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We construct accurate models of the three-nucleon (3N) interaction by fitting, in a hybrid phenomenological
approach, the low-energy constants parametrizing the subleading 3N contact operators to the triton binding
energy, n-d scattering lengths, cross section, and polarization observables of p-d scattering at 2 MeV center-of-
mass energy. These models lead to a satisfactory description of polarized p-d scattering data in the whole energy
range below the deuteron breakup threshold. In particular, the longstanding A, puzzle seems to be solved thanks
to the new terms considered in the 3N force. Two types of hierarchies among the subleading contact operators
are also derived, based on the large-N, counting and on a recently proposed relativistic counting. We test these
hierarchies against the same experimental data and show that they are respected at a reasonable level.
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I. INTRODUCTION

Recent years have witnessed substantial progress in the
development of accurate representations of the nuclear in-
teraction, in both the two-nucleon (NN) and three-nucleon
(3N) sectors [1-8]. Particular emphasis has been put on the
systematic framework provided by chiral effective field theory
(ChEFT) [9,10]. The utility of chiral symmetry as organizing
principle of the various components of the nuclear interaction
depends on the convergence properties of the corresponding
perturbation series, which reflect in turn the separation of
the scales at which the nuclear interaction reveals its full
complexity. In the NN sector, chiral potentials, developed up
to the fourth and fifth order of the low-energy expansion,
provide an extremely accurate description of the NN data up
to laboratory energies of 300 MeV with a x? per degree of
freedom (x2/d.o.f.) close to one. The three-nucleon interac-
tion (TNI) shows up in this framework as a small perturbation
to the NN interaction arising at the next-to-next-to-leading
order (N2LO), and depends only on two low-energy con-
stants (LECs) up to following order N3LO [11,12]. After
determining the two TNI LECs from two 3N data (usually
they are the *H binding energy and the doublet n-d scattering
length or tritium B decay) the calculated x2/d.o.f. of available
low-energy N-d observables takes values as large as several
hundreds [13,14]. This well-known fact regards unexplained
discrepancies between theory and experiment in low-energy
N-d scattering, most notably in polarization observables of
elastic scattering, as the so-called A, puzzle [15-17]. Attempts
to trace back this problem to deficiencies in the description of
the low-energies NN p waves showed that it is impossible to
simultaneously describe the low-energy NN and 3N database
using solely NN forces [18]. Accordingly, these discrep-
ancies indicate a limited flexibility in the 3N force at the
order considered. To improve the description, further LECs,
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parametrizing subleading contact terms contributing at N4LO,
could be necessary. This would imply a slower convergence of
the ChEFT series than expected, or the necessity of promoting
short-range contact terms in the low-energy counting [19-22].
In the present paper we focus on this component of the
TNI to assess its relevance in the resolution of the above
discrepancies. The subleading TNI contact potential has been
derived in Ref. [23]. It was shown that it consists of ten
independent terms involving different combinations of the
space-spin-isospin variables. Preliminary studies [24] already
indicated that the associated operatorial structures provide
enough flexibility to improve the description of polarization
observables in low-energy N-d scattering. In particular, as-
signing values to some of the accompanying LECs, it is possi-
ble to describe the two vector analyzing powers A, and i7; in
good agreement with the experimental data. This preliminary
study has opened the door to the possibility of fixing the TNI
LECs from 3N scattering data. In the present paper we intend
to start a systematic study using N-d scattering data to fix the
ten contact TNI LECs from a fitting procedure similar to what
is done in the determination of the NN interaction. As a first
step in this direction, and following the previous analysis, we
take the leading part of the force to be the AV18 NN potential
[25], with only the point-Coulomb interaction retained in the
electromagnetic terms, in conjunction with the Urbana IX
(UIX) model of TNI [26]. We fit the corresponding LECs to
very precise p-d cross section and polarization observables
at center of mass energy E., =2 MeV (or proton energy
E, =3 MeV) [27] for different choices of the contact short-
distance cutoff A between 200 and 500 MeV. The resulting
Hamiltonian is then used to predict the observables at other
energies with an overall satisfactory agreement inside the
energy range explored.

On a more formal ground, we derive a hierarchy among
these LECs as dictated by ’t Hooft large-N, limit of QCD
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[28,29]. We also consider a recently proposed alternative
counting for contact operators, which does not rely on the
nonrelativistic expansion for nucleons [30], and classify the
3N contact operators appearing at the leading order in this
counting. The simplified models for the contact TNI resulting
from the leading orders of these schemes are also tested
against the same experimental data, obtaining results of com-
parable quality. In particular, the relativistic counting seems
to provide a natural explanation for a large spin-orbit term, as
requested to explain the A, puzzle [31]. Strictly speaking these
expansion schemes could only be tested in association with a
chiral NN potential derived in the same framework. However,
we take the indications from the present hybrid approach as
suggestive of their effectiveness.

The paper is organized as follows. In Sec. II we present
our model of TNI interaction. Since the p-d scattering can
mostly probe the isospin 7' = 1/2 component of the TNI we
also discuss the projection of the model in this channel. There
is also a T = 3/2 component, which we leave undetermined:
it could be fixed by other experimental observables. In Sec. III
we describe the variational procedure we use to solve the
p-d scattering problem, which is based on the expansion on
the hyperspherical harmonics (HH method), and we describe
the adopted fitting strategy and the results. The predictions
at lower energies are compared to available experimental
data in Sec. IV. In Sec. V we determine the simplification
of the subleading TNI implied by the large-N, limit and by
the relativistic counting, and the corresponding test against
experimental data. Finally, Sec. VI contains some concluding
remarks. Details of the Fierz identities for covariant nucleon
trilinears are collected in the Appendix.

II. SUBLEADING TNI

In Ref. [23] all subleading 3N contact terms, compatible
with the discrete symmetries of QCD and with the relativity
constraints [32], were classified. The Pauli principle severely
reduces their number to only ten independent structures. From
the Lagrangian density,

10
Ly =—) EO0, M
i=1

by appropriately choosing the momentum cutoff as dependent
only on momentum transfers, an explicit representation of
the associated 3N potential can be derived, which is local in
coordinate space and depends on a short-distance cutoff A
and the ten subleading LECs E;, i = 1, ..., 10. It is explicitly

J
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Z(ri;
X [Z()’(r,-j) +2 O(r']):|ZO(r,-k)
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Zy(rij)
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ij
+(Ey + Ewtj - )0 - B0y - T Z)(rij)Zy(ric), (2)

where S;; and (L - S);; are, respectively, the tensor and spin-
orbit operators for particles i and j, and the function Zy(r) is
the Fourier transform of the cutoff function F (p*; A),

d .
Zo(r; A) = / %e"’*F(pZ;A). 3)

We adopt the following choice for the cutoff function

P\’
F(p% A) = exp [‘(F) } )

which has the advantage of preserving the low-energy count-
ing up to the order we are considering.

In this paper we consider a nuclear interaction consisting
of the AV18 NN potential the UIX TNI and an additional
interaction given by

VI =vO 4 v@, (5)
where the leading 3N contact potential V® is written as
VO = 3" EoZo(rinZo(rin)- (6)
i) 7k

Since the deuteron is an isosinglet state, matrix elements
between N-d states only probe the total 7 = 1/2 component
of the TNIL. In order to identify this component we use the
projectors on the two isospin channels, which for the three-
nucleon system take the form

Pp=3-it nt+tn - m+1n-13), (N

and P, = 1 — Pi;». The 3N potential V@ can be expressed
in momentum space as

v® =3 Eo, ®)
i

where the ten O; operators are

02 = —kiz‘[,' - T,
04 = —kl-ZO'i c0;T T,
06:(—31(,"()','k,"O'j+ki20'i-O'j,)Ti-Tj, (9)

i
Og = _Zki x(Qi—Qj) (o, +0))T; 1,

O = —k; - O',‘k_,' C0T T,
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with k; = p; — p}, Q; = p; + p), and p; (p;) the initial (final)
momentum of the ith nucleon, and a sum over i # j # k is
understood. The projections over isospin T = 1/2, (0)12 =
P1/20;Py ), are given, using the relations derived in Ref. [23],
by

(012 =01 — 10, + 103 + 504 + 305

4§06 + 407 + 305 + 09 + 10y, (10

(O2)1)2 = %02 + %03 + 504 + %05
+ 106 +407+ 205+ 09+ 1019, (1D
Oip=0; i=3,..8 (12)

(09)1)2 = $0; — 103 — 04 — 105
— 506 =207 - 205+ 10y — L0y, (13)

(010)1/2 = £02 — 03 — 1504 — £ Os
— L0 =207 205 — 109+ 204. (14

By examining the above relations, we find that there are nine
purely T = 1/2 combinations, e.g.,

(01— 02), (02+20y), Oz, (09— Oi),
5)
and a single purely 7 = 3/2 combination of operators, e.g.,

03/ = 30, — 303 — 04 — 305 — Og — 360;
— 1205 — 90y — 301. (16)

Notice that, in order to derive the above projections, Fierz
transformations have been repeatedly used. Therefore the
conclusion only holds up to cutoff effects: indeed the cutoff
smears the contact interactions and, as a consequence, the
three nucleons, no longer at the same position, are much
less constrained by the Pauli principle. Thus, only nine com-
binations of LECs may enter p-d observables, and no full
determination of all the ten LECs will be possible without
adding an extra T = 3/2 observable. We may as well start
from a Hamiltonian written in terms of the isospin-projected
operators Eqgs. (15) and (16) with LECs h;, i =1,...,9, and
h3 2, respectively, in one-to-one correspondence with the E;,
e.g.,

hypp = %[2(E1 + E) — Eo — Eyl. (17)
Dropping the T = 3/2 operator from the Hamiltonian, which

does not affect the p-d observables, amounts to setting
h3/» = 0, leading to the relation

2(E) + Ey) — Eg — Ejp=0. (18)

Thus we may effectively impose the above constraint when
fitting to p-d observables, and shifting all the LECs by an
amount proportional to the 7 = 3/2 LEC multiplying O3/,
according to Eq. (16), once we add this extra observable.

III. NUMERICAL DETERMINATION
OF THE CONTACT LECS

We use the HH method to solve the three-body Schrédinger
equation, as reviewed in Ref. [33]. The N-d scattering wave

function, below the deuteron breakup threshold, is written as
the sum of an internal and an asymptotic part,

Wigy. = We + Wa, 19)

where the internal part is expanded in hyperspherical harmon-
ics,

ve =Y c,,, (20)
n

w denoting a set of quantum numbers necessary to com-
pletely specify the basis element, while the asymptotic part,
Wy, describes the relative motion between the nucleon and
the deuteron at large separation, which takes the form of a
linear combination of the regular and irregular solutions of
the free (or Coulomb) N-d Schrodinger equation at relative
momentum ¢ (corresponding to energy E), duly regulated
at small distance. Therefore, denoting these solutions with
Qﬁs 77.» &~ = R, I, respectively, we can write,

LS.
W, = Qg+ Z Risws (DRs.- @3y
s

The weights Ris, s Of the irregular solution relative to the
regular one are the K-matrix elements. It is related to the
S matrix from the relation S = (1 +iK)(1 —iK)~!. The K
matrix, that determines the scattering phase shifts and mixing
parameters, together with the coefficient ¢, in Eq. (20) are
obtained from the Kohn variational principle. The principle
can be formulated in its real or complex form [34] and requires
that the functional

[Risus@] =Risps(@ — (Wrsy|H— EWis), (22)

be stationary under changes of the variational parameters in
W, 557, with the asymptotic part normalized such that

<Q§SJL’H - E|QILSJJ;> - <92S113|H - E|Q§SJL) =1 (23)

This implies that the weights Ri& g must solve the linear
system

Z Risz5Xus.ts = Yisvs, (24)
L3

where

Xesrs = (R + Vel H — E|Qg,),

Yisus = _<QILS,,Z + WE|H — E|sz’,5/,,z), (25)

and the internal functions W have coefficients ¢, solutions of

Z(¢M|H —E|®y)c), = —(Pu|H — E|Qg,, )., (26)

’

n

with A = R, I. A second-order estimate is then obtained by
substituting the obtained weights Ry, ¢ into Eq. (22). From
Egs. (25) and (26) we notice that, in order to solve the linear
problem, the matrix elements of the Hamiltonian H have to be
computed between the HH basis elements and the asymptotic
functions. Decomposing the Hamiltonian as

H=T+V=T+Voy+Van=H, +VO +v® (27
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where Hj is the leading Hamiltonian containing the kinetic
energy T plus the selected two- and three-body force and
V©® 4 V@ are the leading and subleading contact interac-
tions, the linear system of Eq. (26) results

D U DulHL + Y| EVi—E|®,)
w i=0,10

= —(QulH + Y EVi—E|Q,). (28
i=0,10

which can be put in the matricial form

> [(HL)W + Y E(V)uw —ENMLC|C;‘L,

w i=0,10

= —(Hp ). + Y Ei(Vius — ENpa., (29)
i=0,10

where (Hp ), denote the matrix elements of H; between the
corresponding basis states and similarly for the other opera-
tors. Here E;, V; are the contact leading (i = 0) and subleading
(i=1,...,10) LECs and operators, respectively. As can be
seen the problem has been reduced to a linear one: the contact
potential energy can be computed as a linear combination
of several matrices, one for V@ and one for each operator
appearing in V®). These matrices can be computed once for
all, weighted by the corresponding LECs. Using the Kohn
variational principle in the complex formalism, a particular
set of LECs can be used to compute the corresponding S or
T matrix for each J7 state from which the observables at a
particular energy E can be obtained. To this end we calculate
the N-d transition matrix M decomposed as a sum of the
Coulomb amplitude f, plus a nuclear term

M55(0) = £.(0)8s58,

Ja
+T” 3 V2L T LLOSvIIv)(L'M'S'V|Jv)

LL.J
x expli(o, + op — 200)] Tjs ;g Yuur (6, 0), (30)

where the matrix M is a 6 x 6 matrix corresponding to the
couplings of the spin 1 and spin 1/2, of the deuteron and
third particle, to S, S" = 1/2 or 3/2 with projections v and v'.
The quantum numbers L, L' are the relative orbital angular
momentum between the deuteron and the third particle and J
is the total angular momentum of the three-nucleon state. The
matrix elements 7} ;¢ form the 7 matrix of a Hamiltonian
containing the nuclear plus Coulomb interactions, oy, are the
Coulomb phase shifts. The n-d case is recovered with f,. =
o = 0.

Let us first determine the expected sizes of the LECs,
which, according to naive dimensional analysis [35,36], are
as follows:

1 1

Ey~ —, P~
O FIN T FAAD

=1,...,10, 3D
where F; = 92.4 MeV is the pion decay constant and A is the
hadronic scale. This counting is expected in the pionful theory.
In the pionless case the LECs may also receive contributions

from virtual pion exchanges, which will produce extra factors
of A?/M?. We therefore extract physical dimensions and write

€o €;

E = —, i = —=,
"TEIN T RN

i=1,...,10, (32)
with ey ~ ¢; ~ O(1) if natural.

In the determination of the LECs we make use of the fol-
lowing data: the triton binding energy, the doublet and quartet
n-d scattering lengths [37,38] and several p-d scattering ob-
servables at 3 MeV proton energy for which a very precise set
of data exists [27]. The p-d observables used for the fit are the
differential cross section, the two vector analyzing powers A,
and i7Ty; and the three tensor analyzing powers T»g, T, and
T»,. For each choice of the ten subleading LECs, subjected
to the T = 1/2 constraint (18), we redetermine the leading
contact LEC Ej from the experimental triton binding energy.
We then fit the experimental doublet and quartet N-d scat-
tering length [37,38] and the six p-d scattering observables
at £, = 3 MeV [27], amounting to ~300 experimental data.
The theoretical observables are calculated solving Eq. (29) for
a set of E; coefficients for different J”™ states. The obtained S
matrix (or 7 matrix) is used to calculate the transition matrix
M from which the observables are directly calculated [39]. At
the energy considered, states up to L = 2 are calculated using
the full Hamiltonian whereas for L > 2 only the two-body
potential was included up to a maximum value of L = 6.

For the differential cross section we include in the x? an
overall normalization factor Z of the data points,

(4 /2 — d*)’

2
X = , (33)
Z (07 /2)*
with Z obtained from the minimization condition as
APt [ (&P 2
— Zl 1 1 / ( l ) (3 4)

> (dith)z/(atexp)z ’
and checked that Z never differs from 1 by more than 2%
[40]. For the other observables, we treat the normalization
Z = 1.00 £ 0.01 as an experimental datum, to be added to the
x2, since, according to Ref. [27] the systematic uncertainty is
estimated as 1%.

For a given initial set of LEC values we use Eq. (29) to
solve the scattering problem and calculate the corresponding
observables. Using the POUNDerS algorithm [41] we start
an iterative procedure to minimize the global x?/d.o.f. of
the data set description. After several iterations the numerical
procedure converges to a local minimum. We repeat the pro-
cedure using different initial input of values trying to localize
the deepest minimum.

Among the ten contact LECs the most relevant one for
all adopted values of the short-distance cutoff A is the spin-
orbit one E;. One-parameter fits to the considered scattering
observables lead to a x2/d.o.f. ~4. The most drastic im-
provement is obtained fitting two parameters [42]. In partic-
ular the least x? are reached including the tensor operator
parametrized by the LEC E5 together with the spin-orbit one,
in agreement with previous analyses [31,43]. As shown in
Table I, the x2/d.o.f. can be reduced to ~2. The mean values
of the different Hamiltonian components inside the triton state
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TABLE I. Two-parameter fit results neglecting all the subleading
contact terms except the tensor and spin-orbit operators Os; on
top of the two-body AV18, the three-body UIX potential, and the
leading 3N contact potential V@ given in Eq. (6). The rescaled
LEC ¢, is determined from the triton binding energy, while the
doublet and quartet scattering lengths a, and ay are fitted to the
experimental values a, = (0.645 £ 0.003 £ 0.007) fm [37] and a4 =
(6.35 £0.02) fm [38]. Also shown are the mean values in the triton
state of the one- and two-body Hamiltonian (denoted as (AV18)), of
the UIX three-body potential (UIX), and of individual contributions
from the short-distance three-body potential.

A (MeV) 200 300 400 500
x2/d.o.f. 2.0 2.0 2.1 2.1

eo —0.074 —0.037 0.053 0.451
es 0212 —0.248 —0.403 —0.799
e 1.104 1.195 1.686 2.598
(AV18) (MeV) —7.353 —-7.373 —7.394 —7.343
(UIX) (MeV) —~1.118 —~1.095 —~1.058 —~1.031
(VO) (MeV) —0.057 —0.069 0.125 0.841
(EsOs) (MeV) —0.032 —0.182 —0.609 —1.553
(E;07) (MeV) 0.079 0.237 0.454 0.605
a, (fm) 0.611 0.618 0.626 0.638
ay (fm) 6.32 6.32 6.32 6.32

suggest that the included contact operators cease to be a small
perturbation to the three-body UIX potential for the largest
values of the cutoff A. Also shown in the last two rows of
the table are the doublet and quadruplet n-d scattering lengths
a, and ay respectively. The fitted curves are shown in Fig. 1
as red narrow bands and a nice description of all the observ-
ables is evident. For the sake of comparison we also show
the predictions using the two-body interaction AV18 (dashed
lines) and the AV18+UIX model (dashed-dotted lines). The
underprediction of A, and i7;; are well visible in these two
cases.

Improvements of the quality of the fit result from inclusion
of all the T = 1/2 subleading LECs, as shown in Table II.
Values of x2/d.o.f. < 1.7, are obtained for all values of the
short-distance cutoff between A = 200 and 500 MeV. The
fitted curves are shown in Fig. 2, in good agreement with
all observables. We notice that the doublet scattering length
and T, observables are better reproduced as compared to
the simplified model discussed above. However, the resulting
TNI is not a small perturbation, as compared to the UIX. For
instance, the contact terms Ey, ..., Ejo contribute an overall
attraction in the triton binding energy of more than 1 MeV, for
the largest cutoff, which is also the result of huge cancellations
among the different terms. This is also clear from the rather
unnatural values of the resulting LECs.

IV. PREDICTIONS AT LOWER ENERGIES

With the LECs determined at a proton energy of E, =
3 MeV, we can predict observables at other energies. To this
end we select p-d scattering below the deuteron breakup, and
postpone the analysis at energies above the breakup as well
as an energy-dependent fit to a forthcoming study. To make

E =3.0 MeV
@ P ®)
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>
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S
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0.03 - © 0.06 ®
0.02 N 0.04 -
- r SN R L ///‘\\.\\
£ F /7_/ \] < r e \\
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001 - o \\ 0.02 > N
L oo r 2 N
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6 (degrees) 0 (degrees)

FIG. 1. Fitted curves, including only the tensor and spin-orbit
subleading contact operator on the top of the AV18+UIX interac-
tion, to a set of cross-section and polarization observables in p-d
scattering at 3 MeV proton energy [27], for A =200 — 500 MeV
(red bands) as compared to the purely two-body AV18 interaction
(dashed black lines) and to the AV18+UIX two- and three-nucleon
interaction (dashed-dotted, blue lines).

this analysis we choose the models corresponding to A =
300 MeV. We have checked the cutoff dependence at proton
energy £, = 1.0 MeV and found that it is small between 200
and 500 MeV, as shown in Fig. 3.

Several observables have been measured at proton en-
ergies of E, =1.0, 2.5, 2.0, 0.647 MeV [27,44,45]. The

TABLE II. Fit results for the models that include all 7 = 1/2
subleading contact operators in addition to the AV18, the UIX and
the leading 3N contact potential for the different cutoff considered.

A (MeV) 200 300 400 500
x2/d.o.f. 1.7 1.7 1.7 1.7
eo —~1.098 —5.713 —3.241 —2.910
e 2.739 2.192 —2.698 —2.691
e —0.522 —0.674 2418 1.716
e —2.248 -3.301 1.270 1.762
es 2.181 3.756 —1.271 —1.367
es —0.196 0.441 —0.288 —1.134
es 0.694 —0.393 —0.687 —~1.079
e 7.546 4.361 3.883 0.815
es 2.291 0.836 0.495 —~1.097
e 4.052 1.040 —0.070 —-1.316
e 0.382 1.996 —0.490 —0.633
a> (fm) 0.636 0.641 0.646 0.650
ay (fm) 6.32 6.32 6.32 6.32
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Ep=3.0 MeV
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FIG. 2. Same as Fig. 1 but including all the T = 1/2 subleading
contact operators.

theoretical predictions using the subleading contact interac-
tion determined with the complete fit at £, =3 MeV are
shown in Figs. 3-6, respectively. The predictions of the

Ep=1.0 MeV
a b
400 ¢ @ 0.02 ®
350
G300 Or
2 £ |—'C L
1] E L
€250 - o0l
200 |~ [
F ) N e M Y7 S AR AR
50 100 150 0 50 100 150
0 (degrees) 0 (degrees)
c d
0.03 © 0r @
L U L
0.02 - -0.005 |-
0.01 :7 -0.01 :7 e
/) A T pos L L L
0 50 100 150 0 50 100 150
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e f
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=l E P <001 S
0.004 SN E FEEN
E ; o 0.005 = 7 I
0.002 £ V4 ™ g Vi N\
ol 1S bl b 1Y
0 50 100 150 0 50 100 150

0 (degrees) 0 (degrees)

FIG. 3. Predictions of the models determined at A between 200
and 500 MeV (red bands) for a set of cross section and polariza-
tion p-d observables at E, = 1 MeV energy, as compared to the
purely two-body AV18 interaction (dashed, black lines) and to the
AV 18+UIX two- and three-nucleon interaction (dashed-dotted, blue
lines), in comparison to experimental data [44].

simplified models that include only the tensor and spin-orbit
subleading contact operators show very similar behavior.

By inspection of the figures we observe an overall good
agreement between theory and experiment for the observ-
ables, in particular the energy dependence of the analyzing
power A, and the iTj; observable is correctly encoded in
the adopted contact interaction, although a small underpre-
diction is still observed at the lowest energies. We have also
investigated in Fig. 7 the iT}; scattering observable at angle
0 = 88°, for which experimental data are available in the
intermediate energy domain. From the figure we see that
for this observable the simplified model including only the
tensor and spin-orbit subleading operator is more accurate
than the complete one, which is systematically below the data
below E, = 3 MeV, corresponding to center of mass energy
E.n, =2 MeV. A simultaneous fit at different energies will
presumably lead to a more accurate description in the very
low-energy domain. The investigation of this possibility is left
for future work.

V. STUDY OF HIERARCHICAL STRUCTURES
IN THE SUBLEADING TNI

A. Large-N, constraints

It is interesting to explore whether the proposed model of
TNI fulfills the hierarchy dictated by the large-N,. limit of
QCD, thus revealing a closer connection to the underlying
theory of the strong interactions. Indeed, in the ’t Hooft
limit [28,29] where the number of colors N, — oo and the
strong coupling constant g scales such as g*N,. ~ 1, from the
scaling of connected baryon-baryon amplitudes it is possible
to derive the large-N, scaling of nuclear potentials [46,47].
Such scheme has proven to be qualitatively successful in the
NN case, providing in fact an expansion in 1/N2, and has
been applied to the 3N case [48] as a guide to reduce the large
number of operatorial structures. In particular, one finds that
the scaling of the two-nucleon o ® o and 7 ® 7 operators is
twice suppressed with respectto 1 ® 1 and ot ® o7, i.e.

1
CRO~TRT~ —,
® ® N

1®1~0ct®0t ~N.. (35

This is in phenomenological agreement with the size of the
two LECs, Cs and Cr, corresponding to leading-order NN
contact interactions,

Lay = —5Cs(N'N)’ = 3Cr(NToNY?,  (36)

where |Cg| > |Cr|. Notice that the most general leading-
order contact Lagrangian involving spin-isospin-1/2 baryons
contains in principle four different operators,

Ly = ct(N'N? +co(NToN)? + e3(NTTN)? + c4(NToTN)?
= Z cioi, (37)

which are related through Fierz-like identities by
03 = —0y — 201, 04 = —30;. (38)

These relations do not conform with the large-N, scaling (35).
We observe, however, that the counting arguments, which lead
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FIG. 4. Predictions of the model determined at A = 300 MeV
for a set of cross section and polarization p-d observables at E, =
2.5 MeV proton energy (solid, red lines) as compared to the
purely two-body AV18 interaction (dashed, black lines) and to the
AV 18+UIX two- and three-nucleon interaction (dashed-dotted, blue
lines), in comparison to experimental data [27].

to the large-N, scaling never use the fact that the baryons
are identical fermions. In particular, the same scaling would
apply to scattering of distinguishable baryons. In this case we
would have ¢y ~ ¢4 ~ O(N,) while ¢; ~ ¢3 ~ O(1/N,). The
indistinguishability of nucleons implies relations (38), which
in turn allow us to cast the effective Lagrangian in the form
(36) with

Cs = —2(cy —2¢3 —3¢4), Cr=-2c2—c3), (39)

whence the conclusion on the relative size of Cg and Cy. We
thus learn that one way to implement the Pauli principle in the
large-N, counting is to start with a redundant set of operators,
establish the counting of the corresponding LECs, and impose
the Pauli principle constraints afterwards.

In the notation of Table I of Ref. [23] there are 13 leading
operators in the large-N, limit [48], so that the 3N contact
Lagrangian only depends on the 13 corresponding leading
LECs,

L3y = €33033 + €37037 + 40040 + C43043 + C47047
+ ¢51051 + C55055 + C59059 + C60060 + C61061
+ C62062 + C63063 + C64064- (40)

Using the Fierz identities obtained in Ref. [23], we can find
their contributions to the ten LECs of the minimal basis,

3 2e43 + 3css, 41)

E, =0, (42)

1
Ei = —5c33 —

Ep=2.0 MeV
a b
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FIG. 5. Same as Fig. 4 but for E, = 2 MeV proton energy. Data
are from Ref. [44].

E; =0, (43)
Ey= —cas — Yem — Les) =2
4 = —C43 — 3C47 — 3C51 C59
2 2 2
— $¢60 + 5C61 — 5C62, (44)
E =0.65 MeV
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FIG. 6. Same as Fig. 4 but for proton energy E, = 0.647 MeV.
Data are from Ref. [45].
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FIG. 7. Prediction of the model determined at A = 300 MeV (red stars connected by solid lines) for the center-of-mass energy dependence
of the vector polarization observable iT}; at & = 88° as compared to available experimental data of Ref. [45]. Also shown is the prediction of
the simplified model corresponding to the second row of Table I (red stars, connected by dotted lines), of the purely two-body AV 18 interaction
(black stars connected by dashed lines) and to the AV18+4-UIX nuclear interaction (blues stars connected by dashed-dotted lines).

Es =0, 45)
_ 1 1 2 2 4

E¢ = —3c47 — 3051 — 5C60 + 5C61 + €625 (46)

E; = 24c¢49 — 24c¢51 + 8cez + 8ceu, @7

Eg = 8cqo — 8cs1 + 4cgz + 4cea, (48)

Eq =0, 49)

Ejg = c37 + ca0 — a7 — C51. (50)

There are therefore only six independent combinations, so that
the large-N, predictions can be summarized by the following
constraints:

E,=Ey=Es=Ey=0. (51)

The projection onto the 7 = 1/2 channel for this restricted
interaction, along the same lines of Sec. II, leads to only five
surviving LECs entering the p-d observables. As before, we
can effectively impose the constraint

2E, —Ejp=0 (52)

and understand that the LECs resulting from the fit are deter-
mined only up to an appropriate shift.

In order to test these large-N, predictions, we perform six-
parameter fits to the same experimental data at £, = 3 MeV,
subjected to the large-N, and T = 1/2 constraints, Egs. (51)
and (52), with the AV18 NN interaction plus the purely
contact TNI of Eq (5). We ignore the Urbana IX potential in
this case, since it also includes a short-distance component.
For the sake of comparison, we show in Table III and Fig. 8

the fit results obtained ignoring the UIX interaction, which are
of the same quality as the ones reported in Sec. III.

The results corresponding to the leading order of the large-
N, expansion are shown in Table IV and Fig. 9. By inspection
of the table we can conclude that reasonable fits can be
obtained in this limit, although at the cost of unnatural values
for the spin-orbit LECs E;. The increasing x?/d.o.f. for
higher values of A might be the consequence of the absence
of longer-range components in the TNI from pion-exchange

TABLE 1III. Same as Table II but for the models that do not
include the UIX TNIL.

A (MeV) 200 300 400 500
x2/d.o.f. 1.6 1.7 1.7 1.7
eo 3.989 -2.381 —2.585 —2.880
e 2.149 2.791 —3.250 —2.850
e —2.721 —3.131 2.173 2.203
e —1.829 —3.490 0.601 1.224
es 0.740 3.510 ~1.523 —~1.370
es —0.535 0.007 —0.452 —0.665
es 0.773 -0311 —0.598 —0.793
e 7.265 3.490 1.750 2.291
es 2242 0.791 —0.300 —0.676
e —0.244 ~1.690 —1.183 —0.859
e —0.900 1.009 —0.970 —0.437
a> (fm) 0.639 0.645 0.647 0.645
ay (fm) 6.32 6.32 6.32 6.32
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FIG. 8. Same as Fig. 1 but for the models that include all the
T = 1/2 subleading contact operators, without the UIX TNI.

contributions, which would also be leading in the large-N,
counting.

B. Relativistic counting

A different kind of hierarchy among subleading contact
operators can be deduced in the framework of the recently pro-
posed relativistic counting for the NN contact operators [30].
In this approach, one retains, in the leading-order Lagrangian,
all relativistically invariant four-nucleon operators involving
no space-time derivatives,

Ly = SCs@YIA@ W) + Cr(Tysy) W ysyr)
+Cy (U™ )W yu¥r) + Ca(ry " ys¥ ) yuysyr)
+ Cr(Fa™ ) (o), (53)

TABLE IV. Same as Table II for the models corresponding to the
leading order of the large-/N, expansion.

A (MeV) 200 300 400 500
x2/d.o.f. 2.0 1.9 2.0 2.1
eo —0.309 —1.766 ~1.676 —0.953
el 0.328 0.400 0.557 0.717
e ~0.360 0.317 0.517 0.593
e —0.060 0.115 0.162 0.297
e 10.093 15.037 15.898 17.862
es 3.559 5371 5.397 5.961
e 0.655 0.800 1.115 1.433
a> (fm) 0.668 0.653 0.640 0.628
as (fm) 6.32 6.32 6.32 6.32
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FIG. 9. Fit results in the leading order of the large-N, limit to
a set of cross section and polarization p-d observables at 3 MeV
proton energy, for A = 200-500 MeV (red bands) as compared to
the purely two-body AV18 interaction (dashed, black lines) and to
the AV18+4UIX two- and three-nucleon interaction (dashed-dotted,
blue lines).

where i collects the Dirac spinor nucleon fields. In contrast
to common practice, one does not expand around the static
nucleon limit, which would amount to collapsing the five
LECs onto two independent combinations, Eq. (36), which
parametrize the central and spin-spin short-range potential.
Instead, all five LECs are considered on an equal footing,
generating further spin operators, among which the spin-orbit
term. This procedure yields a much faster convergence of
the low-energy expansion, since at each order there are more
adjustable parameters. We can apply the same procedure to
the three-nucleon case by writing all possible relativistically
invariant six-nucleon operators, symmetric under isospin,
charge-conjugation (C), parity (P), and time reversal (7)
transformations. The transformation properties of the differ-
ent space-time and isospin structure inside fermion bilinears
under the discrete symmetries are displayed in Table V. Based

TABLE V. Transformation properties of the fermion bilinears
with the different elements of the Clifford and flavour algebra, and
Levi-Civita tensor under parity (P), charge conjugation (C), and
Hermitian conjugation (H.c.).

1 s Yu YuVs Oy ¢ €uvpo
P + - + - + + -
C + + - + - (=1 +
H.c. + - + + + + +
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TABLE VI. A complete, but nonminimal, set of Lorentz, isospin, C-, P-, T -invariant 3N contact
operators involving no space-time derivatives of fields.

o' Y)Y R @ (1, 7 - 12

O%h s GGy (@Fysy)s ® (L T2 - T3, 71 - (T2 + T3)]
Og WYY Ty ® (1, 12 - 13, T - (T2 + T3)]
Oge,llo,ll WY)Wy sy (Fy,ys¥)s @ [1, T2 - T3, 71 - (T2 + T3)]
Oqezl,m,m WY)W Y n(Fou¥)s ®[1, 15 - 73, 71 - (T2 + 73)]
o Gysyn @y Y@y, ysv)s @ [11 - T2 X T3]

ot Yo" Y )Py, b)) ® [T1 - T2 X T3]

oy W™ Yy ys (I ryst)s @ [T1 - T2 X T3]

o oY) (0¥ ) (FolY)s ® [T To X T3]

O3 2021 Wysv (o™ Yo, ysy)s @ [1, 12 - 73, 71 - (12 + T3)]

rel
022.23,24,25

Wy @ rys¥ (P ysy)s @ [1, 72 - 73, T1 - (T2 + T3), T1 - (T2 — T3)]

on these properties we can form a set of 25 different operators,
displayed in Table VI.

Simultaneous rearrangements of Dirac and flavor indices
between identical nucleon fields lead to Fierz identities, as
detailed in the Appendix. As a result, the leading relativistic
3N contact Lagrangian is written in terms of five independent
operators,

LY = —[Es(Uy) ) + Ep(dysv) (W ysir)
+Ev (Y y" )Wy ) + EaWy ysv) (v ysyr)
+ ET(I/_fU“”Ilf)(I/;%ulﬁ)](ll_”/f),

E—ZE)(O)(, X=S87PV,A,T. (54)
X

The nonrelativistic expansion of the nucleon fields,

1 + vzz 3
V(x) = (f{" Nx)+0(Q7) . (55

2m

allows to express the five operators Ox in terms of the sub-
leading operators defined in Ref. [23] as

3
= (N'N)’ + —[0127 20751, (56)

1

Op=—1>

— 036, (57)

1
= (N'N)’ = = [40s3 — 4075 — 4079 — 20,

+ 204 — 2039 — 0127 + 2075, (58)
1
Ox = (N'N)’ = ——[204 + 20130 — 2036 — 2045 — 20137
8m
— 2079 — 2083 + 0134 — 20115], (59)

1
Or = —2(N'N)’ — —[2033 — 2010 + 207 — 4075
4m?
+ 2047 + 2053 — 2036 — 2045 — 20137
— 2079 — 2083 — 0134 + 20115], (60)
where the relation

(N'N)> = =(NToN) - (NToN)(N'N) (61)

has been used, also a consequence of Fierz identities. It is
possible to express the above operators in the minimal basis
[23], obtaining

Os = Oy + i|:—101 — 102 — l03 — l04 + i05
m? 16 8 8 6 16
5
+ 4806 — —07 — —03] (62)
1
OP = —WOQ, (63)

ov=00+-20-Yo,-320,- Lo
YR 216 8 16 0 16 8

l0 10 10 10 (64)
217 g8 = 50— ;00

1 1 1 1
-0+ -03 — —04 + —Os

173
04=0 0 _
A=t [16 ! 4 24 16

3 1
+4806+IO7+408+209+40]({| (65)

Loyt Yo, — 20
4 4 7T e T g

(66)

where the operator Oy contains the relativistic drift corrections
[32],

= (N'N)? + e [3(NT Y N)- N Y MWV

W'Y r“N)-(NT ¥ UN)NTN)
_3Nt ¥ eN)NT Y eIV
“(NT YV o'WV Y et NYINTNY. (67)

Neglecting the latter we have

Eo = Es + Ey + E4 — 2Er, (68)
m*Ey = —13—6Es + 13—6EV + %EA + %ET
t6Eo + Ev + 3Ea, (69)
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m’E, = —§Es — 1Es + 3Er

= —1Ey+ 1By — LEs + 1Er, (70)
m’E3 = —3Es + 1Ex — 3Er

= —1Eo+ 3Ey + 3E4 — 3Er, (71
m*Ey = —gEs = 3Ev — 3;E + gEr

= —LEy+ %Ey + §Ea — +Er, 72)
m’Es = j5Es — j5Ev + 15Ea — 3Er

= LE —1E, — 1E, (73)
m’Es = 35Es — 6Ev + 35Ea — 5;Er

= xEy— 5Ey — L{Er, (74)
WEy = 3y~ 1By + UE, - 1E;

= —3Ey + Ey + 4E, — 6Er, (75)
mEy = —LEs — LBy + 3B, — 1E;

= —1Ey + Ey - 2Er, (76)
WE = LB B Y D
m’Ep = — 3By + 3Ex, (78)

with only four independent combinations of the subleading
3N contact LECs. We notice in particular that the numerical
coefficients entering in the expression of E; are larger by
one order of magnitude compared to the other LECs. This
might be at the origin of the phenomenological prominence
of the spin-orbit interaction encoded in E;, already proposed
in Ref. [31].

In terms of the operators defined in Table VI the isospin
projection reads

(Oﬁel)l/z = %Orlel - %O?l

= 205+ 30p + 10y — 304 + §Or, (79
(05),,, = Lox' ~ Loy — tog'

= —505+ H0p — 50y + 504 — 507, (80)
(0261)1/2 = %Ogel - %Ogel - %Ogel

=—10s—10p + 20y + 104 - Loy, 81
(0561)1/2 = %Or;l - %Orl%l - éOﬁl

= 105+ 30p + 30v + 304 + £ Or, (82)
(03, = 1ot~ 1o~ 107

=—05—0P_0V+0A+%0T’ (83)

whence one conclude that there is only one purely 7 = 3/2
operator,

0%} = Os+ Op + Oy — 04 + 307, (84)

and four purely 7 = 1/2 combinations, e.g.,
(Os +30p), (Oy —40p), (Ov +04), (BOy —Or).
(85)

TABLE VII. Same of Table II for the model restricted at the
leading order of the relativistic counting.

A (MeV) 200 300 400 500
x?/d.o.f. 22 22 23 2.1

eo ~1.169 —0.565 —0.281 1.506
e 0.202 0.245 0.377 1.077
e 0.074 0.031 0.018 ~0.193
e3 0.067 0.139 0.240 0.857
es 0.029 0.054 0.086 0.232
es —0.135 —0.106 —0.138 —0.219
es —0.045 —0.035 —0.046 —0.073
e 0.533 1.343 2.373 8.850
es —0.002 0.230 0.456 1.993
e 0.974 0.606 1.451 4.552
e —0415 —0.046 —0.654 —2.837
a> (fm) 0.707 0.619 0.583 0.646
ay (fm) 6.32 6.32 6.32 6.32

As before, in fitting to p-d observables, one can impose the
constraint

3Eg — Ep — 4Ey + 4E, — 12E; =0, (86)

with the understanding that the determination of the LECs is
only valid up to a shift involving h3,.

In order to test the effectiveness of the relativistic counting,
we also fit the constants Ex, X = S, P, V, A, T subjected to the
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FIG. 10. Fit results in the leading order of the relativistic count-
ing to a set of cross section and polarization p-d observables at
3 MeV proton energy, for A = 200-500 MeV (red bands) as com-
pared to the purely two-body AV 18 interaction (dashed, black lines)
and to the AV18+UIX two- and three-nucleon interaction (dashed-
dotted, blue lines).
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T = 1/2 constraint. As in the case of the large-N, limit we test
this description in the framework of a purely pionless TNI.
Specifically we consider a nuclear Hamiltonian consisting of
the AV18 NN interaction and the leading and subleading 3N
contact terms implied by the Lagrangian (54). The latter can
be expressed in the usual basis expressing the LECs E;’s in
terms of the Ex’s using the relations (68)—(78), with the T =
1/2 constraint expressed in Eq. (86). The fitted parameters
are the adimensional e, ey, e4, and er, having defined the
adimensional ey as

ex

Ey = ——,
X T FAA

X=V,AT. &7
The results are displayed in Table VII. Compared to the
unconstrained ten-parameter fit, the x2/d.o.f. is slightly in-
creased, but a reasonable description is obtained for all
adopted values of A. This may be considered as compatible
with the leading-order character of the interaction, and gives
support to the relativistic counting in the three-nucleon sector.
We show in Fig. 10 the corresponding description of the p-d
scattering observables.

VI. CONCLUSIONS

The aims of this paper are twofold. In the first part we
discuss the possibility of determining the subleading contact
three-body interaction from a fit procedure of selected binding
energies and scattering data. In particular the fit includes the
triton binding energy, the doublet and quartet n-d scattering
lengths and several p-d scattering data. This being the first
attempt to incorporate systematically scattering data in the
determination of the TNI, we limit the fit of the p-d data
to a single energy, E, =3 MeV, at which around 300 data
points exist. However, we plan to extend the fit procedure to a
simultaneous inclusion of data at several energies, below and
above the deuteron breakup threshold. Regarding the results
of the present analysis, they were satisfactory: the x2/d.o.f
obtained after the fit was below 2, similar to the values
obtained in the fit of the NN potential in the two-nucleon
sector. Moreover, they show a very small cutoff dependence.
In this way we have shown that the subleading contact terms
of the TNI provide enough flexibility to fit satisfactorily low-
energy elastic N-d scattering observables, thus solving the
longstanding discrepancy in some polarization observables.
After decades of strong efforts to describe the NN database
with values of X2 /d.o.f close to 1, similar values were im-
possible to achieve in the three-nucleon sector even with the
inclusion of very sophisticated TNI as the UIX type or from
ChEFT up to N3LO. The angular-spin-isospin dependence of
the TNI seems to be much more complicated than the forms
used up to now. Here we have shown that this dependence can
be opportunely collected in the sum of the ten terms given by
the contact N4LO interaction.

To perform the fit the TNI contact interaction was summed
to the AV18+UIX, widely used in the description of nuclear
states. Interestingly, two-parameter fits including only the
spin-orbit and tensor contact operators give already a good
XZ ~ 2. Moreover, the resulting contact TNI, at least for the
lower cutoffs, appears as a small correction as compared to the

UIX TNI. The unconstrained fit at £, = 3 MeV determines
the ten combinations of LECs, ¢;, i =0, ..., 10 (one LEC
is fixed by the condition h3/, = 0) relevant to the T = 1/2
channel, although with presumably large correlations among
them. Stronger constraints could arise from a combined fit to
observables at different energies. To evaluate the capability of
the derived potential to describe other data, we explored the
low-energy region, E,, < 3 MeV, in which several observables
have been measured. We have observed an overall good agree-
ment with a satisfactory description of the vector analyzing
powers down to very low energies.

The relative importance of the ten subleading terms has
been discussed in the second part of the paper, in which the
whole TNI is of contact type. In fact, substantial improve-
ment in the description of the same p-d observables is also
provided by simplified versions of this interaction, given by
the leading order of the recently proposed relativistic counting
[30] or of the large-N, expansion [28,46—48]. Even though the
naturality and the cutoff dependence of the involved LECs
cannot be properly addressed, since we are using purely
phenomenological models as the bulk of the NN and 3N
interactions, the results suggest natural values of the LECs,
with the marked exception of the spin-orbit ones, and a very
mild cutoff dependence of the theoretical description in the
range A = 200-500 MeV. It will be interesting to study this
interaction in conjunction with chiral NN and 3N potentials or
with purely contact nuclear interactions as implied in pionless
EFT. Further investigation is also needed in order to test these
models at higher energies and in larger systems. Studies along
these lines are in progress.
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APPENDIX: FIERZ-LIKE IDENTITIES

In this Appendix we detail the Fierz-type relations used to
reduce the relativistic operators in Sec. V B. The rearrange-
ment of indices, indicated by round and square brackets for
the two involved bilinears, concern Dirac indices, as, e.g.,

D[] = {AID) + (wsllys) + 1) — P wsllveys)

+ 30" 1low) }. (A1)
and isospin indices, as
M = 1A + 1@ [D). (A2)

Imposing the antisymmetry under exchange of identical
fermion fields leads to relations (we omit in this Appendix
the superscript “rel” for the sake of clarity) such as

01 = —3(01 + 034 06 — 09 + 501
+ 02+ 044+ 07 — 019+ 1013), (A3)
0, = —3[3(01 4+ 03 + 06 — 09 + 3 012)
—02—04—074-010—%013] (A4)
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Similar relations can be obtained by using further identities, which can be obtained using the completeness of the Dirac bilinears,

(Dlys] =
MDly"] =

(ys)ly"ysl =
MDly"ysl =

D[] =

(ys)lo"ys] =

(rs)ly"] =
(")l =
(0"ywysl =
(o™ ys] =

(U’w‘)[ao‘;] =
(ys)lo"'] =

"y ysl =

1) + Alys) + G ysllve) = HYys) + 20 10, y5)),
HOMW + Ay — O wsllys) + slly™ys) — inllo™) + i(a™ 1lyy)
+i(nysllo"ys) + i@ ysllvuys)),

Hsy yvs) + O ysllys) + Aly™) — 1D + 0™ 1) + i ]le™)
+i(@"ysllnys) — ivysllo™ ys)),

HAlly ys) + Gyl — (v dlys) + (rslly™) + iGrllo ™ ys)

+i(@" yslln) — itnysllo™) +i(a" 1yuys)),

HAe™) + @™ 1) + (516" ys) + (" ysllys) + i(6"“1[oy)
—(0"[ol) — " P (vallypys) + € (vaysllyvp)}.

i ") =i 1y™) — i sy vs) + i yslly ™ vs) + (e ™)
+ (™11 + (ps1la " ys) + (6" ysllys) + i(0"“][o,) — i(a"*][ol')

+ e (v llypys) — € P (vaysllve)},

sy + Mlys) + Ay ys) — G ysID = i(r ]l ys)
+i(0"yslln) + i ysllo ™) + i@ 1lyuys)ls

B — Ally™) — P ysllys) — sl vs)] = (01in)

= o) = (" ysllvoys) + ysllo " ys)l

Hlle™ys) = (@ yslin) — uysllo™) = (1l ys)

+3il(y" ys11) — A" ys) — (v"1lys) — (s}

1B ys) = sy + @ ysID + ALy "ys)] — Vullo™ys)

— (0" ysllyw) — uysllo™”) + (0" 1lyuys)),

(@")[o, ] + i 1[1) — iA][0"") + (" ys[ys) — i(yslo™ ys),
i sy — iy sy — i 1y Y ys) + i Vv vs) + (0 lys)
+ (r51l0"") + (0" ys1[1) + Ao ys) + i(c"“ys)[0y) — i(c™ys][ol)
— P (vullyp) + P (vaysllypys)},

Oy ysl + 0™ 1lys) + (rsllo™”) — (" ys1[1) — A[e " ys)

+ P (vallyp) + € P (vaysllyvpys))-

Together with further isospin Fierz relations,

@M1+ D[] = @I + A1),
O] = DIz = —i(z] x [7),

one can establish the following linear relations,

1
0=~
1
04__?1(
1
05=_Z<
1
06 = —Z<
1
07__4_1(

1 1 1
<03 + 2019 + 505 + ZOQO),

2 4

1 1
O4+ =05 —i05 + —021),
3034+ 04 +1i0 +30 10 +10
3 4 T WU1s 4 19 4 20 4 21 )
1
06+§08+i022+i023>,

O7 + 03 —i015 + Oy + i024>,
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(A7)

(A8)

(A9)
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(A16)

(A17)

(A18)
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(A22)
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1
Og = =7 (305 + O1 +i015 = O16 + 3i03 — i3 + iO), (A25)
0Oy = ! O—I—IO 10 iO —I—iO (A26)
9 = 4 9 211 U2 224 225,
1 1 , . i i
Oi1o=—=(010+ 011 +i015+ 017 —i033 — =024 — =055 |, (A27)
4 2 2 2
1 . . . .
On = —1(309 + 010 — 1015 — 017 — 3i02 — 1023 — i0»s), (A28)
1 1 1 . . .
Op = ~7 On + 5014 + O19 + 5021 +2i02 + 024 + 1025 |, (A29)
1 1 1 . . .
013 = _Z 013 + 5014 + 016 - 017 - 018 + 020 + 5021 + 21023 + 1024 - 1025 ) (A3O)
1
O = _4_1(3012 + 013 — O16 + O17 + O13 + 3019 + O + 6i0x + 2i0p3 — 2i0;s), (A31)
L. .
015 = —2(1011 — 21010 + 2023 — 024 - 025), (A32)
1
O = ~ (607 — 305 — 2i0s), (A33)
1
Or7 = —7(6010 — 3011 = 2i023 + i02 +i02s). (A34)
1 1
O3 = 013 — 5014 + Oy — 5021, (A35)
1 1 1 . . .
019 = -1 O + 5014 + O+ 5021 —2i02 — 1024 — i0ss |, (A36)
1 1 1 . . .
0y = -7 O3+ 5014 — 016+ 017 — 013+ O + 5021 — 20093 — 1024 + 1055 |, (A37)
1
0, = _4_1(3012 + 013+ 016 — 017 + O3 + 3019 + Oy — 6i0p — 2i023 + 2i0»5), (A38)
0] _ ! (0] +10 (0] 10 (A39)
2= |0n+;0u 19— 50 ),
i 1 1
Op =013+ 014 —016— 017 — 0y — 2021 ), (A40)
4 2 2
i
Oy = 3(3012 + O13 + O16 + O17 — 3019 — O), (A41)
i
Oys5 = 1(3012 — 013 — 014 — O16 — O17 — 3019 + Oy + O21), (A42)
i
015 = —7(207 = 05 +2i02s). (A43)
Oy = ! 3i0 +3'0 0] 10 +10 (A44)
2 = —7|3i0+ Si0n 2~ 501+ 70|,
1/,. 3. . 1 1
Oy = ~7 3i0 + 5:011 + 3015 +i017 — O3 — 5024 - 5025 , (A45)
1
O = — (905 + 3i019 — 3015 = i017 = 3022 — O3 — O23), (A46)
1
025 = =7 (=90 +3i010 + 3i011 = 3015 = i017 + 302 = O3 = O). (A47)

By examining the above relations one finds that all operators can be expressed as linear combinations of the Oy, X =
S,P,V,A, T, defined in Eq. (54).
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