 11.88 MeV E = 11.58 MeV

E = 11.84 MeV

E = 11.85 MeVSAMi-J27 E = 13.34 MeV

SAMi-J31

SAMi-J35

E = 13.06 MeV

E = 12.77 MeV

(a) (b) (c)

(f)

(i)(h)

(e)(d)

(g)

FIG. 17. The transition densities of the second IV peak (indicated by dash-dotted blue bars in Figs. 9, 13, and 15), for the three Sn isotopes.
The results are obtained in TDHF and for three SAMi-J parametrizations.

-0.01

0

0.01

100Sn

neutrons
protons

120Sn 132Sn

-0.01

0

δρ
 [a

rb
. u

ni
ts

]

-0.01

0

0.01

r [fm]
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 10

E = 13.01 MeV

E = 12.90 MeV

E = 12.82 MeV E = 12.45 MeV

E = 12.77 MeV

E = 12.99 MeVSAMi-J27 E = 14.49 MeV

SAMi-J31

SAMi-J35

E = 14.50 MeV

E = 14.50 MeV

(a) (b) (c)

(f)(e)(d)

(g) (h) (i)

FIG. 18. The transition densities of the second IS peak (dash-dash-dotted red bars in Figs. 9, 13, and 15), for the three Sn isotopes. The
results are obtained in TDHF and for three SAMi-J parametrizations.

054314-16



INTERPLAY BETWEEN LOW-LYING ISOSCALAR … PHYSICAL REVIEW C 99, 054314 (2019)

0

2

4

6

8

10

12

f PD
R

IS
 [%

]

SAMi-J27
SAMi-J31
SAMi-J35

50 60 70 80
N

0

1

2

3

4

5

f PD
R

IV
 [%

]

-0.15 0 0.15 0.3 0.45
Neutron skin [fm]

)b()a(

(c) (d)

FIG. 19. Fraction of the EWSR exhausted in the PDR region, for the IS (top) and IV (bottom) response, as a function of the neutron number
N (left) and the neutron skin (right) of the three Sn isotopes considered.

The analysis developed in recent works [73] looks indeed
mostly at the isospin asymmetry dependence of the percentage
fraction of the Energy Weigthed Sum Rule (EWSR), fPDR,
exhausted in the pygmyw region of the IV dipole response
(i.e., by the PDS). Here our goal is instead to establish a
connection between the N/Z dependence of the IV dipole
response and the concomitant behavior exhibited by the IS
dipole strength, in view of the isoscalar-isovector mixing
existing in neutron-rich systems and discussed above. As
already observed by Ebata et al. [73], despite the increase
of the neutron skin thickness, the percentage fraction of the
isovector EWSR fPDR does not grow along the Sn isotope
chain, when increasing the neutron number from N = 70
to N = 82. This result appears unexpected, considering the
relation discussed in several works between the neutron skin
thickness and the PDS in the IV dipole response (see Ref. [23]
and Refs. therein). Although detailed shell structure effects
can be invoked to solve this puzzle, we note that a gateway
to this uncommon behavior can be reached on the basis of
the isoscalar-isovector mixing discussed so far. The missing
fraction in fPDR could be indeed attributed to the decrease
observed in the isoscalar dipole strength, when Sn isotopes
from N = 70 to N = 82 are considered. Although the fraction
of the EWSR exhausted in the low-energy region of the IV
dipole response is expected to increase for nuclei with a
larger imbalance in neutron and proton numbers, the result
is correlated also to the behavior of the IS response, which
in turn reflects the evolution of the isoscalar density profile,
when moving from 120Sn to 132Sn (see Fig. 12).

Figure 19 represents the trend of the fraction of the EWSR
exhausted in the PDR region (below 10.5 MeV for 120Sn
and 132Sn and below 11.3 MeV for 100Sn) for the IS and IV
response, as a function of the neutron number (left) and the
neutron skin (right) of the three Sn isotopes. To better isolate
the PDR contribution in the dipole response, a width γ =
0.5 MeV has been used in the cut-off function of Eq. (9). One
can see that our calculations reproduce the trend discussed,
for the IV response (bottom panels), in Ref. [73], with an
increase of the EWSR fraction up to N = 70 and then a
decrease, though the neutron skin thickness is larger in nuclei
with larger N . However, in Fig. 19 (top panels) one can
see that the same trend is exhibited also by the IS strength,
owing to the prominence of the IS PDR strength in 120Sn,
as discussed above. It is also interesting to notice that the
IS fPDR does not depend much on the effective interaction
considered.

Then, to normalize the effect of the IV mixing to the
strength of the mode considered, that is mostly isoscalar, we
consider the ratio, R f , between the EWSR fractions obtained
in the IV and IS response. This quantity is shown in Fig. 20,
where a nearly linear increase versus neutron number and
neutron skin is now nicely observed. Thus we conclude that,
according to the models employed in our study, the evolution
of the PDR strength along an isotopic chain is not simply
related to the neutron skin thickness. Other ingredients may
enter into game as well; indeed a deeper insight into the PDS
is got by looking, in parallel, at the corresponding IS strength.
Moreover, one can notice that different parametrizations lead
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to different results for the R f ratio, even when they predict
close values of the neutron skin thickness (see the right panel
of Fig. 20). This indicates that, for a given asymmetric system,
mixing effects are enhanced for effective interactions with
larger symmetry energy slope L, as observed in nuclear matter
calculations [40].

IV. CONCLUSIONS

In this article, we have explored the features of the small-
amplitude dipole response in selected nuclei within three
approaches: TDHF, its zero-amplitude limit (RPA), and its
semiclassical limit (Vlasov).

As far as TDHF and RPA calculations are concerned, a
detailed comparison of the dipole IS and IV strengths, and
of the transition densities of the main excitation modes, is
presented here for the first time, showing a good agreement
between the results of the two approaches.

The comparison between quantal and semiclassical calcu-
lations has evidenced the importance of shell effects and quan-
tal intrinsic gradient terms in shaping isoscalar and isovector
density profiles of the ground-state configuration. In partic-
ular, HF calculations are generally associated with smoother
isoscalar density profiles, with respect to the ones deduced
within the TF approximation. Whereas the quantal IV dipole
strength is quite well reproduced by Vlasov calculations,
significant differences are observed in the low-energy domain
of the IS response, concerning the energy and the relative
weight of the different peaks. Considering that this region is
populated by surface excitation modes, this observation can be
reconducted to the different density profiles and the different
treatment of surface effects and gradient terms in quantal and
semiclassical approaches. Moreover, shell effects can affect

significantly the details of the low-lying states, especially as
far as the PDS is concerned.

The low-energy region of the dipole response has been
investigated in deeper detail. A thorough analysis of the
associated transition densities allows one to characterize the
different modes in terms of IS-IV mixing and volume/surface
components. In particular, we observe that the lowest energy
peak, in the PDR region, corresponds to an isoscalarlike
surface mode, of larger strength in nuclei with a more diffuse
surface. The corresponding IV contribution, i.e., the PDS,
originates from mixing effects and increases with the slope
L of the symmetry energy. This trend stems from the fact
that, as pointed out in several previous investigations (see, for
instance, Ref. [69]), a larger L is associated with a neutron
enrichment of the surface region; moreover a larger derivative
of the symmetry energy also induces stronger IS-IV coupling
effects, as indicated by nuclear matter calculations [40]. Then
one can argue that, for a considered system, the shape of
the low-energy IS response is influenced by the isoscalar
density profile, whereas the strength of the corresponding IV
counterpart is connected, among other effects, to the surface
neutron content, i.e., to the neutron skin thickness. These
conclusions hold also in the semiclassical limit. This link to
ground-state properties may also help to better understand
the impact of relevant terms of the nuclear effective inter-
action (and nuclear EoS), such as surface gradient terms,
compressibility and symmetry energy, on the dipole response
features.

Looking at the dipole response of Sn isotopes, we observe
a similar IS strength, in the PDR region, in nuclei with similar
density profile (once rescaled by the nuclear radius), such
as 100Sn and 132Sn, whereas a larger strength appears in the
case of 120Sn, which exhibits a more diffuse surface. The

054314-18



INTERPLAY BETWEEN LOW-LYING ISOSCALAR … PHYSICAL REVIEW C 99, 054314 (2019)

corresponding IV projection follows a similar behavior, being
larger in the 120Sn case, in spite of the thicker neutron-skin of
132Sn. An increasing trend with the neutron skin thickness can
be recovered if one considers the ratio between the IV and IS
EWSR fractions exhausted by the PDR region.
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