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Parity-violating neutron spin rotation in 4He
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The parity-violating neutron spin rotation in 4He is studied at vanishing incident neutron energy limit.
Calculations have been realized by solving five-body Faddeev-Yakubovsky equations in configuration space
employing modern strong-interaction Hamiltonian based on chiral perturbation theory including three-nucleon
force. Parity-violating nucleon-nucleon interaction of the Desplanques, Donoghue, and Holstein model is
employed. An implication of the recent theoretical large-Nc estimation of weak couplings [Phillips et al., Phys.
Rev. Lett. 114, 062301 (2015)] is also discussed.
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I. INTRODUCTION

The presence of parity-non-conserving hadronic interac-
tions was established almost 50 years ago [1]. However, an
accurate description of parity-violating (PV) hadronic interac-
tions is still missing. Indeed, PV have been observed mostly
in heavy nuclei [2], where it can be strongly enhanced due to
the complex structure of the compound states. Unfortunately,
this complexity does not allow one to extract the parameters
of the weak nucleon-nucleon (NN) interaction from the the
experimental data without uncertainty. One is obliged to focus
on few-nucleon systems, where strong interaction physics can
be handled accurately, providing grounds to link experimental
observables with underlying weak NN force. Success of this
program obviously requires improvement of the experimental
accuracy but also expansion in the outreach of few-body
theory.

The natural scale of PV observables in few-nucleon sys-
tems is 10−7, requiring exceptional effort to isolate these tiny
weak effects and to provide quantitatively significant predic-
tions. Until now only very few experiments have been able to
meet this challenge in A < 5 systems [3–7], where accurate
numerical calculations exist for the scattering process. The
creation of a high-intensity cold neutron beamline at the
Spallation Neutron Source as well as upgrades at National
Institute of Standards and Technology (NIST) are bringing
hopes to improve measurements in few-nucleon A = 2–5
systems significantly. Some measurements have already been
accomplished [7]. In particular, A = 5 system looks quite
promising with already-existing measurement of the longitu-
dinal asymmetry in proton scattering on 4He at 46 MeV [8]; a
NIST study has also yielded the upper bound for neutron spin
rotation of transversely polarized neutrons in passage through
a 4He target [9]. The last measurement is being repeated with
improved apparatus, aiming to provide much better statistics
and expecting to provide prediction with accuracy reaching

*rimantas.lazauskas@iphc.cnrs.fr
†yhsong@ibs.re.kr

the 10% level. On the theoretical side, one requires a reliable
numerical method to solve the A = 5 problem employing
accurate strong interactions. Recently, one of the authors has
developed numerical code allowing us to solve the five-body
Faddeev-Yakubovsky (FY) equations in configuration space
and for the first time applied it to calculate n-4He elastic phase
shifts [10,11]. Thus we dispose a tool allowing us to study the
neutron spin rotation in 4He ab initio without approximations
on the nuclear dynamics.

The accurate measurements of the parity-violating ob-
servables in few-body systems once combined with existing
theoretical apparatus in A = 2–5 systems will finally allow us
to carry out a systematic program to determine low-energy
constants of PV NN interaction. Eventually, knowledge of
these constants will promote theoretical parity-violation stud-
ies to the level of quantitative predictions. As a part of this
program, we have already studied PV effects in A = 3 systems
[12,13] based on Faddeev equations formalism. In this work,
we compute the neutron spin rotation in 4He by solving
five-body FY equations with strong interactions derived from
chiral effective field theory and weak interaction model of
Desplanques, Donoghue, and Holstein (DDH) [14]. An im-
plication of the recent theoretical large-Nc estimation of weak
couplings [15,16] is also discussed.

II. THE FORMALISM

A. Faddeev-Yakubovsky equation scheme

We start by briefly highlighting the employed formalism.
A general Hamiltonian of the system is defined as

Ĥ = Ĥ0 +
A∑

i< j=1

Vi j +
A∑

i< j<k=1

Wi jk

= Ĥ0 +
A∑

i< j=1

V PC
i j +

A∑
i< j=1

V PV
i j +

A∑
i< j<k=1

W PC
i jk

+
A∑

i< j<k=1

W PV
i jk , (1)
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where Ĥ0 is a free Hamiltonian. Throughout this work we
denote the total NN potential acting between the nucleons
(i j) as Vi j and the three-nucleon interaction acting between
nucleons (i jk) is denoted as Wi jk . These potentials represent
the sums of parity-conserving V PC

i j (W PC
i jk ) and parity-violating

V PV
i j (W PV

i jk ) terms. Furthermore, in this work we neglect
the presence of parity-violating three-nucleon interactions
(W PV

i jk ≡ 0); therefore, in the following we drop superscript PC
in front of the three-nucleon interaction terms by supposing
Wi jk ≡ W PC

i jk . Physical wave functions are solutions of the
Hamiltonian, defined in Eq. (1):

Ĥ� = E�. (2)

This wave function might be represented as a sum of
positive- and negative-parity components � = � (+) + � (−),
satisfying:⎡⎣E − Ĥ0−

A∑
i< j=1

V PC
i j −

A∑
i< j<k=1

W PC
i jk

⎤⎦� (+) =
A∑

i< j=1

V PV
i j � (−),

⎡⎣E − Ĥ0−
A∑

i< j=1

V PC
i j −

A∑
i< j<k=1

W PC
i jk

⎤⎦� (−) =
A∑

i< j=1

V PV
i j � (+).

(3)

We are interested in the low-energy process of nucleon scat-
tering on nucleus of a positive parity. At very low energies the
process is dominated by a relative nucleon-nucleus S wave
and thus the system wave function is predominantly of a
positive parity. By neglecting very small term V PV

i j � (−), the
last set of equations might be approximated as:⎡⎣E − Ĥ0 −

A∑
i< j=1

V PC
i j −

A∑
i< j<k=1

W PC
i jk

⎤⎦� (+) ≈ 0,

⎡⎣E − Ĥ0−
A∑

i< j=1

V PC
i j −

A∑
i< j<k=1

W PC
i jk

⎤⎦� (−) =
A∑

i< j=1

V PV
i j � (+).

(4)

The last set of equations corresponds to the result where
only the first-order terms in a parity-violating interaction are
considered. Furthermore, parity-violating potential couples
two mutually orthogonal spaces; therefore, this approximation
is fully equivalent with other perturbative schemes used in
evaluating weak transition amplitudes like the Distorted Wave
Born Approximation (DWBA) [12,17] approximation or the
approximation proposed by Sloan for a three-body system
[18,19].

In order to impose physical boundary conditions we
employ a Faddeev-Yakubovsky equations approach to
solve the Hamiltonian problem formulated above. Faddeev-
Yakubovsky equations for a five-body system in their differ-
ential form have been formulated in Ref. [20] and were solved
for the first time a few years ago by one of us [10,11]. In
this work we further adjust the former equations in order to
implement three-nucleon forces. For the convenience of its
implementation, the three nucleon force Wi jk acting between

the particles (i jk) is written in a symmetrized form as:

Wi jk = Wk
i j + W i

jk + W j
ki, (5)

and, accordingly we modify expressions of the four-body-like
FY components derived in Refs. [11,21] for Hamiltonians
involving NN interactions only:

(E − Ĥ0 − Vi j )ψ
i jk
i j = Vi j (φ jk + φki ) + Gi jWk

i j�

(E − Ĥ0 − Vi j )ψ
i j,kl
i j = Vi jφkl , (6)

where � is the total wave function of five-nucleon system,
which breaks into a sum of three-body-like φi j and then into
four-body-like FY components ψ

i jk
i j , ψ

i j,kl
i j by:

� =
5∑

i< j=1

φi j (7)

and

φi j = ψ
i jk
i j + ψ

i jl
i j + ψ

i jm
i j + ψ

i j,kl
i j + ψ

i j,km
i j + ψ

i j,lm
i j . (8)

The final step in deriving five-body FY equations consists
of decomposing four-body-like FY components into five-body
ones as:

ψ
i jk
i j = Kl

i j,k + Km
i j,k + Ti j,k

ψ
i j,kl
i j = Hi j,kl + Si j,kl + Fi j,kl . (9)

These five-body FY components satisfy the following set
of equations:

(E − Ĥ0 − V12)K4
12,3

= V12
(
K4

13,2 + K4
23,1 + ψ134

13 + ψ234
23 + ψ13,24

13 + ψ23,14
23

)
+W3

12

(
K4

12,3 + K4
13,2 + K4

23,1 + ψ134
13 + ψ234

23 + ψ13,24
13

+ψ23,14
23 + ψ12,34

12 + ψ124
12 + φ14 + φ24 + φ34

)
(E − Ĥ0 − V12)H12,34

= V12
(
H34,12 + ψ134

34 + ψ234
34

)
(E − Ĥ0 − V12)T12,3

= V12
(
T13,2 + T23,1 + ψ13,45

13 + ψ23,45
23

)
+W3

12

(
T12,3 + T13,2 + T23,1 + ψ13,45

13

+ψ23,45
23 + ψ12,45

12 + φ45
)

(E − Ĥ0 − V12)S12,34

= V12
(
F34,12 + ψ34,15

34 + ψ34,25
34

)
(E − Ĥ0 − V12)F12,34

= V12
(
S34,12 + ψ345

34

)
. (10)

In the last set of equations some of three-body φi j and four-
body-like (ψ i jk

i j , ψ
i j,kl
i j ) components are not decomposed into

five-body components to make expressions more compact.
In order to simplify representation of these expressions, we
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present the last set of equations in a compact form:

(E − Ĥ0 − V12)Fai = V12

∑
b j

P̂
aib j

V Fbj + W3
12

∑
b

P̂
aib j

W Fbj ,

(11)
where indexes a, b denote the topology of the FY components
K,H, T ,S , or F , whereas indexes (i, j) denote ordering of
particle numbers within provided topology (12345). Thus Fai

(or Fbj ) stands for one of the 180 FY components, defining

the wave function of a five-body system. The operators P̂
aib j

V

and P̂
aib j

W , by taking one of two possible values 1 or 0,
select the right combinations of FY components present in
the right-hand side of Eq. (10) for two-body and three-body
potentials, respectively. When considering the presence of the
PV interactions, in analogy to total systems wave function
�, its FY components might be decomposed into positive-
parity and negative-parity ones: Fai = F+

ai
+ F−

ai
. The set of

FY equations following the Schrödinger Eq. (4), turns to be(
E − Ĥ0 − V PC

12

)
F+

ai
≈ V PC

12

∑
b j

P̂
aib j

V F+
b j

+ W3
12

∑
b

P̂
aib j

W F+
b j

,

(E − Ĥ0 − V PC
12 )F−

ai
= V PC

12

∑
b j

P̂
aib j

V F−
b j

+ W3
12

∑
b

P̂
aib j

W F−
b j

+V PV
12

∑
b j

P̂
aib j

V F+
b j

. (12)

To solve the last set of equations we employ the same
techniques, as explained in Ref. [11]. The FY components
depend on four vector variables �(�x,�y,�z, �w), described by
five-body Jacobi coordinates appropriately adapted to the cho-
sen component, see Ref. [10]. Then a partial wave expansion
on each vector variable is performed:

F JM (−→x ,−→y ,−→z ,−→w )

=
∑ fα (x, y, z,w)

xyzw
|{{lxly}lxy{lzlw}lzw }L{S}〉JM{T }T Tz , (13)

where α ≡ (lx, ly, lz, lw, lxy, lzw, L, {S}, {T }) is an index rep-
resenting a set of intermediate quantum numbers, coupled
to total angular momentum J and total isospin T with its
projection Tz (for an n-4He scattering considered in this work,
total isospin and its projection are fixed to T = 1/2 and
Tz = −1/2). In the last expression {S} and {T } represent, re-
spectively, partial-wave basis dependence on spin and isospin,
which is provided by

{S} = |{{s1s2}sx {s3s4}sy}sxy s5〉SSZ , (14)

where s1 to s5 are spins of individual nucleons, whereas
sx, sy, sxy, S represent quantum numbers of intermediate cou-
plings. An equivalent expression is used to develop isospin
dependence {T } of FY components. The reduced compo-
nents fα (x, y, z,w) represent dependence on radial parts of
the Jacobi coordinates. This dependence is expressed using
Lagrange-Laguerre basis functions [22].

B. Boundary conditions

Solution of the differential equations is not complete, un-
less proper boundary conditions are formulated and imposed.

The reduced components are regular functions both for bound
states as well as for scattering problems,

fα (0, y, z,w) = fα (x, 0, z,w) = fα (x, y, 0,w)

= fα (x, y, z, 0). (15)

It is the boundary condition for the asymptotic region (at large
radial distances) which turns out to be more complicated when
a scattering problem is considered. For a bound-state problem
FY components are compact and thus square-integrable basis
functions might be readily used to describe behavior of the
reduced components. For the scattering problems, which does
not involve systems decomposition into more than two clus-
ters (a case considered in this work), reduced components still
remain compact in the x, y, z directions. On the other hand,
asymptotic parts of the elastic incoming (outgoing) wave of
the scattered clusters are expressed in the w-radial dependence
of the reduced FY components. In order to satisfy this criteria,
but at the same time to be able to use square-integrable
basis functions in solving the scattering problem, the reduced
components are split in two terms,

fα,a(x, y, z,w) = f̃ sh
α,a(x, y, z,w) + f̃ asy

α,a (x, y, z,w). (16)

In the last expression index a indicates an incoming chan-
nel number, for which we search for a solution. The term
f̃ sh
α,a(x, y, z,w) is intended to describe only the interior part

of the component fα,a(x, y, z,w) based on expansion em-
ploying compact basis functions. The term f̃ asy

α,a (x, y, z,w)
complements the expression in order to describe properly the
asymptotic part of the reduced FY components. When solving
the first equation of (12) this term takes the following form:[

f̃ asy
α,a (x, y, z,w)

]+

=
∑

b

∑
β⊂b

δβ,αφ̃
(+)
b (x, y, z)

[
w −

√
8

5
η

reg
0 (w)a0

]
. (17)

In the last expression the first sum runs over all open channels
b, whereas the second sum runs over all the partial-wave
amplitudes β ⊂ b, contributing to expanding asymptotes of
this channel. The term a0 denotes neutron-4He scattering
length to be determined. The second equation of (12) is sought
after solution for the first one is obtained, and the asymptotic
term for this case is[

f̃ asy
α,a (x, y, z,w)

]−

=
∑

b

∑
β⊂b

δβ,αφ̃
(−)
b (x, y, z)

[
w −

√
8

5
η

reg
0 (w)a0

]

+
∑

b

∑
β⊂b

δβ,αφ̃
(+)
b (x, y, z)

√
8

5

[
KPV

1,0 (p)

p2

]

×
[

p̂n1

(√
5

8
pw

)]
η

reg
1 (w), (18)

where relative neutron momentum p =
√

2μEc.m./h̄2 =√
8Ec.m.m/(5h̄2) is introduced. In the last equations the terms

[
KPV

1,0 (p)
p2 ] and [ p̂n1(

√
5
8 pw)] are separated in square brackets
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with appropriate power of momentum p in order to keep them

finite when this momentum vanishes. Function n̂1(
√

5
8 pw)

denotes the Riccati-Bessel function; the term KPV
1,0 (p) is the

K-matrix element to be determined describing the parity-
violating transition between the S- and P-wave components.
This K-matrix element is directly related with the parity-
violating observables at low energies, in particular determin-
ing neutron-spin rotation in 4He media.

In the former expressions function η
reg
l (w) is introduced

in order to regularize f̃ asy
α,a (x, y, z,w) term at w = 0. This

regularization function is chosen in a form popularized in the
numerical calculations of the Pisa group [23–25]:

η
reg
l (w) = [1 − exp(w/w0)]2l+k . (19)

In this parametrization, the power k parameter must be chosen
to be k � 1, whereas values k = 1 and k = 2 turns to be
optimal. The range parameter w0 draws the matching region
between dominance of f̃ sh

α,a and f̃ asy
α,a terms and was chosen

in the range (1,2) fm. Calculated observables show very little
sensitivity to two parameters encoded in η

reg
l (w).

Finally, functions φ̃β (x, y, z) represent bound-state-like so-
lutions of the reduced five-body problem to a four-body case.
For a case considered in this work it represents solution of
bound state problem for 4He nucleus. The FY components
φ̃

(+)
b (x, y, z) represent the standard (positive-parity) wave

function �
(+)
4He(−→x ,−→y ,−→z ) of the 4He ground state, obtained

from the Hamiltonian of the strong interaction (HPC
4He). Once

this wave function and the corresponding eigenenergy E4He
are obtained, the negative-parity component of the 4He wave
function �

(−)
4He(−→x ,−→y ,−→z ) is calculated by solving the follow-

ing equation:

(
E4He − HPC

4He

)
�

(−)
4He =

4∑
i< j=1

V PV
i j �

(+)
4He. (20)

In practice these functions are obtained by reducing a five-
body problem to a four-body one, which requires us simply to
eliminate w dependence in Eq. (12) by equating the Laplacian
operator in w as well as all permutation operators containing
w dependence to zero.

C. Parity-violating interaction

For many years, the DDH model [14], which is based on
a one-meson-exchange picture, has been the most popular

choice of parity-violating NN potentials. The DDH PV po-
tential includes contributions from pion, ρ, and ω meson ex-
change with one parity-conserving vertex and one PV vertex.
Assuming h

′1
ρ is negligible, the DDH potential model has six

weak-coupling constants, h1
π , h0

ρ , h1
ρ , h2

ρ , h0
ω, and h1

ω; the sizes
of these coupling constants have been theoretically estimated
[14], providing the DDH “best” values together with their
“reasonable” range. The explicit form of the DDH potential
can be written as

V PV
i j,DDH = gπ

2
√

2mN

h1
π (τi × τ j )

z(σ i + σ j ) · i[pi j, fπ (ri j )]−,

− gρ

mN
h0

ρ (τi · τ j )(σ i − σ j ) · [pi j, fρ (ri j )]+,

− gρ (1 + κρ )

mN
h0

ρ (τi · τ j )(σ i × σ j ) · i[pi j, fρ (ri j )]−,

− gω

mN
h0

ω(σ i − σ j ) · [pi j, fω(ri j )]+,

− gω(1 + κω )

mN
h0

ω(σ i × σ j ) · i[pi j, fω(ri j )]− + . . . ,

(21)

where [pi j, fπ (ri j )]∓ are the (anti-)commutation operator with

pi j ≡ (pi−p j )
2 , fx(r) = 1

4πr e−mxr and ellipsis represent addi-
tional isovector meson exchange terms. Among these, the
isovector pion exchange term, h1

π , has been expected to be
the dominant contribution. However, the isovector pion domi-
nance picture is challenged by the measurement of Pγ (18F),
the circular polarization of photons from the decay of 18F
excited state [26–30] which constraints the value of h1

π sig-
nificantly below the DDH “best” value. There exist other
theoretical estimations of these LECs such as Dubovik and
Zenkin (DZ) [31] and Feldman et al. (FCDH) [32] which
provide smaller pion weak-coupling values; however, they are
not consistent with the observation of the near-zero h1

π term.
To remove possible model dependence of the DDH po-

tential, an alternative parametrization of the PV interaction
based on effective field theory has been developed [33–35].
In the low-energy limit, the NN interaction is described by
short range contact interactions. For parity violation at leading
order, the hadronic PV interaction [2] have five independent
low-energy constants which corresponds to Danilov’s partial
wave analysis [36],

V PV
LO,EFT = �

1S0−3P0
0

[
1

i

←→∇ A

2mN

δ3(r)

m2
ρ

· (σ1 − σ2) − 1

i

←→∇ S

2mN

δ3(r)

m2
ρ

· i(σ1 × σ2)

]

+�
3S1−1P1
0

[
1

i

←→∇ A

2mN

δ3(r)

m2
ρ

· (σ1 − σ2) + 1

i

←→∇ S

2mN

δ3(r)

m2
ρ

· i(σ1 × σ2)

]
+ �

1S0−3P0
1

[
1

i

←→∇ A

2mN

δ3(r)

m2
ρ

· (σ1 − σ2)
(
τ z

1 + τ z
2

)]

+�
3S1−3P1
1

[
1

i

←→∇ A

2mN

δ3(r)

m2
ρ

· (σ1 + σ2)
(
τ z

1 − τ z
2

)] + �
1S0−3P0
2

[
1

i

←→∇ A

2mN

δ3(r)

m2
ρ

· (σ1 − σ2)(τ1 ⊗ τ2)20

]
, (22)
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where (τ1 ⊗ τ2)20 = (3τ z
1τ

z
2 − τ1τ2)/

√
6. These EFT low-energy constants can be approximately matched with the DDH

coupling constants in the low energy limit [2],

�
1S0−3P0
0 = −gρ (2+κρ )h0

ρ −gω(2+κω )h0
ω, �

3S1−1P1
0 = −3gρκρh0

ρ + gωκωh0
ω, �

1S0−3P0
1 = −gρ (2 + κρ )h1

ρ − gω(2 + κω )h1
ω,

�
3S1−3P1
1 = 1√

2
gπNN

(
mρ

mπ

)2

h1
π + gρ

(
h1

ρ − h
′1
ρ

) − gωh1
ω, �

1S0−3P0
2 = −gρ (2 + κρ )h2

ρ. (23)

Recently, new large Nc limit estimation of weak couplings
became available [15,16] and predicted presence of only two
independent combinations of parameters at the leading order,

�+
0 = 3

4�
3S1−1P1
0 + 1

4�
1S0−3P0
0 ∼ Nc, �

1S0−3P0
2 ∼ Nc, (24)

whereas other couplings can be considered as higher order,

�−
0 = 1

4
�

3S1−1P1
0 − 3

4
�

1S0−3P0
0 ∼ 1

Nc
,

�
1S0−3P0
1 ∼ sin2 θW , �

3S1−3P1
1 ∼ sin2 θW . (25)

The suppression of isovector pion exchange contribution is
prominent. A new analysis of experiments based on this order
counting shows very promising consistency between experi-
ments and theory [37]. Also, the new interpretation implies
that the Pγ (18F) experiment and NPDGamma Aγ (�np → dγ )
experiment can be consistent in the sense that they are sen-
sitive to different combination of LECs at higher order. For
reference, different estimations of LECs: DDH, DZ, FCDH
as well as values of the new analysis based on large Nc are
summarized in the Table I. The implication of these estimation
on the neutron spin rotation in 4He will be discussed later.

D. Parity-violating observables

The n-4He scattering amplitude is written in terms of the
K-matrix elements, as

MS′M ′T ′,SMT (E , θ ) =
√

4π
∑
JLL′

√
2L + 1CJM

L′0,S′MCJM
L0,SMYL′0(θ )

× 1

p

[
K

1−iK

]J

L′S′,LS

, (26)

where |(LS)JM〉 denotes the coupled channels of of n-4He
system with a total spin (S) and angular momentum (L),
coupled to the total angular momentum JM. Since ground
state of 4He (α particle) has zero angular momentum, at very
low energies only Jπ = 1

2
±

states should be considered. In this

TABLE I. Various estimations of PV low-energy constants in
units of 10−7. Large Nc analysis is a fit using existing PV experi-
mental data [37].

�+
0 �

1S0−3P0
2 �−

0 �
1S0−3P0
1 �

3S1−3P1
1

DDH best [14] 319 151 −70 21 1340
DZ [31] 246 108 −79 30 347
FCDH [32] 127 108 −74 42 819
Large Nc analysis [37] 717 324 0 0 0

limit, the slow neutron spin rotation angle is written as

dφ

dz
= −2πρ

p
Re

[
MPV

1
2

1
2

1
2 , 1

2
1
2

1
2
(E , 0) − MPV

1
2 − 1

2
1
2 , 1

2 − 1
2

1
2
(E , 0)

]
=

8πρK1 1
2 ,0 1

2

p2
,

where ρ = 0.188 × 1023 atoms/cm3 denotes the density of
the liquid 4He target traversed by a neutron.

Another closely related quantity is the longitudinal total
asymmetry, A(E ), which can be written at very low-energy
limit as

A(E ) =
Im

[
MPV

1
2

1
2

1
2 , 1

2
1
2

1
2
(E , 0) − MPV

1
2 − 1

2
1
2 , 1

2 − 1
2

1
2
(E , 0)

]
Im

[
MPC

1
2

1
2

1
2 , 1

2
1
2

1
2

(E , 0) + MPC
1
2 − 1

2
1
2 , 1

2 − 1
2

1
2

(E , 0)
]

=
2K1 1

2 ,0 1
2

K0 1
2 ,0 1

2

= p

4πρa0

dφ

dz
, (27)

where a0 is a S-wave scattering length. Thus, the longitudinal
asymmetry is rather trivial in the zero-energy limit. At higher
energies this simple relation is broken by the contribution of
higher partial waves. In particular, due to the presence of Jπ =
3/2− neutron resonance situated at ∼1 MeV above the 4He
threshold, this relation is expected to break already at En ∼
0.1 MeV.

III. RESULTS

A. Parity-conserving Hamiltonian

The parity-conserving, strong-interaction Hamiltonian in
this work is based on χEFT approach, derived up to next-
to-next-to-next-to-leading order in chiral perturbation theory
[38], denoted by I-N3LO. This Hamiltonian has been also
supplemented with a three-nucleon force (3NF), developed up
to next-to-next-to-leading order in chiral perturbation theory
[39], recently reparameterized by Marccuci et al. [40]. Re-
gardless of some inconsistency between the chiral order of
three and two nucleon interaction, as pointed out in series
of previous works, this model describes very well properties
of the light nuclei as well as the low-energy scattering in
few-body systems [41–43]. Of particular importance in this
study is description of the low energy n-4He scattering. This
feature has been already studied in [11].

The I-N3LO Hamiltonian based on two-nucleon interac-
tion only underestimates binding energy of α particle and as
consequence slightly overestimates n-4He scattering length.
Models based on two nucleon interactions only also fail to
reproduce the splitting of the resonant n-4He P-waves [11,43].
I-N3LO NN Hamiltonian provides too much attraction in
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FIG. 1. Energy dependence of n-4He S- and P-wave scattering
phase shifts. Our calculated results obtained using I-N3LO NN
potential without three-nucleon force (large hollow symbols) are
compared with calculations performed within NCSMC framework
(continuous line) [43]. Our results for Hamiltonian based on I-N3LO
NN interaction and N2LO three-nucleon force parameterized by
Marccuci et al. [40] are presented by full symbols. Finally, phase
shifts extracted from the experimental data, employing R-matrix
analysis are presented using small hollow symbols [44].

doublet P-wave but lacks attraction in quartet one, see Fig. 1.
Presence of three-nucleon force, developed in Refs. [39,40],
significantly improves description of the few-nucleon sys-
tems. In particular, binding energy and RMS radius of alpha
particle are properly reproduced [39]. Consequently descrip-
tion of n-4He scattering length is also improved [45]. How-
ever, note the presence of large discrepancy in experimentally
determined n-4He scattering length, which complicates quan-
titative comparison of the theoretical and the experimental
results. Thus it is worth to note the ongoing experimental
activity, aiming to settle this issue.

Finally, presence of three-nucleon interaction improves
considerably description of the resonant n-4He P-waves. Our
calculated n-4He 2P1/2-wave phase shifts agrees perfectly
with the ones determined from the experimental data using
R-matrix analysis, see Fig. 1. Our calculated 2P3/2-wave
phase shifts still slightly underestimate R-matrix data, how-
ever demonstrating significant improvement relative to results
obtained by neglecting 3NF. In this respect our results slightly
differ from the ones obtained by employing No Core Shell
Model with Continuum (NCSMC) technique [43], asserting
perfect agreement between the calculations and R-matrix
analysis. Estimation of the low-energy neutron spin rotation
relies on the doublet n-4He states, 2S1/2 and 2P1/2, well

TABLE II. Contribution of different operators from Eq. (21) to
slow neutron spin rotation in 10−7 rad/m for the case of a DDH-best
value parameters. Results for two different strong interaction models,
namely I-N3LO+3BF and I-N3LO, are presented by considering
liquid helium density ρ = 0.188 1023 atoms/cm3.

Ref. [12] ccm
n I-N3LO+3BF I-N3LO

1 gπ

2
√

2mN
h1

π −0.654(3) −0.711

2 gρ

mN
h0

ρ 0.063(17) −0.005

3 gρ (1+κρ )
mN

h0
ρ 4.52(1) 4.43

8 gω

mN
h0

ω −0.274(22) −0.259

9 gω (1+κω )
mN

h0
ω 0.161(8) 0.179

Total 3.82(2) 3.64

described by the PC Hamiltonian based I-N3LO NN inter-
action and 3NF from Ref. [40] and thus providing reliable PC
wave function input.

B. Effects of parity nonconserving Interaction

The main goal of this work is to provide reliable calcula-
tions of the parity-violating matrix elements contributing to
low-energy neutron spin rotation in 4He. We have decided to
concentrate on PV operators in DDH potential, which can be
also linked with the models based on EFT as demonstrated in
Refs. [12,48].

Due to high numerical costs we were not able to con-
sider all the operators spanning DDH potential. Rather, in
consideration of the large Nc estimation of LECs, we limited
ourselves to isovector pion exchange, which would be dom-
inant one in DDH-best values and isoscalar rho and omega
meson exchanges, which would be dominant ones according
large Nc estimation. These potential terms are summarized in
Eq. (21) and denoted with indexes n = 1, 2, 3, 8, 9 in Table I
of Ref. [12]. In Table II, we present contribution from each
of these operators to n-4He spin rotation based on DDH-best
parameter set [14]. Calculations have been performed for
nuclear Hamiltonian based on I-N3LO NN interaction alone
and by including N2LO three-nucleon force parameterized
by Marccuci et al. [40]. Two independent numerical com-
putations for the case including 3NF force have been per-
formed, employing slightly different grids, which allowed us
to perform conservative estimate of the numerical accuracy—
turning out to be of the order of a few percentages. Though the
inclusion of 3BF improves much the binding energy of 4He,
the PV amplitudes are not sensitive to the 3BF.

By summing all the contributions, the total n-4He spin
rotation can be expressed as

dφ

dz
=

{
−(

0.156h1
π − 0.0419h0

ω + 0.388h0
ρ + . . .

)
rad/m for I-N3LO

−(
0.144(1)h1

π − 0.058(8)h0
ω + 0.402(1)h0

ρ + . . .
)

rad/m for I-N3LO+3BF
. (28)

This result may be compared with the only previous study of neutron spin rotation in 4He, performed by Dmitriev et al. [49]
employing simplistic nuclear wave functions,

dφ

dz
= −(

0.97h1
π + 0.22h0

ω + 0.32h0
ρ − 0.22h1

ω − 0.11h1
ρ − 0.02h

′1
ρ

)
rad/m. (29)
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TABLE III. Convergence of calculated 4He binding and n-4He scattering lengths a0 with a size of the partial wave basis used in calculation,
being limited by partial angular-momentum values max(lx, ly, lz, lw ). In the last line fully converged values of the 4He binding energy are
provided, obtained using considerably larger basis to discretize its wave function.

PW I-N3LO I-N3LO+3BF

max(lx, ly, lz, lw ) B(4He) (MeV) a0 (n-4He) (fm) B(4He) (MeV) a0(n-4He) (fm)

2,1,1,1 21.86 2.79 22.41 2.78
2,2,1,1 24.32 2.73 26.36 2.69
2,2,2,2 24.66 2.74 26.99 2.71
3,3,3,3 25.19 2.69 27.72 2.65
4,4,4,3 25.21 2.71 28.10 2.67
4,4,4,4 25.22 2.71 28.11 2.67
Full. 25.38(1) [43,46,47] 28.24 (this work)

Compared to the result of Dmitriev et al. [49], our results shows very different coefficients of h1
π and h0

ω. For DDH-best value, the
total turns to be 3.64 × 10−7 rad/m for I-N3LO and 3.82(2) × 10−7 rad/m for I-N3LO+3BF strong interaction Hamiltonians,
significantly different from the result estimated by Dmitriev et al. [49] ∼ − 10−7 rad/m.

The suppression of h1
π term may need closer inspection. Compared to the amplitudes related with n-2H spin rotation form

Ref. [12], or even with ones related with longitudinal asymmetry in 3He(�n, p)3H reaction [17], one may observe strong
suppression of the currents related with a pion exchange. This feature may be due to the spherical symmetry of 4He. PV one pion
exchange operator is closely related with the proton density asymmetry along the projectile neutron axis, whereas this asymmetry
is washed out due to perfect symmetry of 4He. The Dmitriev et al. [49] employing simplistic nuclear wave functions, suggested
much weaker suppression of one pion exchange currents. Interestingly, if we perform calculations using PC Hamiltonian based
on phenomenological MT I-III NN interaction [50], being limited to S-wave, contribution of one pion exchange operator to 4He
spin rotation increases by factor four showing the sensitivity to NN interaction. This remarkable feature might be very useful in
testing large Nc hypothesis [15,16] of weak couplings.

By adopting the conversion of Eq. (23), our result can be summarized in terms of EFT parameters as

dφ

dz
=

{
+0.0158�+

0 + 0.010�−
0 − 0.0005�

3S1−3P1
1 rad/m for I-N3LO

+0.0166(1)�+
0 + 0.0127(3)�−

0 − 0.000483(3)�3S1−3P1
1 rad/m for I-N3LO+3BF

. (30)

The same manipulation for results of Dmitriev et al. yields [37],

dφ

dz
= 0.0095

(
�+

0 − [
1.61�−

0 + 0.92�
1S0−3P0
1 + 0.35�

3S1−3P1
1

])
rad/m. (31)

Though the coefficients of h0
ρ is similar between two cases, because of the different combination of h0

ρ and h0
ω in the spin rotation,

our result shows almost twice larger contribution of �+
0 . For different estimations of LECs, we get following predictions

dφ

dz
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3.8 × 10−7 rad/m for DDH best

3.0 × 10−7 rad/m for DZ

0.88 × 10−7 rad/m for FCDH

1.2 × 10−6 rad/m for large Nc analysis

. (32)

One finds that the large Nc estimation of LECs in our calcu-
lation favors larger neutron spin rotation values compared to
that of Dmitriev et al.

As demonstrated in Eq. (27) the longitudinal asymme-
try coefficient, A(En), at very low energies can be ex-
pressed in terms of n-4He spin rotation angle as A(En) =
C

√
En

dφn

dz . Employing scattering lengths from Table III,
one gets C = 2.74 × 10−4 and 2.79 × 10−4 eV−1/2 m rad−1

for I-N3LO and I-N3LO+3BF models respectively. Thus
for neutron energies of order 100 keV, where relation of
Eq. (27) still holds, longitudinal asymmetry is not expected to
exceed 10−7.

Our n-4He spin rotation results are inline with the cur-
rent experimental bound [1.7 ± 9.1(stat) ± 1.4(syst)] × 10−7

rad/m from Ref. [9] and new analysis of the same ex-
periment, [2.1 ± 8.3(stat) ± 1.2(syst)] × 10−7 rad/m from
Ref. [51], nevertheless due to apparent drawbacks in deter-
mining mesonic coupling constants of the PV interaction this
comparison should be considered only on very qualitative
grounds. As discussed previously, for a better quantitative
estimation consistent program based on few-body data is
necessary in order to determine coupling constants defining
PV interaction, which following EFT arguments may strongly
depend on parity-conserving Hamiltonian. Determination of
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the PV amplitudes related with the higher order terms of EFT
may worth as a future work.
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