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Microscopic structure of the low-lying negative-parity states in 154Sm
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The proton-neutron symplectic model with Sp(12,R) dynamical algebra is applied to the description of the
microscopic structure of the low-lying negative-parity states of the Kπ = 0−

1 and Kπ = 1−
1 bands in 154Sm

without the introduction of additional degrees of freedom that are inherent to other approaches to odd-parity
nuclear states. For this purpose, the model Hamiltonian is diagonalized in a U(6)-coupled basis, restricted to
state space spanned by the fully symmetric U(6) irreps of the lowest odd irreducible representation of Sp(12,R).
In this way, the positive- and negative-parity collective bands are treated on equal footing within the framework
of the microscopic symplectic-based shell-model scheme. A good description of the energy levels of the two
bands under consideration, as well as the reproduction of some energy splitting quantities which are usually
introduced in the literature as a measure of the octupole correlations, is obtained. The microscopic structure of
low-lying collective states with negative-parity in 154Sm shows that practically there are no admixtures from the
higher shells and hence the presence of a very good U(6) dynamical symmetry. Additionally, the structure of the
collective states under consideration shows also the presence of a good SU(3) quasidynamical symmetry.
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I. INTRODUCTION

Experimental spectra in heavy nuclei show the emergence
of simple collective patterns represented primarily by the
nuclear collective rotation. In this way, the low-lying spectra
of well deformed even-even nuclei consist of different ro-
tational bands—ground state, β, γ , etc.—of positive parity,
whose properties are described very successfully within the
macroscopic nuclear structure physics theories, like the Bohr-
Mottelson (BM) [1] and the interacting boson model (IBM)
[2] ones.

In some mass regions several bands of negative parity are
also observed in the low-lying nuclear spectra in even-even
nuclei, like Kπ = 0−, 1−, and 2− bands [3,4]. The most well
studied of them is the Kπ = 0− band, usually interpreted as
an octupole vibrational band, connected to the ground state
band by enhanced E1 transitions. Sometimes, as suggested
to be the case of static octupole deformation [4], the ground
state and Kπ = 0− bands intertwine into a single alternating
parity band.

Negative parity states have been described within differ-
ent approaches mainly by inclusion of additional octupole
and/or dipole (cluster) degrees of freedom. The bands of
negative-parity states are often associated with the reflec-
tion asymmetry in the intrinsic frame of reference. In the
geometrical approach this is achieved by including of the
α30 ≡ β3 deformation [5]. In the IBM [2] the description of
negative-parity states requires the introduction of f and/or p
bosons with negative parity in addition to the standard s and d
bosons (spdf -IBM) [6,7]. An alternative interpretation of the
low-lying negative-parity states has been provided in different
cluster models [8,9] in which the dipole degrees of freedom
are related to the relative motion of the clusters. Based on

the Bohr Hamiltonian, different critical point symmetries
including axial quadrupole and octupole deformations have
been proposed [10–13], extending the concept of critical point
symmetries introduced for the description of positive-parity
states.

From another perspective, the standard shell model allows
the microscopic description of both the positive- and negative-
parity states by considering the single-particle excitations to
the higher major oscillator shells which differ, respectively,
with even and odd number with respect to the valence shell.
For instance, the negative-parity states of the even-even sd
nuclei have been considered to arise from either exciting a p
particle to the ds shell or exciting a ds particle to the f p shell
[14]. It is well known, however, that with the increase of the
number of valence particles and/or the single-particle states
available, the model space dimensionalities grow rapidly
and rule out the use of standard shell-model theory. As a
consequence, different approaches have been proposed to
truncate the many-particle configuration space. Among them,
the algebraic models based on the symmetries, exact or ap-
proximate, provide elegant and very efficient methods for
reducing the model space in manageable size. In addition,
different truncation schemes have been used to reorganize
the available shell-model spaces in such a way that their
symmetry-adapted bases already capture the essential features
of the observed nuclear properties.

The first microscopic, algebraic model of nuclear rotations
is the SU(3) model of Elliott [15], which exploits the U(3) ⊃
SU(3) ⊃ SO(3) group-subgroup chain to classify the many-
particle states and to construct the effective nucleon-nucleon
interaction. The group U(3) is the symmetry group of the
three-dimensional harmonic oscillator, which is chosen to
approximate the nuclear mean filed. This model of nuclear
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structure was successfully applied to the light deformed p-
and sd-shell nuclei and showed how states with rotational
properties could emerge within the framework of the nuclear
shell model. The nucleons within the fully occupied shells
are treated as inactive, constituting an inert core, and the
nuclear rotational states are described in terms of valence
shell 0h̄ω configurations. The latter suggests that the negative-
parity states within the framework of the SU(3) model can
also be described by considering the available configurations
of the adjacent major shell, constituting the 1h̄ω harmonic
oscillator subspace. For example, while the leading SU(3)
irreducible representation (8,0) of the 0h̄ω subspace provides
a basis of states for the ground band in 20Ne in the Elliott
model, the SU(3) irreducible representation (9,0) of the 1h̄ω

subspace, given in Ref. [14], turns out to be appropriate for
the description of the 0−

1 band observed experimentally in the
spectrum [3].

From another side, it was shown that the dynamical group
of the harmonic oscillator Hamiltonian is the noncompact
symplectic group Sp(6, R)1 [16], which contains the Elliott
SU(3) as a subgroup. Along this line, a natural multi-major
shell extension of the Elliott SU(3) model, which includes
core collective excitations, related to the giant resonances,
was proposed and is presented by the one-component Sp(6, R)
symplectic model [17,18]. Thus, in this regard, both the
SU(3) and Sp(6, R) models define a relevant coupling scheme
for identifying the collective dynamics and performing large
shell-model mixed representation calculations.

The early applications of the Sp(6, R) model and its
submodels—reviewed in Ref. [19]—were with algebraic or
schematic interactions, and, with a few exceptions, have been
performed within a single symplectic irrep and all done for
the positive-parity states only. More recent applications of the
Sp(6, R) model, with algebraic and schematic interactions, in-
clude [20–22] for light and intermediate-mass nuclei, and [23]
for the low-lying rotational states of the ground band in 166Er.
Recently, ab initio large-scale no-core shell model calcula-
tions with realistic interactions, inspired from QCD, have also
been done in large multishell spaces in a U(3) × SU(2)Sp ×
SU(2)Sn symmetry-adapted basis for light to intermediate-
mass nuclei [24–26], which revealed the symplectic Sp(6, R)
symmetry which was not assumed a priori. However, already
for very light nuclei, such calculations assuming all possi-
ble single-particle excitations across the major shells (i.e.,
considering all particles as active: the no-core shell model)
require the use of supercomputers, and it is inconceivable
that corresponding calculations could be carried out in the
near future for heavy nuclei. Additionally, the most important
point revealed by the calculations within the framework of
the one-component Sp(6, R) symplectic model [17,18] is that
the standard spherical shell model is not appropriate for the
description of the rotational states of strongly deformed heavy
nuclei [23,27]. This is so, in particular, because the conven-
tional shell-model configurations available are not enough

1The notation Sp(2n, R) is used for the group of linear canonical
transformations in 2n-dimensional phase space. Some authors denote
the Sp(2n, R) group by Sp(n, R).

deformed to describe observed quadrupole collectivity. As
a result, the observed low-lying rotational states of strongly
deformed heavy nuclei have a negligible overlap with the
available standard shell-model states [23,27]. In this case the
relevant Hilbert spaces for heavy mass nuclei become even
much larger than the conventional shell model dictates and
add further computational complexity.

An alternative, symmetry-based, microscopic shell-model
approach to the structure of strongly deformed heavy nuclei
is provided by the pseudo-SU(3) scheme [28–30], based on
the observation that, because of the spin-orbit interaction,
the single-particle energy levels of the shell model regroup
into pseudo-oscillator shells. As a result, another good SU(3)
symmetry appears, called pseudo-SU(3) symmetry. Based on
this symmetry, the Sp(6, R) pseudosymplectic model and its
contracted version for heavy nuclei have been developed [31]
and applied to the description of the microscopic structure of
the low-lying rotational states of the ground or ground and γ

bands for some heavy well-deformed even-even nuclei from
the rare earth and actinide regions [31,32].

In the shell model the many-particle Hilbert space of the
nucleus is separated into energy-ordered subspaces. The sub-
set of nucleons then is supposed to occupy the single-particle
states of a closed-shell core, whereas the remaining nucleons
are restricted to a finite-dimensional valence space. Shell-
model calculations in such subspaces have been successful
in describing subsets of nuclear properties in light nuclei
and, to some extent, in heavier singly-closed-shell nuclei
and in nuclei close to doubly-closed shells. In contrast to
the conventional shell model which divides the many-body
Hilbert space of nuclear systems into different shells (i.e.,
horizontally), the one-component symplectic Sp(6, R) model
organizes the many-particle configuration space vertically,
dividing the full Hilbert space into a direct sum of different
symplectic slices or vertical cones. Each symplectic slice
represents an irreducible collective space for the microscopic
collective model and is a small fraction of the full nuclear
state space. Each subspace of the Sp(6, R) model contains a
set of collective rotational and high-energy vibrational states
of a nucleus, the latter related to the giant resonance degrees of
freedom.

Symplectic states in the one-component symplectic model,
adapted to the Sp(6, R) ⊃ U(3) ⊃ SU(3) ⊃ SO(3) chain, are
the shell model configurations that are eigenstates of the
harmonic oscillator Hamiltonian with energy (E0 + 2n)h̄ω

carrying good SU(3) symmetry. From the shell-model per-
spective, therefore, the Sp(6, R) symplectic model is an ex-
tension of the conventional oscillator shell model that goes
beyond the single valence major shell and includes, in addi-
tion, the np-nh coherent admixtures, required to build up the
enhanced quadrupole collectivity without the use of effective
charges. Symplectic raising operators change the number of
harmonic oscillator quanta by two units and hence preserve
the parity of the states within the considered symplectic
irrep.

Symplectic groups, however, admit two types of irre-
ducible representations: even and odd ones which contain all
the harmonic oscillator shell-model states with even and odd
number of excitation quanta, respectively. This allows one to
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account for both the positive- and negative-parity states. In
this way all the many-particle states of the harmonic oscillator
Hamiltonian fall into two types of irreducible representations
of the symplectic group. Thus, in order the negative-parity
states to be involved in the symplectic-based shell-model the-
ory, one needs simply to consider the odd symplectic irrep(s).

Recently, the fully microscopic proton-neutron symplectic
model (PNSM) of nuclear collective motion with Sp(12,R)
dynamical algebra was introduced by considering the
symplectic geometry and possible collective flows in the
two-component many-particle nuclear system [33]. From a
hydrodynamic perspective, the PNSM appears as a two-fluid
irrotational-flow collective model of Bohr-Mottelson type,
coupled to the intrinsic U(6) vortex degrees of freedom which
are related to the valence shell protons and neutrons. The
need to consider of intrinsic degrees of freedom and their
coupling to the irrotational-flow collective dynamics was
realized a long time ago (cf. Ref. [19] and references therein).
The U(6) intrinsic degrees of freedom play an important
role in the construction of the microscopic wave functions
because they allow one to ensure the full antisymmetry of the
total wave function and are responsible for the appearance
of the low-lying collective states. In this way the extra
degrees of freedom contained in this larger U(6) algebraic
structure therefore embrace the basic SU(3) rotor as well as
the low-lying vibrational degrees of freedom.

From the shell-model perspective, the PNSM appears [34]
as a natural multi-major-shell extension of the generalized
proton-neutron SU(3) scheme, which takes into account the
core collective excitations associated with the giant resonance
vibrational degrees of freedom. The microscopic U(6) struc-
ture, related to the valence proton and neutron degrees of
freedom, also contains many SU(3) irreps appropriate for the
description of different excited bands. In this way, both the
vertical and horizontal mixings of different SU(3) irreducible
representations are naturally contained in the PNSM, thus
providing a relevant shell-model coupling scheme for shell-
model based calculations and a single microscopic framework
for the simultaneous description of the low-lying bands of
collective states in strongly deformed nuclei, which exhibit
a simple rotational patterns and both the high-lying (giant res-
onance) and [in contrast to the Sp(6,R) case] low-lying shape
vibrational excitations. The latter were shown to correspond
to the relative angular excitation of the proton subsystem
with respect to the neutron one [35]. In other words, the
low-lying states in the PNSM could thus be described by a
microscopically based U(6) structure along the lines of the
popular IBM [2], albeit, in contrast to the latter, renormalized
by their coupling to the giant resonance vibrations.

The PNSM has been applied for the simultaneous descrip-
tion of the microscopic structure of the ground, γ , and β

bands in 166Er [36], using the SUp(3) ⊗ SUn(3) symmetry-
adapted basis, which is appropriate for the case of generic
nonfully symmetric irreducible representations of Sp(12,R).
The PNSM was further used to study the microscopic struc-
ture of the low-lying collective states of the ground, β, and γ

bands in 154Sm [35] and 238U [37], using the more general
U(6)-coupled basis, restricted to the symplectic state space
spanned by the fully symmetric U(6) vectors. The calculations

showed that when the collective quadrupole dynamics is cov-
ered already by the symplectic bandhead structure, as in the
case of 154Sm, the results show the presence of a very good
U(6) dynamical symmetry [35]. In the case of 238U, when
there is an observed enhancement of the intraband B(E2)
transition strengths, then the results show small admixtures
from the higher major shells and a highly coherent mixing of
different irreps which is manifested by the presence of a good
U(6) quasidynamical symmetry in the microscopic structure
of the collective states under consideration [37].

In the present paper, the proton-neutron symplectic model
with Sp(12,R) dynamical algebra, which naturally involves
vertical as well as horizontal mixing of different SU(3) irre-
ducible representations, is further applied to the description of
the microscopic structure of low-lying negative-parity states
of the Kπ = 0−

1 and Kπ = 1−
1 bands in 154Sm without the

introduction of additional degrees of freedom that are in-
herent to other approaches to odd-parity nuclear states. For
this purpose, the model Hamiltonian is diagonalized in a
U(6)-coupled basis, restricted to state space spanned by the
fully symmetric U(6) irreps of the lowest odd irreducible
representation of Sp(12,R). In this way, the positive- and
negative-parity collective bands are treated on equal footing
within the framework of the microscopic symplectic-based
shell-model scheme simply by considering the lowest even
and odd Sp(12,R) irreducible representations, respectively.
The results obtained in this work extend the previously ob-
tained ones in the framework of the PNSM for the lowest
three collective bands of positive parity in 154Sm [35]. In this
regard, the present paper represents a further step towards the
more comprehensive treatment of collective motion in this
nucleus within the microscopic symplectic-based framework.
Moreover, to my knowledge, these are the first symplectic-
based shell-model calculations which have been performed
for the description of negative-parity states in atomic nuclei.

II. THE PROTON-NEUTRON SYMPLECTIC MODEL

Collective observables of the proton-neutron symplectic
model, which span the Sp(12,R) algebra, are given by the
following one-body operators [33]:

Qi j (α, β ) =
m∑

s=1

xis(α)x js(β ), (1)

Si j (α, β ) =
m∑

s=1

(xis(α)p js(β ) + pis(α)x js(β )), (2)

Li j (α, β ) =
m∑

s=1

(xis(α)p js(β ) − x js(β )pis(α)), (3)

Ti j (α, β ) =
m∑

s=1

pis(α)p js(β ), (4)

where i, j = 1, 2, 3; α, β = p, n and s = 1, . . . , m = A − 1.
In Eqs. (1)–(4), xis(α) and pis(α) denote the coordinates and
corresponding momenta of the translationally invariant Jacobi
vectors of the m-quasiparticle two-component nuclear system,
and A is the number of protons and neutrons.
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The PNSM dynamical algebra Sp(12,R) has many subal-
gebra chains, which roughly can be divided into two types
of chains: the collective model and the shell model chains.
The form (1)–(4) of the symplectic algebra Sp(12,R) is nat-
urally adapted to the collective model chain, which reveals
the dynamical content of symplectic symmetry. Among the
subalgebras of this chain are, for example, the general col-
lective motion in six dimensions GCM(6) and the coupled
two-rigid rotor model ROTp(3) ⊗ ROTn(3) ⊃ ROT(3) Lie al-
gebras. The GCM(6) algebra introduces the SO(6) intrinsic
vortex degrees of freedom, which coupled to the giant reso-
nances allows for the continuous range of rotational dynamics
from rigid to irrotational flow. For more details about the dy-
namical content of the PNSM, we refer the reader to Ref. [33].

The shell-model chain of Sp(12,R) algebra relates the
PNSM to the shell-model nuclear theory and thus provides
a connection to the microscopic fermion physics. It provides
a shell-model coupling scheme and a basis for detailed mi-
croscopic shell-model calculations. The shell-model chain
is naturally expressed in terms of the harmonic oscillator
creation and annihilation operators

b†
iα,s =

√
mαω

2h̄

(
xis(α) − i

mαω
pis(α)

)
,

biα,s =
√

mαω

2h̄

(
xis(α) + i

mαω
pis(α)

)
. (5)

Then the symplectic generators take an alternative form as all
bilinear combinations of the harmonic oscillator raising and
lowering operators that are O(m) invariant [34]:

Fi j (α, β ) =
m∑

s=1

b†
iα,sb

†
jβ,s, (6)

Gi j (α, β ) =
m∑

s=1

biα,sb jβ,s, (7)

Ai j (α, β ) = 1

2

m∑
s=1

(b†
iα,sb jβ,s + b jβ,sb

†
iα,s). (8)

An Sp(12,R) unitary irreducible representation is charac-
terized by the U(6) quantum numbers σ = [σ1, . . . , σ6] of its
lowest-weight state |σ 〉, i.e., |σ 〉 satisfies

Gab|σ 〉 = 0;

Aab|σ 〉 = 0, a < b;

Aaa|σ 〉 =
(

σa + m

2

)
|σ 〉 (9)

for the indices a ≡ iα and b ≡ jβ taking the values 1, . . . , 6.
If one introduces the U(6) tensor product operators P(n)(F ) =
[F × . . . × F ](n), where n = [n1, . . . , n6] is a partition with
even integer parts, then by a U(6) coupling of these tensor
products to the lowest-weight state |σ 〉, one constructs the
whole basis of states for an Sp(12,R) irrep

|�(σnρEη)〉 = [P(n)(F ) × |σ 〉]ρE
η , (10)

where E = [E1, . . . , E6] indicates the U(6) quantum numbers
of the coupled state, η labels a basis of states for the coupled

TABLE I. The U(6) irreps contained in the odd Sp(12,R) ir-
reducible representation 〈σ 〉 = 〈73 + 153

2 , 42 + 153
2 , 42 + 153

2 , 42 +
153
2 , 42 + 153

2 , 42 + 153
2 〉, appropriate for description of the negative-

parity states in 154Sm.

· · ·
[35], [34, 1], 2[33, 2], [32, 3],
[32, 2, 1], [31, 4], [31, 2, 2]
[33], [32, 1], [31, 2]
[31]

U(6) irrep E , and ρ is a multiplicity index. In this way one
obtains a basis of Sp(12,R) states that reduces the subgroup
chain Sp(12, R) ⊃ U(6). To fix the basis η one has to consider
further the reduction of the U(6) to the three-dimensional
rotational group SO(3). Thus, in order to completely classify
the basis states, I use the following reduction chain [34,35]:

Sp(12, R) ⊃
σ nρ

⊃ U(6) ⊃ SUp(3) ⊗ SUn(3)

E γ (λp, μp) (λn, μn)

⊃ SU(3) ⊃ SO(3) ⊃ SO(2),

� (λ,μ) κ L M (11)

which defines a shell-model coupling scheme. Under different
subgroups in Eq. (11) are given the corresponding quantum
numbers that characterize their irreducible representations
plus some multiplicity indices. For more details concerning
the shell-model classification of the collective states in 154Sm,
see Ref. [35]. Thus, each Sp(12,R) irreducible representation,
denoted as 〈σ 〉 = 〈σ1 + m

2 , . . . , σ6 + m
2 〉, is determined by the

symplectic bandhead σ = [σ1, . . . , σ6] that is fixed by the un-
derlying proton-neutron shell-model structure. So, the theory
becomes completely compatible with the Pauli principle.

III. APPLICATION

The shell-model considerations based on the pseudo-SU(3)
scheme [28–30] give for the positive-parity states in 154Sm the
following symplectic irrep: 〈σ 〉 = 〈72 + 153

2 , 42 + 153
2 , 42 +

153
2 , 42 + 153

2 , 42 + 153
2 , 42 + 153

2 〉 [35], which is determined
by the intrinsic U(6) structure of the corresponding
lowest-weight state σ = [72, 42, 42, 42, 42, 42]6 ≡ [30]6.
Then the odd irrep 〈σ 〉 = 〈73 + 153

2 , 42 + 153
2 , 42 +

153
2 , 42 + 153

2 , 42 + 153
2 , 42 + 153

2 〉 of Sp(12,R), shown in
Table I and determined by the symplectic bandhead
σ = [73, 42, 42, 42, 42, 42]6 ≡ [31]6 of the 1h̄ω space,
will be of relevance for the description of the negative-parity
states in 154Sm. More details about the construction and
structure of the shell-model representations of the PNSM can
be found in Ref. [34].

In the present application, I consider only the many-
particle Hilbert space spanned by the fully symmetric U(6)
vectors only, which are expected to dominate the low-lying
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TABLE II. Symplectic classification of the SU(3) basis states,
associated with the negative-parity states in 154Sm.

2n [E1, . . . , E6] (λp, μp) (λn, μn ) (λ,μ)

0 [31] · · · · · · (31, 0), (29, 1), (27, 2), . . . ,
(13,0) (18,0) (11,10),(9,11),(7,12)
· · · · · ·

2 [33] · · · · · · (33, 0), (31, 1), (29, 2), . . . ,
(15,0) (18,0) (9,12),(7,13),(5,14)
· · · · · ·

4 [35] · · · · · · (35, 0), (33, 1), (31, 2), . . . ,
(17,0) (18,0) (7,14),(5,15),(3,16)
· · · · · ·

...
...

...
...

...

energy spectrum. The symplectic classification of the SU(3)
basis states for the negative-parity states in 154Sm according
to the decompositions given by Eq. (11) for the Sp(12,R) ir-
rep 〈σ 〉 = 〈73 + 153

2 , 42 + 153
2 , 42 + 153

2 , 42 + 153
2 , 42 + 153

2 ,

42 + 153
2 〉, restricted to the space of fully symmetric U(6)

partitions, is given in Table II.

A. The model Hamiltonian

In present application, for the negative-parity states, the
following model Hamiltonian is used:

H = Nh̄ω − 1
2χ [Qp · Qn − (Qp · Qn)T E ] − ξC2[SU(3)]

+ aL2 + ε(Nb.h. − N0). (12)

where N = Np + Nn and Qα ≡ Q(α, α) with α = p, n are the
full major-shell mixing quadrupole tensor operators and are
given by Eq. (1). A similar Hamiltonian has been used in the
pseudo-SU(3) scheme calculations within the framework of
the contracted symplectic model [31,32]. The trace-equivalent
part (Qp · Qn)T E [38] is subtracted from the collective po-
tential in order to preserve the mean-field shell structure
[31,32,39] under the action of the proton-neutron quadrupole-
quadrupole interaction. The SU(3) second-order Casimir op-
erator C2[SU(3)] splits energetically different SU(3) multi-
plets and in this way determines the bandhead energies of
excited bands with respect to the ground state band. The term
ε(Nb.h. − N0) is introduced in the model to take into account
the energy difference between the even and odd symplectic
bandheads. Nb.h. is the number operator of the symplectic
bandhead which eigenvalues for the 0h̄ω and 1h̄ω shell-model
subspaces are given by N0 and N ′

0 = N0 + 1, respectively. N0

denotes the minimum number of oscillator quanta allowed by
the Pauli principle [34]. Without this term, the negative-parity
states would appear at energy ∼ 1h̄ω. Indeed, setting ε = 0,
one obtains for the energy of the first excited negative-parity
state 1− of Kπ = 0−

1 band E1− = 8.16 MeV, which is compa-
rable with the intershell distance 1h̄ω = 7.649 MeV for 154Sm
that comes from different symplectic bandheads (determined
by the minimum Pauli allowed number of quanta N0 and
N0 + 1, respectively). The major shell separation energy h̄ω

is determined by the standard formula 41A−1/3 MeV. The

term aL2, which represents a residual rotor part, allows the
experimentally observed moment of inertia to be reproduced
without altering the wave functions. In order to account
for experimentally observed different moments of inertia of
the negative-parity bands with respect to the positive-parity
ones, I use additionally the following parametrization for the
inertia parameter a : a = a0/(1 + 1

3 〈�N0〉), where 〈�N0〉 is
the eigenvalue of the operator �N0 = (Nb.h. − N0) described
above. The form a0/(1 + 1

3 〈�N0〉) is chosen in a way that it
is valid for both the positive- (for which 〈�N0〉 = 0 and its
reduces to the inertia parameter a = a0 used in Ref. [35]) and
negative-parity states. Such kind of parametrizations which
introduce a deformation dependence of the moment of inertia
are used in the literature, e.g. Refs. [40,41], to account for
different moments of inertia for different bands. The inertia
parameter does not affect the wave function, its role is just
to fine tune the observed moment of inertia. In this regard,
the parameter a0 could be used instead of a0/(1 + 1

3 〈�N0〉) at
the price of slightly worst energy agreement. (The parameter
a0/(1 + 1

3 〈�N0〉) is 75% of a0.)
The Hamiltonian (12) preserves the symplectic symmetry,

thus having Sp(12,R) as its dynamical algebra in the sense that
the physical operators are obtained in terms of its generators,
and the whole negative-parity spectrum is provided by a single
irreducible representation of it.

B. The energy spectra

The model Hamiltonian (12) is diagonalized in the ire-
ducible collective space of Sp(12,R), spanned by the fully
symmetric U(6) vectors only, considering the particle-hole
collective excitations up to energy 41h̄ω. The results for the
low-lying energy levels of the Kπ = 0−

1 and Kπ = 1−
1 bands

together with the ground, β, and γ bands are compared with
experiment [3] in Fig. 1. The theoretical energies of the
three lowest positive-parity bands in 154Sm are taken from
Ref. [35]. The model parameters χ , ξ , a are determined by
fitting to the low-lying positive-parity states of the ground,
β, and γ bands. Their values in MeV, respectively, are [35]
χ = 0.0032, ξ = 0.0053, and a0 = 0.013. The adopted value
of the last Hamiltonian parameter, related to the negative
parity bands, is ε = −6.809.

In Fig. 2, the SU(3) decomposition of the wave functions
(probability distribution) of 1− states of the Kπ = 0−

1 and
Kπ = 1−

1 bands in 154Sm is shown. From the latter one sees
that the SU(3) dynamical symmetry is broken due to the
mixing of different irreps. From another side, almost all SU(3)
irreducible representations, contributing to the structure, be-
long to a single U(6) irreducible representation, namely that
of the symplectic bandhead. More precisely, the U(6) irrep of
the lowest-weight state exhausts up to 98.569% and 98.573%
of the structure of the 1− state of the Kπ = 0−

1 and Kπ = 1−
1

bands, respectively. This indicates that the states under consid-
eration possess a good U(6) dynamical symmetry. The same
picture is obtained for the other collective states. Compared to
the SU(3) decomposition of the positive-parity states in 154Sm
(cf. Fig. 7 of Ref. [35]), in the present case one sees a wider
distribution over different SU(3) irreps, which is due to the
extra energy coming from the difference |1h̄ω − ε| ≈ 0.84
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FIG. 1. Comparison of experimental energy levels (a) with the
theory (b) for the low-lying positive-parity ground, β, and γ bands
(data are from Ref. [35]) and negative-parity Kπ = 0−

1 and Kπ = 1−
1

bands in 154Sm.

MeV. But nevertheless, the microscopic structure of the 1−
collective states of the two bands under consideration retain
the simple picture in which only a few SU(3) irreps dominate
the structure.

Additionally, in Fig. 3, I show the SU(3) decomposition
of the wave functions of Kπ = 0−

1 and Kπ = 1−
1 bands, re-

spectively, for three different values of the angular momentum
in each band. From the figure, one sees a highly coherent
mixing in which the squared amplitudes are practically L
independent, at least for low angular momenta for which the
Coriolis and centrifugal forces are not so strong. The figure
thus indicates a new kind of symmetry, called quasidynamical
symmetry [42]. This symmetry is associated with the mathe-
matical concept of embedded representations [43]. Thus, the
results for the microscopic structure of the states of the two
negative-parity bands under consideration in 154Sm reveal, in
addition to the good U(6) symmetry, the presence also of a
good SU(3) quasidynamical symmetry, in the sense given in
Refs. [23,42].

FIG. 2. Calculated SU(3) probability distributions for the wave
functions for the 1− states of the Kπ = 0−

1 and Kπ = 1−
1 bands.

C. The energy staggering

Different energy spin-dependent quantities have been in-
troduced [44–46] as a measure of octupole correlations. For
example, the signature-splitting index S(L) [45], which is also
a convenient measure for deviation from the pure rotational
behavior, is defined as

S(L) = [EL+1 − EL] − [EL − EL−1]

E2+
1

, (13)

which describes the normalized position of a negative-parity
level L− relative to the positive-parity one with spin and
parity (L ± 1)+. Large nonzero values of this quantity are
usually associated with the soft octupole vibrations built
on the ground state in well quadrupole-deformed nuclei, in
which the negative-parity states are well separated from the
positive-parity ones. An alternating parity band, formed by
merging of the opposite parity sequences of states, is re-
spectively represented by approximately zero values of S(L)
pointing out the equal spacing of the levels constituting the
band.

I compare the calculated values of S(L) for 154Sm with
experiment in Fig. 4. Here, one sees that the decreasing
experimental signature splitting with increasing angular mo-
mentum is reproduced by the theory. The signature splitting
index for 154Sm gives no hint of strong octupole correlations,
as S(L) does not approach 0 (no alternating parity band)
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FIG. 3. Calculated SU(3) probability distributions for the wave
functions of the Kπ = 0−

1 and Kπ = 1−
1 bands for three different

angular momentum values.

in the available data. Additionally, in Fig. 5 I compare the
calculated values for the signature-splitting index S(L) with
experiment for the γ and Kπ = 1−

1 bands. For the γ band one
obtains a small, positive, and constant value of 0.34 that is a
characteristic feature of S(L) for the axially symmetric rotor
(with value +0.33) [47]. For the Kπ = 1−

1 band, the same

FIG. 4. Theoretical and experimental signature-splitting index
S(L) (13) between the states of the ground band and 0−

1 band in
154Sm.

FIG. 5. Theoretical and experimental signature-splitting index
S(L) (13) between the states of the γ and Kπ = 1−

1 bands in 154Sm.

constant behavior of small positive value is also more or less
observed. Note also the different scales in Figs. 4 and 5.

The function S(L) (13) vanishes for

E (L) = E0 + AL(L + 1), (14)

but not for

E (L) = E0 + AL(L + 1) + B[L(L + 1)]2. (15)

FIG. 6. Theoretical and experimental staggering function
�Eγ ,1(L) (16) between the states of the ground band and 0−

1 band in
154Sm.
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FIG. 7. Calculated intraband B(E2) values in Weisskopf units
between the states of the Kπ = 0−

1 band in 154Sm. No effective charge
is used.

Another quantity is also used in practice [46]

�Eγ ,1(L) = 1
16 [6�E (L) − 4�E (L − 1) − 4�E (L + 1)

+�E (L + 2) + �E (L − 2)], (16)

where �E (L) = E (L + 1) − E (L). The staggering function
(16), in contrast to (13), vanishes for (15) and hence it
represents a more sensitive measure for the deviations of
the nuclear dynamics from that of pure rotational collective
motion. Recall that the pure SU(3) limit of the spdf -IBM
(and other algebraic models) predicts a staggering of constant
amplitude [46].

I consider the odd-even staggering between the states of the
ground band and Kπ = 0−

1 band in 154Sm, which is compared
with the experimental pattern in Fig. 6. From the latter, we
see a good reproduction of the observed staggering function.
The staggering pattern of almost constant amplitude, shown
in Fig. 6, also indicates the good (quasidynamical) SU(3)
character of the states of the ground and 0−

1 bands.

D. Transition probabilities

It is known that the transition probabilities are more sen-
sitive tests for each model. The B(E1) transitions, connecting
the alternating-parity sequences, require some new mathemat-
ical efforts and will be considered elsewhere. Here, I restrict
myself only to the intraband B(E2) transition strengths in the
lowest Kπ = 0−

1 band, which are a measure of the quadrupole
collectivity in the negative-parity states.

In Fig. 7 I show the calculated intraband B(E2) transition
strengths between the states of the Kπ = 0−

1 band, obtained
by Eq. (17) of Ref. [35] without the use of an effective
charge. Recall, that the intraband B(E2) transition strengths
between the states of the ground band, given in Ref. [35],
reproduce very well the experimental data with no effective
charge. Compared to the ground band, the B(E2) intraband
transitions in the Kπ = 0−

1 band, with the wave functions
obtained in the present work, show a reduced quadrupole
collectivity. Unfortunately, there are no experimental data

available for these B(E2) transition strengths that would allow
one to establish the extent to which the quadrupole collectivity
in the negative-parity states is captured by the used model
Hamiltonian, and possibly the lack of other important correla-
tions in the structure of the wave functions.

IV. CONCLUSIONS

Symplectic symmetries organize the many-particle config-
uration space vertically, dividing the full Hilbert space into
a direct sum of different symplectic slices or vertical cones.
Each symplectic slice, preserving the parity and permutational
symmetry, represents an irreducible collective space for the
microscopic collective model and is a small fraction of the
full nuclear state space.

Further, it is well known that the symplectic groups
admit two types of irreducible representations: even and odd
ones which contain all the harmonic oscillator shell-model
states with even and odd number of excitation quanta,
respectively. This allows one to account for both the positive-
and negative-parity states. In this way all the many-particle
states of the harmonic oscillator Hamiltonian fall into the
two types of irreducible representations of the symplectic
group. Thus, in order for the negative-parity states to be
involved in the symplectic-based shell-model theory, one
needs simply to consider the odd symplectic irrep(s). The
positive- and negative-parity collective bands are then treated
on equal footing within the framework of the microscopic
symplectic-based shell-model scheme simply by considering
the two types of symplectic irreps without the introduction
of additional degrees of freedom that are inherent to other
approaches to odd-parity nuclear states.

In the present paper, the proton-neutron symplectic model
with Sp(12,R) dynamical algebra, which naturally involves
vertical as well as horizontal mixing of different SU(3)
irreducible representations, is applied to the description of
the microscopic structure of the low-lying negative-parity
states of the Kπ = 0−

1 and Kπ = 1−
1 bands in 154Sm. For

this purpose, the model Hamiltonian is diagonalized in a
U(6)-coupled basis, restricted to state space spanned by the
fully symmetric U(6) irreps of the lowest odd irreducible
representation of Sp(12,R). A good description of the energy
levels of the two bands under consideration, as well as
the reproduction of some energy splitting quantities which
are usually introduced in the literature as a measure of the
octupole correlations, is obtained. The microscopic structure
of low-lying collective states with negative-parity in 154Sm
shows that practically there are no admixtures from the higher
shells and hence the presence of a very good U(6) dynamical
symmetry. Additionally, the structure of the collective states
under consideration shows also the presence of a good SU(3)
quasidynamical symmetry.

To my knowledge, these are the first symplectic-based shell
model calculations performed for the description of negative-
parity states in atomic nuclei.
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