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We combine the framework of the inverse problem theory and the Monte Carlo approach to formulate exact
mathematical models that enable estimates of the uncertainty distributions for modeling predictions. We illustrate
and discuss in particular what we refer to as the “NO GO property.” When the uncertainties of data constituting
the input to the parameter adjustment procedures exceed certain critical value(s), even an exact modeling looses
its stochastic reliability; its further use may provide “acceptably looking” rms deviations in the fitting zone with
very likely meaningless, because they are unstable, predictions outside of it. We examine confidence intervals for
intraneous (inside of the adjustment zone) and extraneous (outside of the adjustment zone) predictions and we
demonstrate that “satisfactory” rms deviations in the intraneous modeling regime offer generally null certitude
about the quality of extraneous predictions. Even though not entirely unknown, this property requires strong
emphasizing since ignoring it has lead to misleading conclusions and confusing messages in the literature. We
generalize our considerations to the realistic nuclear mean-field simulations of the properties of the nucleonic
mean-field energies in spherical nuclei. We predict quantitatively the deterioration with increasing mass of the
nucleonic-energy confidence intervals in superheavy nuclei. We show a strong dependence of those confidence
intervals on the quantum characteristic of nucleonic states and provide detailed illustrations. In particular we
demonstrate that, in the realistic predictions for the superheavy nuclei with the phenomenological Woods-Saxon
Hamiltonian for up to Z ≈ 114 or so, one obtains relatively stable predictions of the single-particle spectra with
N � 180, while approaching the NO GO zone of this model for further increasing neutron numbers. Thus the
main area of today’s interest within the instrumental reach for the superheavy nuclei studies remains, according
to these estimates for the Woods-Saxon modeling, within the stability zone.
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I. INTRODUCTION

Model prediction capacities and estimates of modeling
uncertainties—the subjects of increasing importance in partic-
ular in contemporary nuclear physics—are of strong interest
in many subfields of physics and technological applications
as well as in a quickly developing subfield of applied mathe-
matics: the inverse problem theory. Presentation of the general
mathematical background of this theory can be found in
numerous textbooks (cf. Refs. [1–5]), whereas the most recent
progress in the underlying mathematical methods as well as
their applications can be followed via specialized journals
(see Ref. [6]). The issues of uncertainties, information, and
statistics related specifically to nuclear physics have been
addressed in Ref. [7].

The issue of reliable parameter estimates for the nuclear
structure applications is gaining in importance with a quickly
increasing number of published articles on the subject (cf.
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the recent collection in Ref. [8]). Distinction is being made
between analyses of statistical uncertainties performed with
various standard mathematical tools (cf. a recent example,
Ref. [9]) and the so-called systematic (mainly due to model in-
accuracies) ones as discussed in a broader context in Ref. [10].
Certain efforts concentrate on Bayesian-type techniques [11],
especially in the case of approaches for which Monte Carlo
methods become strongly computer-time-consuming.

The field of application of various methods of estimating
the modeling-prediction uncertainties covers the majority of
the nuclear structure subfields including the analysis of nu-
clear masses [12], nuclear skin, [13], effective field theory
methods like those in Ref. [14], “traditional” nuclear Skyrme-
Hartree-Fock approaches [15–17], and nucleon-nucleon inter-
actions and effective-interaction approaches [18]. Optimiza-
tion methods addressing the nuclear-energy-density-related
algorithms are discussed in, e.g., Refs. [19,20], and uncertain-
ties related to the estimates of the nuclear symmetry energy
are discussed in Ref. [21]. One of the important elements in
optimization approaches is related to reduction of the param-
eter spaces in the case of overparametrized models, the issue
pertinent to many effective nuclear physics Hamiltonians (cf.
Refs. [22–24]) in the context of the energy density functionals
(cf. also Refs. [25,26]).
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Here we limited ourselves to citing just a few examples
illustrating a dynamic evolution of this field of research.

In the present article we address a specific nuclear physics
subject in the domain of predictive inference within the mean-
field theory: predicting the future observations based on the
past observations as well as on the information about the
errors or uncertainties of the latter. More precisely, we are
interested in predictions for exotic nuclei lying on the (Z, N )
plane further and further away from the nuclei that have been
used to adjust the Hamiltonian parameters.

Intuitively, one usually expects that prediction uncertain-
ties increase for more and more exotic nuclei. In the present
article we focus on quantifying these expectations by provid-
ing model-dependent, but realistic, numbers while employing
the realistic experimental sampling and an as stable as possi-
ble theoretical modeling algorithm. Because the main interest
of the article is not the construction of the new interactions
but rather studying the inference process, the particular form
of the Hamiltonian plays a secondary role, provided it can be
considered empirically realistic.

In contemporary nuclear structure calculations, in partic-
ular, for exotic nuclei, extensive use is made of modeling
of the total nuclear energies, potential barriers, quasiparticle
excitations, rotational-band properties, etc. These quantities
are frequently used in comparisons of the mean-field theory
predictions with experiment. The underlying element con-
tributing to good quality for this type of the mean-field theory
calculations is reliable mean-field single-particle energies.
In this article we select as observables of interest for the
modeling the single-particle nucleon energies in spherical
nuclei. We focus on the estimates of the confidence intervals
of the single-particle energies, in particular, by examining
the propagation of the experimental single-particle energy
uncertainties with increasing mass number or isospin of nuclei
at the frontiers of today’s research in this domain.

According to the inverse problem theory, prediction ca-
pacities of the modeling depend in an essential manner on
two elements: the mathematical model itself and the selection
(sampling) of the experimental data. For a defined model it is
the sampling and the quality of the data that determine the
quality of the “resulting optimal parameters of the model.”
Our model of choice is the spherical Woods-Saxon Hamilto-
nian. It has been used for many decades in nuclear physics and
has shown certain advantages in the phenomenological de-
scription of single-nucleon energies. Examples of applications
in a context similar to ours can be found in Ref. [27], where
the method of preparing the experimental data for comparison
with the modeling results has been presented (cf. Sec. 2 of
Ref. [27]).

To be able to address these issues on a more detailed level,
in what follows we introduce, after Ref. [27], the notion of
the so-called intraneous and extraneous predictions. Here we
avoid using terms such as “interpolation” or “extrapolation,”
which have a reserved meaning in mathematics and their
use would be incorrect in the present context. In the case of
nuclear physics applications, we refer to “intraneous predic-
tions” when performing the calculations for unknown nuclei
or observables inside of the known areas (as if interpolating)
and extraneous otherwise (as if extrapolating). The latter may

refer to exotic, e.g., superheavy nuclei, usually (far) away
from the known nuclear areas on the (Z, N ) plane, or to
the deeper and deeper bound nucleonic levels, further and
further away from the known ones used for the fitting of the
Hamiltonian parameters.

II. CONSIDERATIONS BASED ON AN EXACT TOY-MODEL

It is instructive to present first the results of an exact
toy-model, which shows certain distinct features of intrane-
ous and extraneous predictions just introduced. In particular,
this “academic looking” model reveals very important robust
mathematical characteristics of the predicting mechanism,
which may at first glance look paradoxical: Any even exact
modeling, no matter the physics application, may lose any
prediction capacities for certain data sampling or sufficiently
far from the adjustment zone. We refer to this situation as the
NO GO property or the NO GO asymptotic.

Consider a set of numbers which play the role of exper-
imental data, f exp

i = fi ± δ fi for i = 1, 2, . . . , ns. By con-
struction of the present model we set fi ≡ exp(xi ), where xi

are some known real numbers defined for the sake of this
discussion (see below), whereas δ fi represent error bars. The
related errors are assumed to be normal distributed, δ fi ≈
N (μi, σi ), centered at μi ≡ fi. We assume δ fi as known, and
alternatively, we assume μi and σi as given.

As the next step let us introduce a modeling function of the
set { f exp

i } defined by (cf. Ref. [28])

F (xi; p) ≡ A + Bxi + C sinh(xi ) + D cosh(xi ). (1)

It depends on four parameters, {A, B,C, D} ≡ p, and defines
an exact model because for vanishing errors we have

fi = F (xi, p|A=0,B=0,C=1,D=1) for any xi. (2)

In the illustration which follows we set ns = 5 sampling points
defined with the help of reference values: xr

i = 0, 0.1, 0.2,
0.3, and 0.4, for i = 1, 2, 3, 4, 5, respectively. The resulting
“experimental reference input data” are f r

i ≡ exp(xr
i ) ≈ 1,

1.11, 1.22, 1.35, and 1.49. They play the role of five exact
reference-solutions of the model. Of course the above choice
is arbitrary and the role of the specific values is merely to
allow for some explicit numerical applications.

In the spirit of the Monte Carlo approach we generate
the distributions δϕi ≈ N (μi, σi ) composed of NMC ≈ 105

random, normally distributed numbers representing the un-
certainties δ fi, for i = 1, 2, . . . , ns. In other words, we gen-
erate {δϕi; i = 1, 2, . . . , ns}k ns-plets for k = 1, . . . , NMC ≈
105 and minimize NMC times the corresponding χ2 test with
[ f exp

i = fi + δϕi]:

χ2(A, B,C, D) ∝
ns∑

i=1

[
f exp
i − F (xi; A, B,C, D)

]2
. (3)

In what follows we use σi = σ , i.e., independent of i, and the
proportionality can be replaced by equality without influenc-
ing the minimization results (here and in the following we use
the Levenberg-Marquard minimization algorithm, the choice
that in no respect influences the calculation results).
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FIG. 1. Illustration of the uncertainty probability distributions of
the extreme extraneous test values, the smallest, F1, and the largest,
F5, discussed in the text; cf. Table I for a more complete presentation.

We obtain NMC quadruplets of model parameters
{A, B,C, D}k . With the latter ones known, we construct the
occurrence probability histograms allowing us to determine
the most probable value of each parameter, the corresponding
confidence intervals, etc. The so-prepared mathematical
model is used for testing the extraneous and intraneous
predictions.

We begin with the extraneous prediction properties and
introduce the auxiliary arguments X e

j = 1.2, 1.4, 1.6, 1.8,
and 2.0 outside of the intraneous interval {xi} ∈ [0, 0.4], and
the corresponding Fj ≡ exp(X e

j ) ≈ 3.32, 4.06, 4.95, 6.06, and
7.39, the latter serving as the exact solutions for the extraneous
data. The calculated Monte Carlo distributions for the smallest
and the largest test values, F1 and F5, respectively, are shown
in Fig. 1, whereas the full set of the extraneous data points
and the confidence intervals is given in Table I. In this illustra-
tion the standard-deviation uncertainties σFi are calculated by
employing the Monte Carlo approach with σi = σ = 0.0005,
0.001, 0.002, 0.005, 0.01, and 0.02, for i = 1, 2, . . . , 5.

Let us emphasize that even though the discussed model
is by construction exact, and thus capable of reproducing
the mathematical truth exactly under the assumption of the
vanishing errors—the latter situation will never be achieved
outside of the purely mathematical considerations because
there errorless experimental data do not exist. As a matter of

fact the latter observation applies generally and in this respect
de facto removes differences between the so-called exact and
inexact modeling.

Still within the exact-modeling context, increasingly poor
quality of the data will generally lead to exceeding any max-
imum prediction uncertainty treated by the user of the model
as acceptable within her or his given context. In constructing
the modeling predictions, usually the uncertainty interval of
each of the predicted observables Fκ should not exceed the
physicist-defined limit Lκ . When at least one limit is ex-
ceeded, the model can be considered not applicable anymore
to predicting observables in the physicist-defined context. In
the case of the exact modeling we arbitrarily refer to this
mechanism as the NO GO limit. Whereas a similar mecha-
nism applies for the in-exact modeling, very likely even more
restrictively, in the case of the exact model the impossibility of
applying such a model for predicting may appear paradoxical.

Table II shows the A, B, C, and D model parameters
with the corresponding standard deviations obtained using the
Monte Carlo approach. One can notice that the confidence
intervals of the parameters broaden quickly with increasing
σ , a measure of the “experimental data error” within the
model. This behavior should be confronted with the excellent
performance of the model in terms of confidence intervals in
the intraneous range visible from Table III.

Table III shows the results strictly analogous to those in
Table I but for the reference (intraneous) zone with fi lying in
between the reference points f r

i to which the parameters are
adjusted. Despite very wide confidence intervals in the case
of Fi, the predictions for fi are precise within four decimals
whereas the standard deviations are 3 to 4 orders of magnitude
better. Let us emphasize that the A, B, C, and D parameter
uncertainty distributions are common for the f ’s and the
F ’s. This information should be confronted with “disastrously
poor” confidence in the case of parameters in Table II, at
least for some σ values. One must conclude that the same
quality of parameter incertitude, even “disastrously” large,
may still provide excellent or very poor predictions depending
on whether one is considering the intraneous or the extraneous
prediction zone.

An implication is that one must not conclude about the
quality of the extraneous variant of the simulation from
the quality of the intraneous one. All these predictions must
be studied separately on a case-by-case basis. Let us empha-
size that precisely this particular property leads to serious

TABLE I. We use the simplifying assumption σi → σ , first column, for various σ , the latter mimicking experimental errors. It is up to the
physicist to decide which value of the prediction confidence interval σFi is still acceptable in the context. When the modeling errors exceed that
value, the exact model in question becomes unacceptable anymore—the situation we refer to as the NO GO limit for “exact modeling.”

σ F1 ± σF1 F2 ± σF2 F3 ± σF3 F4 ± σF4 F5 ± σF5

0.0005 3.32 ± 0.13 4.06 ± 0.24 4.95 ± 0.39 6.06 ± 0.61 7.39 ± 0.90
0.0010 3.32 ± 0.27 4.06 ± 0.48 4.95 ± 0.78 6.06 ± 1.21 7.39 ± 1.79
0.0020 3.32 ± 0.53 4.06 ± 0.95 4.95 ± 1.56 6.06 ± 2.41 7.39 ± 3.56
0.0050 3.32 ± 1.34 4.06 ± 2.39 4.95 ± 3.91 6.06 ± 6.04 7.39 ± 8.92
0.0100 3.32 ± 2.68 4.06 ± 4.81 4.95 ± 7.87 6.06 ± 12.2 7.39 ± 17.9
0.0200 3.32 ± 5.39 4.06 ± 9.60 4.95 ± 15.7 6.06 ± 24.3 7.39 ± 35.8
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TABLE II. The uncertainty ranges of the exact {A = 0, B =
0,C = 1, D = 1} parameter values with their standard-deviation un-
certainties obtained using various values of σ . Observe that the exact
model in Eq. (2) has been chosen as a sum of even [A + D cosh(x)]
and odd [Bx + C sinh(x)] terms modeling exp(x), which is neither
even nor odd. It turns out that in the considered case the standard
deviations of A are approximately equal to those of D (similarly those
of B and those of C).

σ A ± σA B ± σB C ± σC D ± σC

0.0005 0.00 ± 0.16 0.00 ± 0.79 1.00 ± 0.81 1.00 ± 0.16
0.0010 0.00 ± 0.32 0.00 ± 1.59 1.00 ± 1.61 1.00 ± 0.32
0.0020 0.00 ± 0.64 0.00 ± 3.16 1.00 ± 3.21 1.00 ± 0.64
0.0050 0.00 ± 1.60 0.00 ± 7.91 1.00 ± 8.02 1.00 ± 1.60
0.0100 0.00 ± 3.24 0.00 ± 15.9 1.00 ± 16.2 1.00 ± 3.24
0.0200 0.00 ± 6.45 0.00 ± 31.8 1.00 ± 32.2 1.00 ± 6.45

misunderstandings and lies at the origin of inconsistent pre-
dictions or conclusions in the literature.

It is worth emphasizing at this point a danger of mistaking
an “acceptable” quality1 of the rms deviations resulting from
the χ2 fit with the affirmation of a “good” quality of predictive
power (note the quotation marks emphasizing the presence of
an arbitrary judgment). The reader may consult a much more
recent discussion, Ref. [30], showing a number of instructive
examples. In the rest of this article we examine a number of
features that reveal a certain statistical significance that can be
attached to the results of modeling predictions.

However before proceeding further let us emphasize that
the particular choice of the exponential as the generating
function to construct the exact model discussed so far has no
impact whatsoever on the discussed general features of the ex-
act modeling. First, in many cases of nonexponential models
the divergencies of the predictions are themselves exponential
in character, thus relatively fast. Second, by choosing the
repartition of the characteristic points of the model in the
intraneous and/or extraneous zones, one can make the local
features of functioning of the particular model resemble those
with other (nonexponential) generating functions.

III. CONSIDERATIONS BASED ON THE REALISTIC
PHENOMENOLOGICAL MEAN-FIELD HAMILTONIAN

In what follows we examine the stochastic features of the
modeling prediction capacities in the context of a realistic
nuclear mean-field approach using the Monte Carlo method.
For this purpose we chose the standard, nuclear mean-field
Woods-Saxon Hamiltonian:

Ĥ = T̂ + V̂WS + V̂ so
WS + [V̂Coulomb for protons]. (4)

1The problem of very likely statistical insignificance of the “good
looking” χ 2 fit is a rather long-standing issue, cf. Ref. [29], whose
authors observe with sarcasm: “Unfortunately, many practitioners
of the parameter estimation never proceed beyond determining the
numerical values of the parameter fit. They deem a fit acceptable if
a graph of data and model ‘look good’. This approach is known as
chi-by-the-eye. Luckily, its practitioners get what they deserve.”

TABLE III. Results analogous to those in Table I but for intrane-
ous predictions; fi values are exact values For details, see text.

σ f1 ± σ f1 f2 ± σ f2 f3 ± σ f3

0.0005 1.1618 ± 0.0004 1.2840 ± 0.0004 1.4191 ± 0.0004
0.0010 1.1618 ± 0.0008 1.2840 ± 0.0008 1.4191 ± 0.0008
0.0020 1.1618 ± 0.0016 1.2840 ± 0.0016 1.4191 ± 0.0016
0.0050 1.1618 ± 0.0039 1.2840 ± 0.0040 1.4191 ± 0.0040
0.0100 1.1618 ± 0.0078 1.2840 ± 0.0079 1.4191 ± 0.0080
0.0200 1.1618 ± 0.0158 1.2840 ± 0.0158 1.4191 ± 0.0160

Above, T̂ represents the kinetic energy operator and V̂WS

represents the central Woods-Saxon potential

V̂WS = V c

1 + exp[(r − Rc)/ac]
, (5)

where V c denotes the central potential depth parameter and rc

in Rc = rcA1/3 is the central radius parameter. Similarly ac is
referred to as the central diffusivity parameter. The spin-orbit
potential has the usual form

V̂ so
WS = 1

r

dVso(r)

dr
�̂ · ŝ, (6)

where

Vso(r) = λso

1 + exp[(r − Rso)/aso]
, (7)

and where λso is the spin-orbit strength-, rso in Rso = rsoA1/3

is the spin-orbit radius-, and aso is the spin-orbit diffusivity
parameter. It follows that the model depends on two sets of
six parameters,

{V c, rc, ac, λso, rso, aso}π,ν, (8)

one for the protons, π , and one for the neutrons, ν.
The Hamiltonian in Eq. (4) has been selected here because

of its simplicity, its realistic empirical performance vs experi-
ment, and its negligible CPU time-computing requirements. It
is used to construct an exact and realistic model for stochastic
Monte Carlo simulations. For this purpose we first adjust the
two parameter sets in Eq. (8) by performing a χ2 fit to the
experimentally known single-particle levels in 208Pb:

Neutrons : {2 f7/2, 1i13/2, 3p3/2, 2 f5/2, 3p1/2, 2g9/2,

1i11/2, 3d5/2, 2g7/2, 4s1/2, 3d3/2}ν, (9)

and

Protons : {1h11/2, 2d3/2, 3s1/2, 1h9/2, 2 f7/2,

1i13/2, 2 f5/2}π . (10)

In this way we construct the reference parameter sets {pref}π,ν .
From now on the corresponding calculated energy levels
{eref}π,ν can be treated as the exact solutions of the reference
modeling. Because in the following part of the discussion their
role is to replace the real experimental data in the parameter
adjustments, they are referred to as pseudoexperimental data.

To construct the Monte Carlo modeling of experimental
uncertainties we introduce Gaussian uncertainty distributions
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FIG. 2. Normalized, smoothed histograms showing the MonteCarlo-simulated probability distributions of uncertainties for the neutron
single-particle energies within Nsh = 5 and Nsh = 6 main shells of the 208Pb nucleus. The average experimental-level uncertainty assumed here
was σ ref = 0.3 MeV. The 11 experimental neutron levels are those listed in Eq. (9) with the numerical energy values extracted from “raw”
experimental data as in Ref. [27], where the original information comes from Refs. [31–36]. The long bars give the experimental energies.
Missing long bars for 1h9/2 and 1 j15/2 levels signify missing experimental information. For comparison, the short bars show the positions of
the peaks of the distributions.

of the exact pseudoexperimental levels, thus simulating ex-
perimental errors within an exact model. For this purpose
we generate numerically the Gaussian distributions, here of
a common width σ ref , which corresponds to σ in the exact
modeling discussed earlier. Following Ref. [27] the average
experimental uncertainty for the eight spherical nuclei con-
sidered here, i.e., 16O, 40Ca, 48Ca, 56Ni, 90Zr, 132Sn, 146Gd
and 208Pb, can be estimated with the result close to 300 keV.
Therefore we set σ ref. = 300 keV as a “reasonable” order of
magnitude estimate for uncertainties of experimental (input)
data. In this way we construct what is usually referred to
as “noisy” data. In the spirit of the Monte Carlo approach
we generate Gaussian-distributed random sets of the new
pseudoexperimental data NMC ≈ 105 times. Repeating the χ2

fit, each time we obtain a new set of parameters, pMC, and

a new set of single-particle energies, {eMC}, with the help
of which we construct the occurrence probability histograms
illustrated in Fig. 2 for the neutrons and in Fig. 3 for the
protons.

Figure 2 shows the uncertainty distributions of the neutron
single-particle energies of 208Pb126. Levels 1h9/2 and 1 j15/2,
not known experimentally, were not taken into account in
determining the reference parameters—but remarkably, their
uncertainty distributions happen to be approximately twice as
broad as the average of the others (we return to this issue at the
end of the article). Observe that the next broadest distributions
correspond to big-� orbitals, 1i13/2 and 1i11/2, with � = 6.

Turning to the predictions related to single-nucleon spec-
troscopic properties in the superheavy nuclei, which in the
present context are qualified as extraneous prediction, our

FIG. 3. Similar to the preceding one but for the proton Nsh = 4 and Nsh = 5 main shells of the 208Pb nucleus.
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TABLE IV. Realistic Monte Carlo calculation results of the FWHM values (in MeV) of the neutron single-particle levels covering the
nuclear main shells Nsh = 5 and 6 for the Fl114 superheavy isotopes indicated. The 208Pb results have been extracted from the curves in Fig. 2,
where the average experimental uncertainty was approximated by σref = 0.300 MeV. Recall that in about 90 flerovium atoms observed so far,
the neutron numbers correspond to N ∈ [170, 176]. The present table with the range of N as given is meant, in the first place, to illustrate
the modeling method and the associated extraneous prediction instability properties. The formulation presented at this point satisfies the
mathematical criteria of the exact modeling; for details, see text.

Z N 2 f7/2 1i13/2 1h9/2 3p3/2 2 f5/2 3p1/2 2g9/2 1 j15/2 1i11/2 3d5/2 4s1/2 2g7/2 3d3/2

82 126 0.58 0.71 1.27 0.38 0.55 0.37 0.50 1.40 0.69 0.46 0.41 0.62 0.43

114 164 0.75 0.88 1.68 0.53 0.68 0.51 0.52 0.92 1.03 0.39 0.38 0.53 0.43
114 170 0.83 0.89 1.70 0.61 0.77 0.60 0.48 0.80 1.00 0.32 0.30 0.47 0.35
114 172 0.86 0.91 1.71 0.65 0.81 0.64 0.48 0.76 1.00 0.32 0.30 0.48 0.35
114 180 1.03 1.03 1.78 0.84 0.99 0.83 0.58 0.71 1.05 0.42 0.39 0.57 0.42
114 184 1.12 1.10 1.82 0.94 1.10 0.93 0.66 0.73 1.10 0.50 0.46 0.64 0.50
114 196 1.41 1.37 2.00 1.25 1.41 1.24 0.93 0.89 1.29 0.78 0.73 0.92 0.76
114 214 1.86 1.79 2.32 1.70 1.87 1.69 1.37 1.27 1.67 1.20 1.13 1.35 1.16
114 228 2.19 2.12 2.59 2.03 2.20 2.02 1.68 1.59 1.97 1.50 1.41 1.66 1.45

simulations show the detailed estimates of the confidence
intervals with increasing neutron number of the isotope. In
particular, Table IV shows the full width at half maximum
(FWHM) of the uncertainty distributions for the predicted
neutron levels in the main neutron shells between N = 126
and N = 228. Analogous results for the protons are displayed
in Table V.

Let us notice that, generally, the FWHM values of the
uncertainty distributions do not change in any monotonic or
otherwise regular manner, neither as functions of the orbital
angular momentum � nor as functions of the neutron number
N . Following the results of tests performed here (which can be
considered as realistic estimates) the average tendencies can
be characterized as follows. First, one may note an increase
in the confidence intervals by factors varying between 2 and
4, when the neutron number varies between N = 126 and
N = 228. Second, the uncertainties of the predictions, after
the first zone of relative stability for N ∈ [164, 184], increase
faster when the neutron number increases. In particular for the
deeply bound levels the confidence intervals (not shown) in-
crease quickly up to about 4.5 MeV for the lowest, 1s1/2, level.

At the same time, the variation of (certain) single-particle
energies with varying parameters of the Hamiltonian is getting
much stronger at growing N , manifesting a kind of “relative

oversensitivity” as compared to the light isotopes with the nar-
rower confidence intervals. This can be seen as an expression
of the fact that the distant [in terms of the (Z, N ) plane] data
constrain the model relatively weaker.

To obtain a quantitative illustration of the above statement
we illustrate in Fig. 4 variations of the predicted single-
particle energies in Fl isotopes following the uncertainty vari-
ation of the pseudoexperimental level 1h9/2. This particular
level represents also a particular interest because its experi-
mental position remains so far unknown but hopefully will
be measured in the near future. Therefore it is instructive to
follow the expected modification of the predictions depending
on the actual value of the yet unknown datum. Results show
that whereas the majority of the predicted energy positions
in the lighter Z = 114 isotope considered, relatively close to
the fit zone, vary only little with the 208Pb-fit uncertainties,
the energies of the same levels in the heavy isotope vary
significantly stronger. This shows that the induced prediction
uncertainties also for the single-particle energies (in addition
to the widths of the uncertainty probability distributions)
increase with the increasing distance from the fitting zone.

More precisely, concerning the “practical aspects” related
to the prediction uncertainties for the superheavy nuclei ob-
tained using the Woods-Saxon phenomenological modeling

TABLE V. Realistic Monte Carlo calculation results of the FWHM values (in MeV) of the proton single-particle levels covering the nuclear
main shells Nsh = 4 and 5 for the Fl114 superheavy isotopes indicated—to be compared with Table IV.

Z N 1g7/2 2d5/2 1h11/2 2d3/2 3s1/2 1h9/2 2 f7/2 1i13/2 2 f5/2 3p3/2 3p1/2

82 126 1.01 0.62 0.59 0.52 0.50 0.69 0.60 0.63 0.61 0.71 0.71

114 164 0.94 0.56 0.61 0.49 0.47 0.69 0.60 0.60 0.63 0.71 0.71
114 170 1.03 0.64 0.66 0.55 0.52 0.67 0.53 0.51 0.51 0.60 0.59
114 172 1.07 0.68 0.69 0.58 0.55 0.68 0.53 0.50 0.49 0.62 0.56
114 180 1.24 0.87 0.85 0.77 0.73 0.79 0.59 0.53 0.49 0.55 0.50
114 184 1.35 0.98 0.95 0.88 0.83 0.88 0.66 0.59 0.54 0.58 0.53
114 196 1.67 1.31 1.25 1.21 1.16 1.18 0.93 0.85 0.80 0.79 0.73
114 214 2.16 1.80 1.72 1.72 1.66 1.67 1.38 1.31 1.27 1.22 1.17
114 228 2.52 2.16 2.07 2.09 2.02 2.05 1.73 1.66 1.63 1.56 1.51

054310-6



PROPAGATION OF THE NUCLEAR MEAN-FIELD … PHYSICAL REVIEW C 99, 054310 (2019)

FIG. 4. Illustration of the prediction instability for the energy values of the single-particle levels as a reaction to a single input-level
uncertainty. The energy of the pseudoexperimental neutron level h9/2 (experimental result not known) has been shifted with respect to the
starting position by multiples of the standard deviation (±σ , ±2σ , and ±3σ , where σ ↔ σref = 0.3 MeV). Each time the parameters of the
Hamiltonian were readjusted for the 208Pb data. As it can be seen from the left-hand panel, the majority of the levels in the 278Fl behave in
a rather stable and regular manner, varying little, except for the 1i11/2 and 1k17/2 states. Behavior of the single-particle energies in the 342Fl
nucleus, right-hand panel, shows much more sensitivity, indicating that the predictions of the energy positions in a nucleus placed further away
from the parameter adjustment zone must be considered significantly more unstable.

we may conclude that, in the vicinity of Z ≈ 114, the pre-
dictions can be considered relatively stable up to N ≈ 184,
whereas for still increasing N values we approach the model’s
NO GO zone with the impossibility of stable predictions.
This conclusion may be considered optimistic or reassuring
because this predicted stability area covers most of the nuclei
of interest from the current experiment’s view point.

IV. SUMMARY AND CONCLUSIONS

We have studied the application of the Monte Carlo tech-
nique to produce realistic estimates of the confidence inter-
vals of the nucleonic mean-field energies and, more gener-
ally, the uncertainty probability distributions. With the help
of the exactly soluble mathematical model we have illustrated
the fundamental importance in distinguishing between what
we refer to as intraneous and extraneous modus operandi
when constructing model predictions. In the nuclear structure
applications, the intraneous predictions refer to addressing
either the predictions of single-nucleon levels in between
those known already from experiment or the predictions for
nuclei lying, on the (Z, N ) plane, in between the ones known
experimentally. The extraneous predictions in turn correspond
either to nuclei away from the known area—the case of exotic
and superheavy nuclei—or to the single-nucleon levels well

below or well above the ones known experimentally and
used for the parameter adjustment. Illustrative examples show
that from the fit quality in the intraneous regime (usually
“excellent”) strictly nothing can be said with certainty about
the predictions for the extraneous modus operandi, for which
case dedicated tests must be programmed.

In contemporary quantum physics and in nuclear structure
physics in particular, the so-called exact theory or modeling
attract a certain special aura and interest. Because all theories
depending on parameters rely on the use of the inverse prob-
lem techniques, and because there exist no errorless experi-
mental data to which parameters are fitted, it becomes clear
that all theories with adjustable parameters become uncondi-
tionally inexact. This is simply because the “exact parameter
values of exact theories” remain unknown—and this inde-
pendently of the conceptual advancement and/or complexity
of the theory. Using mathematical-modeling techniques we
have examined and emphasized the presence of a practical
limitation referred to as the NO GO property: There always
exists a critical value of the experimental uncertainty, beyond
which even a hypothetically exact theory becomes impractical
in any physicist-predefined context. This happens when the
poor quality data do not constrain the theory sufficiently
to bring the parameters with the necessary precision to the
“physical range of interest.”
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To estimate the confidence intervals of the mean-field
single-nucleon energies in the chain of superheavy nuclei we
have used the Monte Carlo techniques and the empirically
successful, realistic Woods-Saxon nuclear mean-field model,
particularly well suited for this kind of modeling due to its
negligible computer CPU-time requirements and parametric
stability properties. For this purpose we have used the concept
of pseudoexperimental levels and the exact-modeling princi-
ples. Illustrations for a long chain of flerovium (114Fl) isotopes
indicate that uncertainties grow very quickly with increasing
neutron number, whereas for N = 164 the confidence inter-
vals of the individual levels remain, on the average, close to
those of the reference nucleus 208Pb; their values increase up
to a factor of 4 at the shell closure N = 228. This implies that
the uncertainty distributions are getting considerably broader
and strongly overlapping and consequently the stochastic reli-
ability of the predictions should be considered much poorer
as compared to the lighter superheavy nuclei illustrated in

this article. It could be improved only via introduction of
the new experimental data and in particular by narrowing the
experimental uncertainties (error bars).

The present article can be seen as a pilot project limited
to the detailed analysis of the uncertainty aspects; the im-
plication for the large-scale nuclear structure calculations in
exotic nuclei using these concepts are in progress and will be
reported elsewhere.
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