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The first detection of gravitational waves from the binary neutron star merger event GW170817 has started to
provide important new constraints on the nuclear equation of state at high density. The tidal deformability bound
of GW170817 combined with the observed two solar mass neutron star poses a serious challenge to theoretical
formulations of realistic equations of state. We analyze a fully comprehensive set of relativistic nuclear mean-
field theories by confronting them with the observational bounds and the measured neutron-skin thickness. We
find that only a few models can withstand these bounds which predict a stiff overall equation of state but with a
soft neutron-proton symmetry energy. Two possible indications are proposed: Circumstantial evidence of hadron-
quark phase transition inside the star and new parametrizations that are consistent with ground-state properties
of finite nuclei and observational bounds. Based on extensive analysis of these sets, an upper limit on the radius
of a 1.4M� neutron star of R1.4 � 12.9 km is deduced.
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Introduction. The equation of state (EOS) of nuclear mat-
ter, characterizing the relation between energy density and
pressure of the system, has been the cornerstone in defining
the structure of rare isotopes [1], collective properties in
nucleus-nucleus collisions [2,3], and structure of a neutron
star [4,5]. Yet the predictions of these observables are largely
restricted due to incomplete knowledge of the EOS.

While a first-principle calculation of finite density quantum
chromodynamics in lattice gauge theory is plagued by the
sign problem [6], sophisticated nuclear many-body theories
[5,7,8] have served as a promising prospect. These calcu-
lations by design reproduce the nuclear matter properties
at the saturation density. As a consequence, the lower and
higher density predictions of these EOSs are very diverse
and remain largely unconstrained. Particularly uncertain is the
supranuclear density behavior of nuclear symmetry energy
Esym(ρ) and thus the EOS of neutron-rich matter [1,2,4].

The first major observational constraint of the EOS at
suprasaturation densities came from the precise measurements
of two massive neutron stars (NSs) of masses (1.928 ±
0.017)M� [9] and (2.01 ± 0.04)M� [10]. This would effec-
tively exclude unduly soft EOSs where the matter pressure
is not sufficient enough to support stars of maximum mass
Mmax � 1.97M� against gravitational collapse. Conversely, a
stiff EOS with large energy density and pressure offers an
intriguing possibility to produce exotic phases comprising of
hyperons [11,12] and quarks [13].

The historic detection of gravitational waves (GWs) on
August 17, 2017, by the LIGO and Virgo collaborations from
the binary neutron star (BNS) merger event GW170817 [14]
marks the opening of a new possibility to explore the EOS
at large densities. The GW signal encodes the information of
tidal deformation induced by the strong gravitational field of

each star on its companion during the inspiral phase. The tidal
deformability, which depends inherently on the properties of
the neutron star, can be quantified at the leading order as [15]

� = 2

3
k2

(
Rc2

GM

)5

, (1)

where k2 is the tidal Love number that depends on the EOS.
The large sensitivity of the tidal deformability on the star
radius is expected to impose severe constraint on the EOS.

The LIGO and Virgo collaborations inferred a bound
on �1.4 � 800 for neutron stars of mass M = 1.4M� from
Bayesian analysis of the GW data under the assumption that
each star may have a different EOS [14]. Since then, different
analysis techniques and model studies were undertaken in an
effort to constrain the radii and/or maximum mass of neutron
stars and the associated EOSs [16–22] by using the reported
�1.4 upper bound. Recently, an improved analysis of these
data, using a common EOS for both the stars and with more
realistic waveform models, provides �1.4 = 190+390

−120, which
translates into a stringent bound of �1.4 � 580 at the 90%
confidence level [23].

Complementary laboratory measurements of skin thick-
ness of neutron-rich heavy nuclei can provide further impor-
tant checks on the EOS at subsaturation densities [24–26].
Remarkably, the neutron-proton asymmetry pressure that de-
termines the skin in a nucleus of radius Rnuc ≈ 10 fm is es-
sentially the same pressure that dictates the radius R ≈ 10 km
of a neutron star [1]. The Lead Radius Experiment (PREX)
measurement at the Jefferson Laboratory [27] for the neutron-
skin thickness of 208Pb, R208

skin = 0.33+0.16
−0.18 fm, may well be

employed to impose additional constraints. However, a defini-
tive data-to-theory comparison would require a substantial
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reduction in the statistical error as planned in the future
PREX-II experiment.

The synergy between low- and high-density physics of
nuclear matter can be suitably explored using the relativistic
mean-field (RMF) theory that provides a natural Lorentz
covariant extrapolation from sub- to suprasaturation densities
[7,8]. The RMF models offer a comprehensive framework
that successfully describes several finite nuclei properties and
finds large applications in studies of NS structure.

In this article we have extensively analyzed 269 various
EOSs predicted by the RMF models by using the latest
observational bounds on neutron stars and measured finite
nuclei properties. From the analysis we infer plausible bounds
on the radius of neutron stars. We further show that the recent
stringent bound on tidal deformability can be reconciled with
the appearance of quark phases inside the neutron stars. New
relativistic parametric sets are introduced that simultaneously
describe the finite nuclei properties and high-density observa-
tional constraints.

Setup. In the original RMF model [28–30], the interaction
between the nucleons is described via the exchange of scalar-
isoscalar σ mesons and vector-isoscalar ω mesons. Over the
years, the model has been refined by including other mesons
(such as vector-isovector ρ mesons and scalar-isovector δ)
and introducing nonlinear self-interaction as well as cross-
coupling terms for all the mesons [24,31–38].

Based on the form of the interactions in the Lagrangian
density, the 269 RMF models [5,7] are broadly recognized
as NL-type (with nonlinear σ term) [32,34], NL3-type (NL3
and S271 families with additional σ -ρ and ω-ρ couplings)
[31,35], FSU-type (FSU and Z271 families with an addi-
tional nonlinear ω coupling) [36–38], BSR-type (BSR and
BSR* families with more nonlinear couplings; BSR does not
have nonlinear ω coupling) [39,40], and DD (with density-
dependent couplings) [33]. The associated coupling constants
are obtained by sophisticated fitting procedures to the binding
energies and charge radii of finite nuclei and/or to the nuclear
matter properties at the saturation density ρ0.

The total energy per nucleon, i.e. the EOS, E (ρ, δ) =
E0(ρ) + Esym(ρ)δ2, is the sum of the symmetric nuclear
matter (SNM) energy per nucleon E0(ρ) and nuclear sym-
metry energy Esym(ρ), where δ = (ρn − ρp)/ρ is the isospin
asymmetry and ρn, ρp, and ρ are respectively the neu-
tron, proton and nucleon densities [2,3]. Large-scale com-
parison [5] of experimental data from finite nuclei and
heavy-ion collisions with various model calculations have
provided reliable bounds on the incompressibility of SNM,
210 � K∞ = 9ρ0|∂2E/∂ρ2|ρ0 � 280 MeV, symmetry energy
28 � Esym(ρ0) � 35 MeV, and its slope parameter 30 � L =
3ρ0|∂Esym(ρ)/∂ρ|ρ0 � 87 MeV at the saturation density ρ0.
By imposing these current experimental bounds, 67 RMF
models out of 269 sets are found to survive. We will examine
the impact of observational bounds and measured neutron-
skin thickness on these EOSs without altering the parameters
in each model.

Results. Figure 1 presents the prediction of tidal deforma-
bility �1.4 (for mass M = 1.4M�) as a function of maximum
mass Mmax of stars for the 67 RMF EOSs. Models that do
not support stars of Mmax = 1.97M� have essentially a soft
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FIG. 1. Tidal deformability �1.4 of neutron star of mass 1.4M�
vs maximum mass Mmax for all the RMF EOSs. The horizontal and
vertical lines respectively refer to the recent upper bound �1.4 = 580
of GW170817 data [23] and lower bound Mmax = 1.97M� from the
observed pulsar PSR J0348+0432 [10].

isospin-symmetric nuclear matter EOS E0(ρ) which largely
dictates NS mass at high density. In contrast, the deforma-
bility � ≈ R5 (hence NS radius) is sensitive to the density-
dependent symmetry energy Esym(ρ) at ρ ≈ 2ρ0. The tidal
deformability constraint �1.4 � 800, inferred from the first
analysis of the GW170817 event [14], combined with the
lower bound on maximum mass, allows a sizable number of
RMF EOSs to survive, as can be seen from Fig. 1. The current
tight bound on �1.4 � 580 [23] rules out a majority of the
EOSs and supports only three existing models with rather soft
Esym(ρ) ≈ 46 MeV at ρ ≈ 2ρ0, namely, NLρ [34] (NL-type
EOS with σ self-couplings), HC [36] (FSU-type EOS with
nonlinear ω, ρ), and TW99 [33] (a density-dependent EOS).
We also note that the TW99 set provides a tidal deformability
of �1.4 ≈ 400.

To explore the impact of the tidal deformability constraint
on the entire structure of a star, we display in Fig. 2 the
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FIG. 2. Mass-radius relation of neutron stars predicted for all the
RMF EOSs that fulfill various �1.4 bounds.
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FIG. 3. (a) Correlation between tidal deformability �1.4 and
radius R1.4 of neutron stars of mass M = 1.4M�. The solid line
represents the fit �1.4 = 1.53×10−5(R1.4/km)6.83. (b) Correlation
between neutron-skin thickness of 208Pb nuclei R208

skin and R1.4. The
results are for EOSs that support stars with Mmax � 1.97M�.

mass-radius relation of stars for all the EOSs that are subjected
to various �1.4 bounds. The resulting correlation between �1.4

and radius R1.4 (for a 1.4M� star), computed for the EOSs
that support maximum mass larger than 1.97M�, is shown
in Fig. 3(a). In general, the increase of R1.4 with �1.4 has
the natural explanation that � quantifies the deviation of the
gravitational field of a star relative to that of a point-mass
object [15]. The exceedingly stiff NL3-type EOSs [31,35]
generate stars with large Mmax ≈ 2.7M� but have fairly large
R1.4 ≈ 13.7 km (albeit within a narrow range). Hence, these
stars give �1.4 > 800 and can be clearly ruled out by the
present GW data. Interestingly enough, a bound of 580 <

�1.4 < 800 suggests quite a large variation in the maximum
mass 2.0 � Mmax/M� � 2.5 but reasonably tight correlation
between deformability and radii 12.9 � R1.4/km � 13.50 for
these moderately soft EOSs. A plausible stringent LIGO-
Virgo bound 400 � �1.4 � 580 favors EOSs that possess
much softer Esym(ρ) at density ρ ≈ 2ρ0. However, due to
the super-soft total pressure at high densities, most of these
EOSs are excluded by the Mmax � 1.97M� constraint. As also
seen in Fig. 1, only three EOSs: NLρ [34], HC [36], and
TW99 [33], are just stiff enough to qualify the combined tidal
deformability and maximum mass constraints.

One important upshot of the M-R relation of Fig. 2 is the
large spread of radius R1.4 when all the stars are considered
irrespective of their Mmax. The maximum mass bound [as

shown in Fig. 3(a)] enforces a tight correlation of the form
�1.4 = 1.53×10−5(R1.4/km)6.83, which suggests the possibil-
ity of constraining the radius [18,19] and perhaps the Esym(ρ).
Thus the bound �1.4 � 800, estimated from the first analysis
of GW170817 [14], translates to R1.4 � 13.49 km, and the
recent stringent constraint �1.4 � 580 [23] provides a strict
upper limit of R1.4 � 12.87 km. Interestingly, the tidal de-
formability in NLρ [32] is close to the inferred current upper
bound and predicts R1.4 � 12.81 km. Albeit, the radius of a
NS is known to receive considerable contribution from the
low-density crustal equation of state.

It may be mentioned that all 67 RMF EOSs are found
to be consistent with the pressure bound at twice the sat-
uration density of P(2ρ0) = 3.5+2.7

−1.7×1034 dyn/cm2 (at the
90% confidence level) as extracted from GW170817 data
[23]. Hence, this bound is not very useful to constraining the
EOS. In contrast, the bound P(6ρ0) = 9.0+7.9

−2.6×1035 dyn/cm2

at ρ = 6ρ0 rules out overly soft RMF EOSs. However, this
estimated bound is more than the central pressures of the
binary components of the GW170817 event [23] and therefore
should be used with caution.

Complementary and crucial information on Esym(ρ), i.e.,
the EOS, at subsaturation densities can be obtained from
analysis of skin thickness Rskin = Rn − Rp of nuclei, defined
as the difference between the rms radii of neutrons and protons
[25,26]. Figure 3(b) shows the correlation between neutron-
skin thickness R208

skin of heavy 208Pb and the stellar radius R1.4.
A stiff Esym(ρ) (large slope L) induces large values for both
the skin and star radius. Although the Rskin-R1.4 correlation
is strong within the same family of EOSs [18], the spread is
quite large when all the EOSs from RMF theory are included.
This relates to the fact that apart from the slope L, the SNM
compressibility K∞ also contributes to the Rskin and NS radius
[41]. This also suggests that constraints on symmetry energy
and its slope L from measurements of neutron-skin and tidal
deformability would be model dependent.

The large statistical uncertainty in the current PREX mea-
surement, R208

skin = 0.33+0.16
−0.18 fm [27], however, prevents any

definite constraint on the EOSs. For reference, we note that
while all the parameter sets that predict R208

skin ≈ 0.20–0.25 fm
are excluded by the observational �1.4 < 580 bound, the
three EOSs [33,34,36] allowed by this bound have R208

skin =
0.18–0.20 fm. Should the future PREX-II experiment confirm
the central value of skin thickness R208

skin > 0.20 fm with a
significantly small statistical error as envisioned, then the ob-
servationally constrained EOSs NLρ, TW99, and HC would
be excluded.

Any parametric EOS, designed to reproduce nuclear matter
properties, should also give a good description of finite nuclei
properties. To ascertain this, we have calculated the binding
energies and charge radii of some light and heavy nuclei for
the three parameter sets that satisfy both the observational
bounds. The TW99 set which was obtained by including the
saturation properties of nuclear matter as well as binding
energies of some finite nuclei in the fitting protocol obviously
has the best agreement as seen in Fig. 4. In contrast, the other
two sets (HC and NLρ) which have been fitted to only the
nuclear matter saturation properties, fail to provide reasonable
description of finite nuclei properties.
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FIG. 4. Binding energy and charge radius of nuclei calculated for
viable RMF sets and compared with data; see text for details.

Implications. Various parametrizations of the RMF model
have been generated in the last five decades that are consistent
with nuclear and neutron star properties. The tension of RMF
models with the current observational data poses intriguing
questions: Are the GW data an evidence of exotic phases such
as quarks inside the NS? Is there still scope to devise new
parameter sets by accommodating all the constraints? We will
next explore these interesting possibilities.

The gravitational waves from the merger of binary neutron
stars have the potential to investigate the possible existence
of a deconfined quark phase at high densities [20,42–44]. The
appearance of quarks (or any new degrees of freedom) inside
the star at ρ > ρ0 softens the EOS, resulting in a decrease
of Mmax and radius. Thus a hadronic EOS which produces
Mmax � 2M� for a neutron star could be a possible candidate
for the inclusion of exotic phases. Such hadronic EOSs can be
identified by inspection of Fig. 2.

A phase transition from hadron to quark matter in the NS
interior, consistent with the earlier �1.4 � 800 constraint, was
recently shown to prevail [21] for realistic parameters in the
bag model that provides a phenomenological description of
the quark phase [45]. Following the methodology described
in Ref. [21], we generated EOSs with phase transition by con-
sidering one representative hadronic EOS from each family of
RMF models that gives Mmax � 1.97M� and by continuously
varying the bag pressure in the range B1/4

eff � 145–200 MeV.
A small value of B1/4

eff causes early appearance of the quark
phase resulting in small Mmax and R1.4. Figure 5 illustrates
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FIG. 5. Correlations between R1.4 and �1.4 (left scale) and Mmax

and �1.4 (right scale) for EOSs with hadron-quark phase transition
constructed from the RMF model for the hadronic phase and bag
model for the quark phase. In each individual RMF set shown, the
bag parameter is varied [21] to generate different EOSs with first-
order phase transition using Gibbs conditions.

the �1.4-R1.4 and �1.4-Mmax correlations obtained from these
EOSs with hadron-quark phase transition. Remarkably, for all
these hadronic EOSs (except for NL3v6) we find a range of
bag pressures which are consistent with the stringent bound
of �1.4 � 580 and maximum mass constraint—a possible
indication of quark-hadron phase transition in the neutron star
core. Moreover, these EOSs predict a radius of R1.4 � 12.94
km close to that found from pure hadronic EOSs.

Finally, we demonstrate how one can generate new EOSs
consistent with both the observational and experimental data.
Let us consider the original IU-FSU parameter set [46]
which provides a good description of finite nuclei and nu-
clear saturation properties. We recall that the model predicts
�1.4 � 512, well within the GW170817 bound, and Mmax =
1.94M� slightly below the Mmax constraint. The nonlinear
self-coupling term for the ω meson, with coupling constant
ζ = 0.03, mainly determines the stiffness of EOS at high den-
sities [46]. By fine tuning ζ to 0.025 and 0.020, for example,
and refitting other parameters to reproduce the nuclear proper-
ties at ρ0, we construct two new parameter sets: IU-FSU1 and
IU-FSU2. Both these sets now generate Mmax > 1.97M� and
�1.4 < 580. The resulting correlations involving �1.4 with
Mmax and R1.4 are displayed in Figs. 1 and 3. As expected,
these new sets provide reasonable description of finite nuclear
properties as shown in Fig. 4. Interestingly, the NS radii for
IU-FSU1 and NLρ nearly match, which may suggest that the
�1.4 � 580 bound translates into R1.4 � 12.81 km.

Conclusions. We have employed observational data from
the gravitational-wave event GW170817 and neutron star
mass Mmax � 1.97M� in conjunction with laboratory mea-
surements of neutron skin thickness to constrain the EOSs
within RMF theory. The maximum mass bound excludes
several EOSs that predict diverse values of NS radius and pro-
vides a tight correlation between R1.4 and �1.4. Whereas, the
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first inferred bound �1.4 � 800 translates to a NS radius with
an upper limit R1.4 < 13.50 km, the recent improved bound
�1.4 � 580 provides R1.4 < 12.88 km. The strict bound on
�1.4 rules out all EOSs, but a few with soft Esym at density
ρ ≈ 2ρ0. If stars have hadron to quark phase transitions,
several EOSs are shown to be consistent with all the measured
bounds. Complementary precise estimate of skin thickness of
nuclei that is sensitive to the slope of Esym should provide
further important checks.

It may be noted that though the phenomenological RMF
approach provides a reasonable description of the EOS over a
wide density range, it does not incorporate the realistic micro-
scopic many-body nuclear interactions [47,48]. Moreover, the
RMF models do not contain the essential features of a strong
interaction described by QCD such as chiral symmetry and
broken scale invariance [49] at finite nuclear matter densities.
It will be interesting to compare our predictions obtained
within the RMF models with those in the microscopic models.
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